
A Generic Approach to Constructing and Proving

Verifiable Random Functions

Rishab Goyal ∗ Susan Hohenberger† Venkata Koppula‡ Brent Waters§

Abstract

Verifiable Random Functions (VRFs) as introduced by Micali, Rabin and Vadhan are a special form
of Pseudo Random Functions (PRFs) wherein a secret key holder can also prove validity of the function
evaluation relative to a statistically binding commitment.

Prior works have approached the problem of constructing VRFs by proposing a candidate under a
specific number theoretic setting — mostly in bilinear groups — and then grappling with the challenges
of proving security in the VRF environments. These constructions achieved different results and tradeoffs
in practical efficiency, tightness of reductions and cryptographic assumptions.

In this work we take a different approach. Instead of tackling the VRF problem as a whole, we
demonstrate a simple and generic way of building Verifiable Random Functions from more basic and
narrow cryptographic primitives. Then we can turn to exploring solutions to these primitives with a more
focused mindset. In particular, we show that VRFs can be constructed generically from the ingredients
of: (1) a 1-bounded constrained pseudo random function for a functionality that is “admissible hash
friendly” , (2) a non-interactive statistically binding commitment scheme (without trusted setup) and
(3) non-interactive witness indistinguishable proofs or NIWIs. The first primitive can be replaced with
a more basic puncturable PRF constraint if one is willing to settle for selective security or assume
sub-exponential hardness of assumptions.

In the second half of our work, we support our generic approach by giving new constructions of the
underlying primitives. We first provide new constructions of perfectly binding commitments from the
Learning with Errors (LWE) and Learning Parity with Noise (LPN) assumptions. Second, we give give
two new constructions of 1-bounded constrained PRFs for admissible hash friendly constructions. Our
first construction is from the n-powerDDH assumption. The next is from the φ hiding assumption.

1 Introduction

Verifiable Random Functions (VRFs) as introduced by Micali, Rabin and Vadhan [MRV99] are a special
form of Pseudo Random Functions (PRFs) [GGM84] wherein a secret key holder can also prove validity
of the function evaluation relative to a statistically binding commitment. The caveat being that the pseu-
dorandomness of the function on other points should not be sacrificed even after providing polynomially
many proofs. The VRF definition forbids interactivity or any setup assumption, thereby disallowing trivial
extensions of PRFs making the problem more challenging and interesting.

Prior works [Lys02, Dod02, DY05, HW10, Jag15, HJ16] have approached the problem of constructing
VRFs by proposing a candidate under a specific number theoretic setting — mostly in bilinear groups —
and then grappling with the challenges of proving security in the VRF environments. These constructions
achieved different results and tradeoffs in practical efficiency, tightness of reductions and cryptographic
assumptions.

∗University of Texas at Austin. Email: goyal@utexas.edu.
†Johns Hopkins University. Email: susan@cs.jhu.edu. Supported by the National Science Foundation (NSF) CNS-1228443

and CNS-1414023, the Office of Naval Research under contract N00014-14-1-0333, and a Microsoft Faculty Fellowship
‡University of Texas at Austin. Email: k.venkata.vk@gmail.com.
§University of Texas at Austin. Email: bwaters@cs.utexas.edu. Supported by NSF CNS-1228599 and CNS-1414082,

DARPA SafeWare, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

1

In this work we take a different approach. Instead of tackling the VRF problem as a whole, we demonstrate
a simple and generic way of building Verifiable Random Functions from more basic and narrow cryptographic
primitives. Then we can turn to exploring solutions to these primitives with a more focused mindset.

In particular, we show that VRFs can be constructed generically from the ingredients of: (1) a 1-bounded
constrained pseudo random function [BW13, BGI14, KPTZ13] for a functionality that is “admissible hash
friendly” , (2) a non-interactive statistically binding commitment scheme (without trusted setup) and (3)
non-interactive witness indistinguishable proofs or NIWIs [FS90]. The first primitive can be replaced with
a more basic puncturable PRF [SW14] constraint if one is willing to settle for selective security or assume
sub-exponential hardness of assumptions.

The first benefit of our approach is that by generically breaking down the problem we expose and
separate the core features of VRFs. Namely, we can see that in spirit any reduction must both develop
a way of constraining itself from knowing the output of the entire PRF space while at the same time be
able to develop non-interactive proofs without a common setup. Second, with the VRF problem dissected
into constituent parts, we can explore and develop number theoretic solutions to each piece. Ideally, this
breakdown will help us develop a wider array of solutions and in particular break away from the dependence
on bilinear maps. We now look at each primitive in turn.

Beginning with constrained PRFs, our goal is to build them for constraints that we call admissible
hash [BB04] compatible. In particular, we need a constrained key that can be associated with a string
z ∈ {0, 1,⊥}n where the constrained key can be evaluated on any input x ∈ {0, 1}n where x 6= z. For our
purposes such a scheme only needs to be secure in the model where an attacker is allowed a single key query.
The recent work of Brakerski and Vaikuntanthan [BV15] construct 1-bounded constrained PRFs under the
learning with errors (LWE) [Reg05] assumption that can handle any constraint in NC1 which encompasses
the admissible hash compatible functionality.

We complement this by providing a new construction of constrained PRFs that is admissible hash friendly
in the setting of non-bilinear groups. Our construction is proven secure under the n-powerDDH problem.
Informally, one is given g, ga, ga

2

, . . . , ga
n−1

, it is hard to distinguish ga
n

from a random group element. We
note that this problem in composite order groups reduces to the subgroup decision problem [CM14]. In
addition, as mentioned above if we assume sub-exponential hardness of our assumptions or relax to selective
security we can instead rely on puncturable PRFs which are realizable from any one way function.

We next turn to constructing non-interactive perfectly binding commitments. The main challenge here
is any solution must not utilize a trusted setup since a trusted setup is disallowed in the VRF setting.
Naor [Nao91] showed how any certifiably injective one way function gives rise to such a commitment scheme.
Injective functions can in turn be based on (certifiable) groups where discrete log is hard.

We develop new constructions for non-interactive perfectly binding commitments from noisy crypto-
graphic assumptions. We show and prove a construction under the Learning with Errors and Learning
Parity with Noise (LPN) assumptions. Our LPN solution uses a low-noise variant (β ≅

1√
n
) of the LPN

assumption that has been used in previous public key encryption schemes [Ale03]. We also develop an ap-
proach for proving security under LPN with constant noise. Our solution requires the existence of an explicit
error correcting code with certain properties. We leave finding such a code as an interesting open problem.

Finally, we arrive at NIWIs. There are three basic approaches to building NIWIs. First, in the bilinear set-
ting, it is known [GOS12] how to construct NIWIs from the decision linear assumption. Second, Barak, Ong
and Vadhan (BOV) [BOV07] showed that two-message public-coin witness indistinguishable proofs (a.k.a.
ZAPs [DN00]) imply NIWIs under certain complexity theoretic assumptions that allow for derandomization.
Finally, indistinguishability obfuscation [GGH+13] gives rise to NIWI constructions [BP15].

Taking a step back we can see that our approach already leads to constructions of VRFs with new
properties. For example, if we build ZAPs from trapdoor permutations and apply the BOV theorem we
can achieve multiple constructions of adaptively secure VRFs without complexity leveraging that do not use
bilinear groups. In addition, given the wide array of choices for building our commitments and constrained
PRFs, our work reveals developing new techniques for building and proving NIWIs as the primary bottleneck
for progress towards VRFs.

2

1.1 Technical Overview

We now give a high level overview of our technical approach. A formal treatment is given in the main body.
We break our overview into three pieces. First we describe our generic construction of Verifiable Random
Functions. Next, we define admissible hash compatible constrained PRFs and go over our non-bilinear group
solution. Finally, we overview our LWE and LPN solutions to non-interactive perfectly binding commitments.

Constructing VRFs Generically. We first briefly review the definition of a Verifiable Random Function.
In the VRF framework, a party runs the Setup algorithm to generate a pair of secret key SK and public
verification key VK. Using the secret key SK, it could efficiently evaluate the function FSK(·) on any input x
as well as a proof Π of the statement y = FSK(x). The verification key could be considered as a statistically
binding commitment to the underlying pseudorandom function. A third party verification algorithm Verify

is used to verify a proof Π which takes the verification key VK, function evaluation y, and message x as
additional inputs. First, the soundness condition dictates that for each (VK, x) pair there should be at most
one output y such that Verify(VK, x, y, π) = 1. Importantly, VRFs do not make use of any setup assumption
and soundness should hold even in the case of a maliciously generated VK. Second, it should also hold that
the output of function FSK(·) is indistinguishable from a random string even after observing polynomially
many evaluations and proofs at adversarially chosen points. The latter is formalized as pseudorandomness
property of the VRF.

We now give a simple construction from the aforementioned primitives. The VRF setup proceeds as
follows. First, a constrained PRF key K is sampled and kept as part of the secret key. Next, a sequence
of three independent commitments c1, c2, c3 is computed such that each commitment ci opens to the key
K.1 The triple of commitments (c1, c2, c3) is stored as the public verification key and the corresponding
randomness used during commitment is included in the secret key. For evaluating the VRF on any input
x, we first apply an admissible hash function on x and then evaluate the constrained PRF on the output
of admissible hash. In short, the VRF output on some input x is PRFK(h(x)). For proving correctness of
evaluation, we use non-interactive witness indistinguishable proofs (NIWIs). In particular, to prove that the
output of VRF on some input x is y, we create a NIWI proof for the statement that at least two out of
three commitments (c1, c2, c3) (in the verification key) open to keys K1,K2 such that y = PRFK1

(h(x)) =
PRFK2

(h(x)) (the idea of a majority-based decoding (i.e., two out of three trick) was also used in [BGJS16]).
We would like to emphasize that keys K1 and K2 need not be identical as the only constraint that must hold
is that the PRF evaluation of input h(x) must be equal to y irrespective of the key (out of K1,K2) used. The
proof verification can be done in a straightforward manner as it simply involves running the NIWI verifier.

Now we briefly sketch the idea behind pseudorandomness proof in the adaptive setting. To prove security
we use a “partitioning” argument where roughly 1/Q fraction of inputs can be used as challenge and remaining
1 − 1/Q fraction will be used for answering evaluation queries, where Q is the number of queries made by
an attacker. First step in the reduction is to concretely define the challenge and non-challenge partitions
using admissible hash function. Next, we leverage the facts that all the evaluation queries will lie outside the
challenge partition2 and for generating the evaluation proofs we only need openings of two key commitments
out of three. At a high level, our goal is to switch all three commitments c1, c2, c3 such that they commit to
the constrained key K ′ instead of key K, where K ′ could be used to evaluate the VRF on all points outside
the challenge partition. To this end, the reduction proceeds as follows.

First, the challenger makes two crucial modifications — (1) it generates a constrained PRF key K ′ along
with the master key K, (2) it computes c3 as a commitment to key K ′ instead of key K. Such a hybrid jump
is indistinguishable by the hiding property of the commitment scheme as for generating all the evaluation
proofs it does not need the opening for c3. Next, we switch the NIWI witness used to generate the proof. In
particular, the challenger now uses openings of c2, c3 as the NIWI witnesses. This only results in a negligible

1Looking ahead, it will be crucial for proving the unique provability property that the commitment scheme used is perfectly
binding.

2The challenger needs to perform an abort step in case of bad partitioning, however for the above informal exposition we
avoid discussing it. More details are provided in Section 4.

3

dip in the adversary’s advantage because for all inputs outside the challenge partition, the PRF evaluation
using the master key K and constrained key K ′ is identical, thus the openings of any two commitments
out of c1, c2, c3 could be used as the NIWI witness. Applying similar modifications as above in succession,
all three commitments c1, c2, c3 could be switched to commitments of the constrained key K ′. If all three
commitments open to the constrained key K ′, then the challenger could directly reduce an attack on the
VRF pseudorandomness to an attack on the constrained pseudorandomness of the PRF.

It is also interesting to note that if we use a puncturable PRF instead of an admissible hash compatible
constrained PRF, then the same construction could be proven to be selectively secure with only polynomial
security loss to the underlying assumptions. The major difference in the proof being the partitioning step,
where instead of using the admissible hash function to perform partitioning and aborting in case of bad
partitions, the reduction already knows the challenge input at the start, thus it only needs to puncture the
PRF key on the challenge input in order to use the same sequence of hybrids. This is discussed in detail in
Section 4.

Admissible Hash Compatible Constrained PRFs. A constrained PRF family consists of a setup
algorithm that outputs the master PRF key, a constrain algorithm that takes as input the master PRF key
and a constraint, and outputs a constrained PRF key. The constrained PRF key can be used to evaluate
the PRF at all points satisfied by the constraint. As mentioned in the previous paragraph, for constructing
adaptively secure VRFs, we require constrained PRFs for a special class of “admissible hash compatible”
constraints. Each constraint is specified by a string u ∈ {0, 1,⊥}n. Given a constrained key for u, it can be
used to evaluate the PRF at all points x such that there exists an index i ≤ n where ui 6= ⊥ and xi 6= ui.
For this work, we require a weaker notion of security which we call ‘single-key no-query’ security. Here, the
adversary first sends a constrained key query u. After receiving the constrained key, it sends a challenge
point x such that it does not satisfy the constraint (that is, for all i ≤ n, either ui = ⊥, or xi = ui). It then
receives either the PRF evaluation at x or a uniformly random string, and it must distinguish between the
two scenarios.

Powers-DDH Construction. This construction, at a high level, is similar to the Naor-Reingold PRF
construction. The PRF key consists of 2n integers {ci,b}i≤n,b∈{0,1} and a group element g. To evaluate at
a point x, we first choose n out of the 2n integers, depending on the bits of x. Let t denote the product of
these n integers. The PRF evaluation is gt. A constrained key for constraint u ∈ {0, 1,⊥}n consists of n

powers of a random integer a in the exponent of g: (g, ga, . . ., ga
n−1

) and 2n integers {vi,b}. Each vi,b is set

to be either ci,b or ci,b/a, depending on ui. Using the vi,b and an appropriate ga
k

term, one can compute
the PRF evaluation at any point x such that it satisfies the constraint (that is, if there exists an i ≤ n such
that ui 6= ⊥ and xi 6= ui). However, if x does not satisfy the constraint, then one needs to compute ga

n

to
compute the PRF evaluation at x. Using the n-powerDDH assumption, we can argue that if an adversary
can distinguish between the PRF evaluation and a truly random string, then one can use this adversary to
distinguish between ga

n

and a random group element.
Phi-Hiding Construction. In this scheme, the PRF key consists of an RSA modulus N , its factor-

ization (p, q), 2n integers ci,b, a base integer h and a strong extractor seed s. The PRF evaluation on an n
bit strings is performed as follows: first choose n out of the 2n integers depending on the input, compute
their product, then compute this product in the exponent of h and finally apply a strong extractor on the
product with seed s. A constrained key for constraint u ∈ {0, 1,⊥}n consists of 2n integers {vi,b}, integers e
and he, and seed s. Each vi,b is set to be either (ci,b− 1) · e−1 or ci,b · e−1, depending on ui. Integers vi,b are
set such that the PRF evaluation at any point x satisfying the constraint is of the form Ext(heα, s), where
α could be computed only using vi,b’s and e. However, for all unsatisfying points x, the output is of the
form Ext(h1+eα, s). Using the phi-hiding assumption, we can argue that an adversary can not distinguish
between the cases where e is co-prime with respect to φ(N), and when e divides φ(N). Note that in the
latter case, there are e distinct eth roots of he. Thus, for any challenge point, the term h1+eα will have large
min-entropy, and by strong extractor guarantee we could conclude that it looks uniformly random to the
adversary.

We could also show that the above construction is a secure constrained unpredictable function under the

4

RSA assumption. Note that constrained unpredictability is a weaker notion of security than constrained
pseudorandomness in which the adversary must guess the PRF evaluation on the challenge point.

New Constructions of Non-Interactive Perfectly Binding Commitments. Finally, the third com-
ponent required for our VRF construction is a non-interactive perfectly binding commitment scheme (without
trusted setup). In this work, we give new constructions for this primitive based on the Learning with Errors
(LWE) and Learning Parity with Noise (LPN) assumptions. (We emphasize that such commitments have
applications beyond VRFs. For example, they are a key ingredient in building verifiable functional encryp-
tion [BGJS16].) Our LPN construction can be proven secure under the LPN with low noise assumption.
Finally, we also give an approach for proving security under LPN with constant noise. This approach relies on
the existence of special error correcting codes with ‘robust’ generator matrix. Currently, we do not have any
explicit constructions for this combinatorial object. For simplicity, we only consider single bit commitment
schemes.

LWE Construction. In this scheme, we will be working in Zq for a suitably large prime q. The
commitment to a bit b consists of a randomly chosen vector w and wT s+noise+b(q/2), where s is a randomly
chosen secret vector. However, to ensure perfect binding, we need to have some additional components.
The scheme also chooses a random matrix B from a distribution D1 and outputs B,BT s + noise. This
distribution has the special property that all matrices from this distribution have ‘medium norm’ rowspace.
This property ensures that there does not exist two distinct vectors s1 and s2 such that BT s1 + noise1 =
BT s2+noise2. Finally, to argue computational hiding, we require that a random matrix from this distribution
looks uniformly random. If this condition is satisfied, then we can use the LWE assumption to argue that
wT s+ noise and BT s+ noise′ look uniformly random, thereby hiding the committed bit. Sampling a matrix
from the distribution D1 works as follows: first choose a uniformly random matrix A, then choose a matrix
C with low norm entries, matrix D with ‘medium’ entries and output [A | AC +D + noise]. For any non
zero vector s, if AT s has low norm, then CTAT s also has low norm, but DT s has medium norm entries,
and therefore [A | AC+D+ noise]T s has medium norm entries.

Low Noise LPN construction. This scheme is similar to the LWE construction. Here also, the
commitment to a bit b consists of w and wT s + b, where w and s are uniformly random vectors in Zn

2 .
To ensure that there can be only one vector s, we also choose a matrix B from a special distribution D2

and output B,BT s+ noise. In this case, the distribution D2 is such that all matrices from this distribution
have high hamming weight rowspace. To sample from the distribution D2, one chooses a uniformly random
matrix A, a matrix C with low hamming weight rows and outputs [A | AC+G], where G is the generator
matrix of an error correcting code. Here the role of G is similar to the role of D in the previous solution:
to map any non-zero vector to a high hamming weight vector. An important point here is that we need the
rows of C to have low (O(

√
n)) hamming weight. This is because we want to argue that if AT s has low

hamming weight, then so does CTAT s. Finally, to argue that D2 looks like the uniform distribution, we
need the LPN assumption with low noise3 (since C has low (O(

√
n)) hamming weight rows).

This construction bears some similarities to the CCA secure encryption scheme of Kiltz et al. [KMP15].
Standard LPN construction. Finally, we describe an approach for constructing a commitment scheme

that can be proven secure under the standard LPN assumption (with constant noise). For this approach, we
require a deterministic procedure that can output ℓ matrices G1, . . . ,Gℓ with the following property: for any
matrix A, there exists an index i such that the rowspace of A+Gi has high hamming weight. Given such
a procedure, our commitment scheme works as follows. The commitment algorithm, on input message b,
chooses a uniformly random matrix A and generates ℓ sub-commitments. The ith sub-commitment chooses
uniformly random vectors si,wi and outputs (A+Gi)

T si + noise, wi and wT
i si + b. For perfect binding, we

will use the guarantee that there exists an i such that the rowspace of A + Gi has high hamming weight.
This implies that if (A+Gi)

T s1 + noise = (A+Gi)
T s2 + noise, then s1 = s2. For computational hiding, we

need a hybrid argument to switch each sub-commitment to uniformly random.

3We will be using the (low noise) Knapsack LPN assumption. The Knapsack LPN assumption states that for a uniformly
random matrix A and a matrix E such that each entry is 1 with probability p and A has fewer rows than columns, then
(A,AE) look like uniformly random matrices.

5

1.2 Concurrent Work

Independently and concurrently, Bitansky [Bit17] gave a very similar construction of VRFs from NIWIs,
perfectly binding commitments and puncturable PRFs/constrained PRFs for admissible hash friendly con-
straints.

The notable differences in the two works are with respect to the new realizations of commitments and
constrained PRFs. Both works give a constrained PRF under the n-powerDDH assumption for admissible
hash friendly constraints. Bitansky was able to further prove this construction secure under the DDH
assumption. Interestingly, the result was achieved by considering constrained PRFs for a more general notion
of partitioning than admissible hash. We also construct admissible hash friendly constrained PRFs based
on the phi-hiding assumption as well as constrained unpredictable functions based on the more standard
RSA assumption. Finally, we also provide new constructions for perfectly binding commitments based on
the LWE and LPN assumption.

Subsequently, Badrinarayanan et al. [BGJS17] gave an alternate construction of VRFs from punc-
turable PRFs/constrained PRFs for admissible hash friendly constraints and Verifiable Functional Encryp-
tion [BGJS16], which in turn can be constructed from NIWIs, injective one-way functions and secret key
functional encryption schemes secure against single ciphertext and unbounded key queries.

2 Preliminaries

2.1 Verifiable Random Functions

Verifiable random functions (VRFs) were introduced by Micali, Rabin and Vadhan [MRV99]. VRFs are keyed
functions with input domain {Xλ}λ, output range {Yλ}λ and consist of three polynomial time algorithms
Setup, Evaluate and Verify described as follows:

• Setup(1λ) is a randomized algorithm that on input the security parameter, outputs (SK,VK). SK is
called secret key, and VK verification key.

• Evaluate(SK, x) is a (possibly randomized) algorithm, and on input the secret key SK and x ∈ Xλ, it
outputs an evaluation y ∈ Yλ and a proof π ∈ {0, 1}∗.

• Verify(VK, x, y, π) is a (possibly randomized) algorithm which uses verification key VK and proof π to
verify that y is the correct evaluation on input x. It outputs 1 (accepts) if verification succeeds, and 0
(rejects) otherwise.

Definition 2.1. (Adaptively-secure VRF) A pair of polynomial time algorithms (Setup,Evaluate,Verify) is
an adaptively-secure verifiable random function if it satisfies the following conditions:

• (Correctness) For all (SK,VK) ← Setup(1λ), and all x ∈ Xλ, if (y, π) ← Evaluate(SK, x), then
Pr[Verify(VK, x, y, π) = 1] = 1.

• (Unique Provability) For every (VK, x, y1, π1, y2, π2) such that y1 6= y2, the following holds for at least
one i ∈ {1, 2}:

Pr[Verify(VK, x, yi, πi) = 1] ≤ 2−Ω(λ).

• (Pseudorandomness) For any PPT adversary A = (A0,A1) there exists a negligible function negl(·),
such that for all λ ∈ N, Advadp-VRF

A (λ) ≤ negl(λ), where advantage of A is defined as

Adv
adp-VRF
A (λ) =

∣∣∣∣∣∣
Pr

AOx∗

1 (st, yb) = b :

(SK,VK)← Setup(1λ); b← {0, 1}
(x∗, st) = AEvaluate(SK,·)

0 (1λ,VK)
(y1, π)← Evaluate(SK, x∗); y0 ← Yλ

− 1

2

∣∣∣∣∣∣
,

where x∗ should not have been queried by A0, and oracle Ox∗ on input x∗ outputs ⊥, otherwise behaves
same as Evaluate(SK, ·).

6

A weaker notion of security for VRFs is selective pseudorandomness where the adversary must commit to
its challenge x∗ at the start of the game, that is before the challenger sends VK to A. Then during evaluation
phase, A is allowed to query on polynomially many messages x 6= x∗, and A wins if its guess b′ = b. The
advantage of A is defined to be Advsel-VRF

A (λ) = |Pr[A wins]− 1/2|.

Definition 2.2. (Selectively-secure VRF) A pair of polynomial time algorithms (Setup,Evaluate,Verify)
is called a selectively-secure verifiable random function if it satisfies correctness and unique provability
properties (as in Definition 2.1), and for all PPT adversaries A, Advsel-VRF

A (λ) is negligible in the security
parameter λ.

2.2 Non-Interactive Witness Indistinguishable Proofs

Witness indistinguishable (WI) proofs were introduced by Feige and Shamir [FS90] as a natural weakening
of zero-knowledge (ZK) proofs. At a high level, the witness indistinguishability property says that a proof
must not reveal the witness used to prove the underlying statement even if it reveals all possible witnesses
corresponding to the statement. Unlike ZK proofs, WI proofs without interaction in the standard model are
known to be possible. Barak, Ong and Vadhan [BOV07] provided constructions for one-message (completely
non-interactive, with no shared random string or setup assumptions) witness indistinguishable proofs (NI-
WIs) based on ZAPs (i.e., two-message public-coin witness indistinguishable proofs) and Nisan-Wigderson
type pseudorandom generators [NW94]. Groth, Ostrovsky and Sahai [GOS12] gave the first NIWI construc-
tion from a standard cryptographic assumption, namely the decision linear assumption. Recently, Bitansky
and Paneth [BP15] constructed NIWI proofs assuming iO and one-way permutations.

Definition 2.3. (NIWI) A pair of PPT algorithms (P,V) is a NIWI for a language L ∈ NP with witness
relation R if it satisfies the following conditions:

• (Perfect Completeness) For all (x,w) such that R(x,w) = 1,

Pr[V(x, π) = 1 : π ← P(x,w)] = 1.

• (Statistical Soundness) For every x /∈ L and π ∈ {0, 1}∗,

Pr[V(x, π) = 1] ≤ 2−Ω(|x|).

• (Witness Indistinguishability) For any sequence I = {(x,w1, w2) : R(x,w1) = 1 ∧R(x,w2) = 1}

{π1 : π1 ← P(x,w1)}(x,w1,w2)∈I ≈c {π2 : π2 ← P(x,w2)}(x,w1,w2)∈I

2.3 Perfectly Binding Commitments (with no setup assumptions)

A commitment scheme with message space {Mλ}λ, randomness space {Rλ}λ and commitment space {Cλ}λ
consists of two polynomial time algorithms — Commit and Verify with the following syntax.

• Commit(1λ,m ∈ Mλ; r ∈ Rλ): The commit algorithm is a randomized algorithm that takes as input
the security parameter λ, message m to be committed and random coins r. It outputs a commitment
c.

• Verify(m ∈Mλ, c ∈ Cλ, o ∈ Rλ): The verification algorithm takes as input the message m, commitment
c and an opening o. It outputs either 0 or 1.

For simplicity, we assume that the opening for a commitment is simply the randomness used during the
commitment phase. As a result, we do not have a separate ‘reveal’ algorithm. Below we formally define
perfectly binding computationally hiding (PB-CH) commitment schemes with no setup assumptions (i.e.,
without trusted setup and CRS).

7

Definition 2.4. (PB-CH Commitments) A pair of polynomial time algorithms (Commit,Verify) is a perfectly
binding computationally hiding (PB-CH) commitment scheme if it satisfies the following conditions:

• (Perfect Correctness) For all security parameters λ ∈ N, message m ∈Mλ and randomness r ∈ Rλ, if
c = Commit(1λ,m; r), then Verify(m, c, r) = 1.

• (Perfect Binding) For every (c,m1, r1,m2, r2) such that m1 6= m2, the following holds for at least one
i ∈ {1, 2}:

Pr[Verify(mi, c, ri) = 1] = 0.

• (Computationally Hiding) For all security parameters λ ∈ N, messages m1,m2 ∈Mλ,

{
c1 : c1 ← Commit(1λ,m1; r1); r1 ← Rλ

}
≈c

{
c2 : c2 ← Commit(1λ,m2; r2); r2 ← Rλ

}

Perfectly binding commitments (without trusted setup) can be constructed from certifiably injective one-
way functions. In this work, we show how to construct them under the Learning Parity with Low Noise
assumption [Ale03] and Learning with Errors assumption [Reg05]. We would like to point out that the ‘no
trusted setup’ requirement for commitments is essential for our VRF construction. We already know how to
construct perfectly binding commitments with trusted setup from the LPN assumption [JKPT12], however
it is not sufficient for our VRF construction as VRFs disallow trusted setup.

2.4 Admissible Hash Functions

A commonly used technique for achieving adaptive security is the partitioning strategy where the input
space is partitioned into a ‘query partition’ and a ‘challenge partition’. This partitioning is achieved using
admissible hash functions introduced by Boneh and Boyen [BB04]. Here we state a simplified definition from
[HSW14].

Definition 2.5. Let k, ℓ and θ be efficiently computable univariate polynomials. Let h : {0, 1}k(λ) →
{0, 1}ℓ(λ) be an efficiently computable function and AdmSample a PPT algorithm that takes as input 1λ and
an integer Q, and outputs u ∈ {0, 1,⊥}ℓ(λ). For any u ∈ {0, 1,⊥}ℓ(λ), define Pu : {0, 1}k(λ) → {0, 1} as
follows:

Pu(x) =

{
1 if for j ≤ ℓ(λ), uj = h(x)j ∨ uj = ⊥
0 otherwise.

We say that (h,AdmSample) is θ-admissible if the following condition holds:

For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x
∗ ∈ {0, 1}k(λ), where x∗ /∈ {xi}Q(λ)

1 ,

Pr[(∀i ≤ Q(λ), Pu(xi) = 0) ∧ Pu(x
∗) = 1] ≥ 1

θ(Q(λ))

where the probability is taken over u← AdmSample(1λ, Q(λ)).

Theorem 2.1 (Admissible Hash Function Family [BB04], simplified proof in [FHPS13]). For any effi-
ciently computable polynomial k, there exist efficiently computable polynomials ℓ, θ such that there exist
θ-admissible function families mapping k bits to ℓ bits.

Note that the above theorem is information theoretic, and is not based on any cryptographic assumption.

8

2.5 Constrained Pseudorandom and Unpredictable Functions

Constrained pseudorandom functions, introduced by [BW13, BGI14, KPTZ13], are an extension of pseudo-
random functions [GGM84] where a party having the master PRF key can compute keys corresponding to
any constraint from a constraint class. A constrained key for constraint C can be used to evaluate the PRF
on inputs x that satisfy the constraint C(x) = 0.4 However, the constrained key should not reveal PRF
evaluations at points not satisfied by the constraint. Constrained PRFs for general circuit constraints can
be constructed using multilinear maps [BW13], indistinguishability obfuscation [BZ14] and the learning with
errors assumption [BV15]. Note that the construction from LWE only allows a single constrained key query,
which is a weaker security definition than the standard fully ‘collusion-resistant’ notion.

In this work, we will be using a special constraint family which we call ‘admissible hash compatible’, and
the security definition will also be weaker than the standard (fully collusion-resistant) security for constrained
PRFs. This enables us to construct this primitive from weaker and standard cryptographic assumptions such
as the n-powerDDH assumption.

Definition 2.6. Let Zn = {0, 1,⊥}n. An admissible hash compatible function family Pn = {Pz : {0, 1}n →
{0, 1} | z ∈ Zn} is defined exactly as the predicate Pu(·) in Definition 2.5.

Looking ahead the above admissible hash compatible function family will correspond to the family of
constraints for which we assume constrained PRFs. Next, we formally define the syntax, correctness and
security properties of constrained PRFs.

Syntax. Let n(·) be a polynomial. A constrained pseudorandom function CPRF with domain {Xλ =
{0, 1}n(λ)}λ, range Y = {Yλ}λ, key space K = {Kλ}λ and constrained key space Kc = {Kc

λ}λ for a family of
admissible hash compatible constraints {Cλ = Pn(λ)}λ consists of three algorithms Setup,Constrain,Evaluate
defined as follows. For simplicity of notation, we will refer to z as the constraint instead of Pz.

• Setup(1λ): The setup algorithm takes as input the security parameter λ and outputs a PRF key
K ∈ Kλ.

• Constrain(K, z ∈ {0, 1,⊥}n(λ)): The constrain algorithm takes as input a master PRF key K ∈ Kλ, a
constraint z ∈ {0, 1,⊥}n(λ) and outputs a constrained key Kz ∈ Kc

λ.

• Evaluate(K ∈ Kλ ∪Kc
λ, x ∈ {0, 1}n(λ)): The evaluation algorithm takes as input a PRF key K (master

or constrained), and outputs y ∈ Y.

We would like to point out that in the above description there is a common evaluation algorithm that
accepts both the PRF master key as well as the constrained key. Such an abstraction helps us in simplifying
our VRF construction later in Section 4. Note that this is not a restriction on the constrained PRFs as it
can achieved without loss of generality from any constrained PRF. Below we define the single-key no-query
constrained pseudorandomness security notion for constrained PRFs.

Definition 2.7. A pair of polynomial time algorithms (Setup,Constrain,Evaluate) is a single-key no-query
secure constrained pseudorandom function for admissible hash compatible constraint family if it satisfies the
following conditions:

• (Correctness) For every security parameter λ ∈ N, master PRF key K ← Setup(1λ), constraint z ∈
{0, 1,⊥}n(λ), constrained key Kz ← Constrain(K, z) and input x ∈ {0, 1}n(λ) such that Pz(x) = 0,
Evaluate(K,x) = Evaluate(Kz, x).

4We would like to point out that our notation departs from what has been used in the literature. Traditionally, it is
considered that the constrained key allows PRF evaluation on points that satisfy C(x) = 1. However, we switch the constraint
to C(x) = 0 for convenience.

9

• (Single-key No-query Constrained Pseudorandomness) For any PPT adversary A = (A0,A1,A2) there
exists a negligible function negl(·), such that for all λ ∈ N, AdvCPRF

A (λ) ≤ negl(λ), where advantage of
A is defined as

AdvCPRF
A (λ) =

∣∣∣∣∣∣∣∣
Pr

A2(s̃t, yb) = b :

K ← Setup(1λ); (z, st) = A0(1
λ)

Kz ← Constrain(K, z)
(x, s̃t)← A1(st,Kz); b← {0, 1}
y1 = Evaluate(K,x); y0 ← Yλ

−

1

2

∣∣∣∣∣∣∣∣
.

Also, the challenge point x chosen by A must satisfy the constraint Pz(x) = 1, i.e. it should not be
possible to evaluate the PRF on x using constrained key Kz.

Note that the above security notion is weaker than the standard fully collusion-resistant security notion,
since the adversary gets one constrained key, and then it must distinguish between a random string and the
PRF evaluation at a point not satisfying the constraint. This is weaker than the standard security definition
in two ways. First, there is only one constrained key query, and second, there are no evaluation queries.
However, as we will see in Section 4, this suffices for our construction. Looking ahead, the high level idea is
that we will partition the VRF input space using an admissible hash function, and to answer each evaluation
query we only need a constrained key since a constrained key lets us evaluate at all points in the query
partition.

Remark 2.1. Additionally, we want that there exists a polynomial s(·) such that ∀λ ∈ N, K ∈ Kλ ∪ Kc
λ,

|K| ≤ s(λ), i.e. size of each PRF key is polynomially bounded.

We could also define constrained PRFs for an even weaker constraint family which is the puncturing
constraint function family.

Definition 2.8. A puncturing constraint function family Pn = {Pz : {0, 1}n → {0, 1} | z ∈ {0, 1}n} is
defined exactly as the predicate Pu(·) in Definition 2.5.

Definition 2.9. A set of polynomial time algorithms (Setup,Puncture,Evaluate) is a secure puncturable pseu-
dorandom function if it is a single-key no-query secure constrained pseudorandom function (Definition 2.7)
for puncturing constraint function family.

We also define the notion of constrained unpredictable functions which are syntactically the same as
constrained PRFs with the difference only being that they only need to satisfy a weaker security requirement.
Below we formally define constrained unpredictable functions.

Definition 2.10. A pair of polynomial time algorithms (Setup,Constrain,Evaluate) is a single-key no-query
secure constrained unpredictable function for admissible hash compatible constraint family if it satisfies the
correctness condition (as in Definition 2.7) and it also satisfies the following:

• (Single-key No-query Constrained Unpredictability) For any PPT adversary A = (A0,A1) there exists
a negligible function negl(·), such that for all λ ∈ N, AdvCUF

A (λ) ≤ negl(λ), where advantage of A is
defined as

AdvCUF
A (λ) = Pr

[
y = Evaluate(K,x) :

K ← Setup(1λ); (z, st) = A0(1
λ)

Kz ← Constrain(K, z); (x, y) = A1(st,Kz)

]
.

Also, the challenge point x chosen by A must satisfy the constraint Pz(x) = 1, i.e. it should not be
possible to evaluate the PRF on x using constrained key Kz.

2.6 Strong Extractors

Extractors are combinatorial objects used to ‘extract’ uniformly random bits from a source that has high
randomness, but is not uniformly random. In this work, we will be using seeded extractors. In a seeded
extractor, the extraction algorithm takes as input a sample point x from the high randomness source X ,
together with a short seed s, and outputs a string that looks uniformly random. Here, we will be using
strong extractors, where the extracted string looks uniformly random even when the seed is given.

10

Definition 2.11. A (k, ǫ) strong extractor Ext : D × S → Y is a deterministic algorithm with domain D,
range Y and seed space S such that for every source X on D with min-entropy at least k, the following two
distributions have statistical distance at most ǫ:

D1 = {(s,Ext(x, s)) : s← S, x← X},D2 = {(s, y) : s← S, y ← Y}

Using the Leftover Hash Lemma, we can construct strong extractors from pairwise-independent hash
functions. More formally, let H = {h : {0, 1}n → {0, 1}m} be a family of pairwise independent hash
functions, and let m = k − 2 log(1/ǫ). Then Ext(x, h) = h(x) is a strong extractor with h being the seed.
Such hash functions can be represented using O(n) bits.

2.7 Lattice Preliminaries

Given positive integers n,m, q and a matrix A ∈ Zn×m
q , we let Λ⊥

q (A) denote the lattice {x ∈ Zm : A·x = 0

mod q}. For u ∈ Zn
q , we let Λu

q (A) denote the coset {x ∈ Zm : A · x = u mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distribution Dσ with parameter
σ is defined by the probability distribution function ρσ(x) = exp(−π · ||x||2/σ2). For any set L ⊂ Rm, define
ρσ(L) =

∑
x∈L ρσ(x). The discrete Gaussian distribution DL,σ over L with parameter σ is defined by the

probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.
The following lemma (Lemma 4.4 of [MR07], [GPV08]) shows that if the parameter σ of a discrete Gaus-

sian distribution is small, then any vector drawn from this distribution will be short (with high probability).

Lemma 2.1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Zn×m
q be a matrix of dimensions

n×m, and L = Λ⊥
q (A). Then

Pr[||x|| >
√
m · σ : x← DL,σ] ≤ negl(n).

3 Cryptographic Assumptions

3.1 Learning with Noise (LWE)

The Learning with Errors (LWE) problem was introduced by Regev [Reg05]. The LWE problem has four
parameters: the dimension of the lattice n, the number of samples m = m(n), the modulus q = q(n) and
the error distribution χ = χ(n).

Assumption 1 (Learning with Errors). Let n, m and q be positive integers and χ a noise distribution on Z.
The Learning with Errors assumption (n,m, q, χ)-LWE, parameterized by n,m, q, χ, states that the following
distributions are computationally indistinguishable:

{
(A,AT s+ e) :

A← Zn×m
q ,

s← Zn
q , e← χm

}
≈c

{
(A,u) :

A← Zn×m
q ,

u← Zm
q

}

Under a quantum reduction, Regev [Reg05] showed that for certain noise distributions, LWE is as hard
as worst case lattice problems such as the decisional approximate shortest vector problem (GapSVP) and
approximate shortest independent vectors problem (SIVP). The following theorem statement is from Peikert’s
survey [Pei15].

Theorem 3.1 ([Reg05]). For any m ≤ poly(n), any q ≤ 2poly(n), and any discretized Gaussian error distri-
bution χ of parameter α · q ≥ 2 · √n, solving (n,m, q, χ)-LWE is as hard as quantumly solving GapSVPγ and

SIVPγ on arbitrary n-dimensional lattices, for some γ = Õ(n/α).

Later works [Pei09, BLP+13] showed classical reductions from LWE to GapSVPγ . Given the current

state of art in lattice algorithms, GapSVPγ and SIVPγ are believed to be hard for γ = Õ(2n
ǫ

), and therefore

(n,m, q, χ)-LWE is believed to be hard for Gaussian error distributions χ with parameter 2−nǫ · q · poly(n).

11

LWE with Short Secrets. In this work, we will be using a variant of the LWE problem called LWE with
Short Secrets. In this variant, introduced by Applebaum et al. [ACPS09], the secret vector is also chosen
from the noise distribution χ. They showed that this variant is as hard as LWE for sufficiently large number
of samples m.

Assumption 2 (LWE with Short Secrets). Let n, m and q be positive integers and χ a noise distribution
on Z. The LWE with Short Secrets assumption (n,m, q, χ)-LWE-ss, parameterized by n,m, q, χ, states that
the following distributions are computationally indistinguishable 5:

{
(A,SA+E) :

A← Zn×m
q ,

S← χn×n,E← χn×m

}
≈c

{
(A,U) :

A← Zn×m
q ,

U← Zn×m
q

}
.

3.2 Learning Parity with Noise (LPN)

The learning parity with noise is the binary (Z2) equivalent of the LWE problem. The search version of this
problem requires one to solve a set of random linear equations perturbed by noise, and a decision version
can be defined as in LWE. This problem is parameterized by the dimension n, the number of samples m
and the error distribution. Each component of the error vector is chosen independently from the Bernoulli
distribution with parameter p for 0 < p < 1/2. Clearly, if p = 1/2, then the LPN distribution is identical to
the uniform distribution. If p = O(1/n), then an adversary can distinguish between the LPN distribution
and the uniform distribution, given sufficiently many samples. Intuitively, the decision problem gets easier
as p decreases.

Assumption 3 (Learning Parity with Noise). Let n, m be positive integers and p be a real number such
that p < 1/2. The Learning Parity with Noise problem LPNn,m,p, parameterized by the dimension of
secret vector n, number of samples m and the error probability p, states that the following distributions are
computationally indistinguishable:

{
(A,AT s+ e) :

A← Z
n×m
2 ,

s← Zn
2 , e← Bermp

}
≈c

{
(A,u) :

A← Z
n×m
2 ,

u← Zm
2

}

We use a simple variant of the LPN assumption where the first bit of the error vector is 0. For clarity of
presentation, we give this variant a separate name: extended LPN.

Assumption 4 (Extended Learning Parity with Noise). Let n, m be positive integers and p be a real
number such that p < 1/2. The Extended Learning Parity with Noise problem LPNn,m,p, parameterized by
the dimension of secret vector n, number of samples m and the error probability p, states that the following
distributions are computationally indistinguishable:

{
(A,w,AT s+ e,wT s) :

A← Z
n×m
2 ,w← Zn

2

s← Zn
2 , e← Bermp

}
≈c

{
(A,w,u, z) :

A← Z
n×m
2 ,w← Zn

2

u← Zm
2 , z ← Z2

}

Its hardness follows directly from the hardness of standard LPN assumption along with Goldreich-Levin
hardcore bit theorem [GL89]. At a high level, the idea is that since wT s is a hardcore bit of s given AT s+e,
wT s is indistinguishable from a random bit. In this work, we will also be using a variant of LPN called
Knapsack-LPN. For certain range of parameters, this variant can be shown to be equivalent to LPN [MM11].

Assumption 5 (Knapsack Learning Parity with Noise). Let n, m be positive integers and p be a real
number such that p < 1/2. The Knapsack Learning Parity with Noise problem KLPNn,m,p, parameterized
by integers n, m and p, states that the following distributions are computationally indistinguishable:

{
(A,AE) :

A← Z
n×m
2 ,

E← Berm×m
p

}
≈c

{
(A,B) :

A← Z
n×m
2 ,

B← Z
n×m
2

}

5Applebaum et al. showed that {(A,AT s+e) : A← Z
n×m
q , s← χn, e← χm} ≈c {(A,u) : A← Z

n×m
q ,u← Zm

q }, assuming
LWE is hard. However, by a simple hybrid argument, we can replace vectors s, e,u with matrices S,E,U of appropriate
dimensions.

12

Clearly, if n > m, then the KLPN problem is easy. However, if m > 2n, then the KLPN problem is as
hard as the LPN problem. In particular, there exists a reduction from KLPNn,m,p to LPNm−n,m,p.

3.3 Factoring Based Assumptions

3.3.1 RSA Assumption and Shamir’s Lemma

Below we recall (one of the) standard versions of the RSA assumption [RSA78].

Assumption 6. Let λ be the security parameter. Let positive integer N be the product of two λ/2-bit,
distinct odd primes p, q. Let e be a randomly chosen positive integer less than and relatively prime to
φ(N) = (p−1)(q−1). Given (N, e) and a random y ∈ Z∗

N , it is hard to compute x such that xe ≡ y mod N .

We also make use of the following lemma due to Shamir [Sha83].

Lemma 3.1 (Shamir [Sha83]). Given x, y ∈ ZN together with a, b ∈ Z such that xa = yb (mod N) and
gcd(a, b) = 1, there is an efficient algorithm for computing z ∈ ZN such that za = y (mod N).

3.3.2 Phi-Hiding Assumption

The Phi-Hiding assumption, introduced by Cachin et al. [CMS99], informally states that given an RSA
modulus N , it is hard to find the factors of φ(N), or to distinguish a factor of φ(N) from an integer co-prime
to φ(N). To formally state this assumption, we need to introduce some notations, and will be following the
work of [HOR15] for the same. Let PRIMES(λ) denote the set of primes of bit-length λ, and let

RSA(λ) = {N : N = pq; p, q ∈ PRIMES(λ/2); gcd(p− 1, q − 1) = 2}.

For any e ≤ 2λ, let
RSAe(λ) = {N ∈ RSA(λ) : e divides φ(N)}.

Assumption 7. The Phi-Hiding assumption states that for all ǫ > 0, integers e such that 3 < e < 2λ/4−ǫ

and PPT adversaries A,

|Pr[1← A(N, e) : N ← RSA(λ)]− Pr[1← A(N, e) : N ← RSAe(λ)]| ≤ negl(λ).

3.4 n-powerDDH Assumption

Let G(1λ) be a randomized algorithm that takes as input the security parameter and outputs the description
of a group G of prime order p = Θ(2λ). The n-powerDDH assumption states that no PPT adversary, given

the sequence (g, ga, ga
2

, . . . , ga
n−1

) can distinguish between ga
n

and a uniformly random group element. In
this experiment, a is chosen uniformly at random from Z∗

p. It is called a q-type assumption because the
experiment is parameterized by the length of the powers-in-exponent sequence given to the adversary. Note
that we are working in DDH hard groups. In particular, there is no bilinear pairing operation here.

Assumption 8. This assumption is parameterized with an integer n ∈ Z. Let (p,G, g) ← G(1λ), a ← Z∗
p

and b ← {0, 1}. Let D = (p,G, g, ga, . . . , ga
n−1

). Let T = ga
n

if b = 0, else T ← G. The advantage of
algorithm A in solving Assumption 8 is defined as

Adv
n-powerDDH
A,G (λ) =

∣∣∣∣Pr[b← A(D,T)]− 1

2

∣∣∣∣ .

We say that Assumption 8 holds if for all PPT A, Advn-powerDDH
A,G (λ) is negligible in λ.

This assumption can also be defined for groups of composite order N = p, q for large primes p, q. Recent
works [CM14, HKW14] showed that in such groups, subgroup decision assumption and DDH implies the
q-type assumption. However, for simplicity, we will work with prime order groups in this work.

13

4 Constructing Verifiable Random Functions

In this section, we give a generic construction of VRFs from admissible hash functions, perfectly binding
commitments, NIWIs and constrained pseudorandom functions for admissible hash compatible constraints.
We also prove that it satisfies correctness, unique provability and pseudorandomness properties (as described
in Definition 2.1). Later in Section 4.4, we give a slightly modified construction for VRF that is selectively-
secure assuming only puncturable pseudorandom functions.

Let (h,AdmSample) be an admissible hash function that hashes n(λ) bits to ℓ(λ) bits, (P,V) be a NIWI
proof system for language L (where the language will be defined later), (CS.Commit,CS.Verify) be a perfectly
binding commitment scheme with {Mλ}λ , {Rλ}λ and {Cλ}λ as the message, randomness and commitment
space, and CPRF = (CPRF.Setup,CPRF.Constrain,CPRF.Eval) be a constrained pseudorandom function with
{Xλ}λ , {Yλ}λ , {Kλ}λ and {Kc

λ}λ as its domain, range, key and constrained key spaces. For simplicity
assume that Kλ ∪ Kc

λ ⊆ Mλ, or in other words, all the PRF master keys and constrained keys lie in the
message space of the commitment scheme. Also, let Xλ = {0, 1}ℓ(λ).

First, we define the language L. It contains instances of the form (c1, c2, c3, x, y) ∈ C3λ × {0, 1}n(λ) × Yλ
with the following witness relation:

∃ i, j ∈ {1, 2, 3} , K,K ′ ∈ Kλ ∪ Kc
λ, r, r′ ∈ Rλ such that

i 6= j ∧ CS.Verify(K, ci, r) = 1 ∧ CS.Verify(K ′, cj , r
′) = 1 ∧ CPRF.Eval(K,h(x)) = CPRF.Eval(K ′, h(x)) = y.

Clearly the above language is in NP as it can be verified in polynomial time. Next we describe our
construction for VRFs with message space {0, 1}n(λ) and range space {Yλ}λ.

4.1 Construction

• Setup(1λ) → (SK,VK). It generates a PRF key for constrained pseudorandom function as K ←
CPRF.Setup(1λ). It also generates three independent commitments to the keyK as ci ← CS.Commit(1λ,K; ri)
for i ≤ 3 where ri is sampled as ri ← Rλ, and sets the secret-verification key pair as SK =(
K, {(ci, ri)}i≤3

)
,VK = (c1, c2, c3).

• Evaluate(SK, x) → (y, π). Let SK =
(
K, {(ci, ri)}i≤3

)
. It runs the PRF evaluation algorithm on x as

y = CPRF.Eval(K,h(x)). It also computes a NIWI proof π for the statement (c1, c2, c3, x, y) ∈ L using
NIWI prover algorithm P with (i = 1, j = 2,K,K, r1, r2) as the witness, and outputs y and π as the
evaluation and corresponding proof.

• Verify(VK, x, y, π)→ {0, 1}. Let VK = (c1, c2, c3). It runs NIWI verifier to check proof π as V((c1, c2, c3, x, y), π)
and accepts the proof (outputs 1) iff V outputs 1.

4.2 Correctness, Unique Provability and Pseudorandomness

Theorem 4.1. If (h,AdmSample) is an admissible hash function, (CS.Commit,CS.Verify) is a secure perfectly
binding commitment scheme, (P,V) is a secure NIWI proof system for language L, and CPRF is a secure
single-key constrained pseudorandom function according to Definitions 2.5, 2.4, 2.3, and 2.7 (respectively),
then the above construction forms an adaptively-secure VRF satisfying correctness, unique provability and
pseudorandomness properties as described in Definition 2.1.

Correctness. For every well-formed secret and verification key pair (SK,VK) ← Setup(1λ), we know
that both c1 and c2 are commitments to PRF key K with r1 and r2 as the corresponding openings, where

SK =
(
K, {(ci, ri)}i≤3

)
. Therefore, by perfect correctness of the constrained PRF and NIWI proof system,

we can conclude that the above construction satisfies the VRF correctness condition.

14

Unique Provability. We will prove this by contradiction. Assume that the above construction does not
satisfy unique provability property. This implies that there exists (VK, x, y1, π1, y2, π2) such that y1 6= y2
and Pr[Verify(VK, x, yi, πi) = 1] > 2−Ω(λ) for both i ∈ {1, 2}. To prove that this is not possible, we show
that at least one of these proof verifications must involve verifying a NIWI proof for an invalid instance.
Formal arguments proceed as follows:

• Let VK = (c1, c2, c3). Since the commitment scheme is perfectly binding, we know that for each
i ∈ {1, 2, 3} there exists at most one key Ki such that there exists an ri which is a valid opening for
ci, i.e. CS.Verify(Ki, ci, ri) = 1.

• Suppose ci is a commitment to key Ki for i ≤ 3, and CPRF.Eval(K1, x) = CPRF.Eval(K2, x) = y1. Now
since y1 6= y2, thus even when CPRF.Eval(K3, x) = y2 holds, we know that (c1, c2, c3, x, y2) /∈ L as no
two keys out of K1,K2,K3 evaluate to y2 on input x. Therefore, at least one proof out of π1 and π2

is a proof for an incorrect statement.

• However, by statistical soundness of NIWI proof system, we know that for all instances not in L,
probability that any proof gets verified is at most 2−Ω(λ). Therefore, if the above construction does
not satisfy unique provability, then the NIWI proof system is not statistically sound which contradicts
our assumption. Hence, unique provability follows from perfect binding property of the commitment
scheme and statistical soundness of NIWI proof system.

Pseudorandomness. The pseudorandomness proof follows from a sequence of hybrid games. The high
level proof idea is as follows. We start by partitioning the input space into query and challenge partition
using the admissible hash function. After partitioning we observe that to answer evaluation queries we only
need a constrained PRF key which can evaluate on inputs in the query partition, however to give a proof
we still need the master PRF key. Next we note that to compute the NIWI proofs we only need openings
for any two commitments out of the three. Thus, we could switch one of the strings ci to commit to the
constrained key instead. This follows from the hiding property of the commitment scheme. Now we observe
that we only need to compute NIWI proofs for the inputs in the query partition, thus we could use a master
key - constrained key pair instead of using the master key - master key pair as the NIWI witness. This
follows from witness indistinguishability property of NIWI proof system and the fact that the constrained
and master key compute the same output on query partition. Using the same trick two more times, we could
move to a hybrid game in which all three strings ci’s are commitments of the constrained key. Finally, in this
hybrid we could directly reduce the pseudorandomness security of VRF to constrained pseudorandomness
security of the single-key secure constrained PRF. Below we describe the proof in detail.

Let A be any successful PPT adversary against the above construction in the VRF pseudorandomness
game described in Definition 2.1 that makes at most Q = Q(λ) evaluation queries, where Q(·) is some
polynomial. We argue that such an adversary must break security of at least one of the underlying primitives.
To formally prove our claim, we describe the following sequence of games where the first game models the
real pseudorandomness security game. In Game i, advantage of A is defined as AdviA = |Pr[A wins]− 1/2|.
We then show via a sequence of claims that if A’s advantage is non-negligible in Game i, then it has non-
negligible advantage in Game i+ 1 as well. Finally, in the last game, we use A to break pseudorandomness
security of the constrained PRF, thereby completing our proof. Note that in each successive hybrid we only
provide the steps that differ.

Game 1: This game is defined as the original pseudorandomness security game described in Definition 2.1.

1. The challenger generates a PRF key for constrained pseudorandom function as K ← CPRF.Setup(1λ).
It also generates three independent commitments to the key K as ci ← CS.Commit(1λ,K; ri) for i ≤ 3
where ri is sampled as ri ← Rλ. Finally, it sets the verification key as VK = (c1, c2, c3), and sends VK
to A.

15

2. A queries the challenger on polynomially many messages xj to receive corresponding evaluations and
proofs as (yj , πj), where on each message xj , the challenger computes yj = CPRF.Eval(K,h(xj)) and
πj as the NIWI proof for the statement (c1, c2, c3, xj , yj) ∈ L using (1, 2,K,K, r1, r2) as the witness.

3. Next, A sends x∗ as its challenge message to the challenger, where x∗ should never have been queried
by A. The challenger chooses a random bit b← {0, 1}. If b = 1, the challenger computes y∗ honestly
as y∗ = CPRF.Eval(K,h(x∗)), else it samples y∗ ← Yλ, and sends y∗ to A.

4. A is allowed to query the challenger on polynomially many messages xj (6= x∗) as before. The challenger
handles these as in pre-challenge query phase.

5. Finally, A sends its guess b′ to the challenger. A wins if b′ = b.

Game 2: This is same as Game 1, except the challenger additionally samples u← AdmSample(1λ, Q). The
challenger uses u to partition the input space into query and challenge partitions. If the challenge message x∗

does not lie in challenge partition, or any of the queried messages xj do not belong to query partition, then
the challenger aborts. Also, the challenger performs an additional artificial abort step [Wat05] to even out
the probability of abort over all possible sequences of queries. Definition 2.5 states that for all x1, . . . , xQ, x

∗

Pr[(∀i ≤ Q,Pu(xi) = 0) ∧ Pu(x
∗) = 1] ≥ 1

θ(Q)
= τmin

where τmin be a non-negligible lower bound on the probability of partitioning by the hash function h.

1. The challenger generates a PRF key for constrained pseudorandom function as K ← CPRF.Setup(1λ).
It samples u← AdmSample(1λ, Q). It also generates three independent commitments to the key K as
ci ← CS.Commit(1λ,K; ri) for i ≤ 3 where ri is sampled as ri ← Rλ. Finally, it sets the verification
key as VK = (c1, c2, c3), and sends VK to A.

2. A queries the challenger on polynomially many messages xj to receive corresponding evaluations and
proofs as (yj , πj). For each queried message xj , the challenger first computes Pu(xj). If Pu(xj) = 1,
then it chooses a random bit γ ← {0, 1} and aborts. If it aborts, then A wins if γ = 1. Otherwise, it
computes yj = CPRF.Eval(K,h(xj)) and πj as the NIWI proof for the statement (c1, c2, c3, xj , yj) ∈ L
using (1, 2,K,K, r1, r2) as the witness.

3. Next, A sends x∗ as its challenge message to the challenger, where x∗ should never have been queried
by A. The challenger computes Pu(xj). If Pu(xj) = 0, then it chooses a random bit γ ← {0, 1} and
aborts. Otherwise, it chooses a random bit b ← {0, 1}. If b = 1, the challenger computes y∗ honestly
as y∗ = CPRF.Eval(K,h(x∗)), else it samples y∗ ← Yλ, and sends y∗ to A.

4. A is allowed to query the challenger on polynomially many messages xj (6= x∗) as before. The challenger
handles these as in pre-challenge query phase, i.e. performs the abort step.

5. Finally, A sends its guess b′ to the challenger. After A terminates and outputs b′, the challenger
performs an additional abort step to reduce any possible dependence between the event A winning
and abort happening. Let the sequence of queries issued by A be denoted as x = {x1, . . . , xQ, x

∗},
and τ(x) be the probability that the challenger does not abort on this set of issued queries. After A
terminates, x is well-defined, therefore the challenger estimates the probability of not aborting τ(x) as
τ ′ by freshly sampling w ← AdmSample(1λ, Q) T -times (where T will be defined later in Lemma 4.1),
and checking whether for all j ∈ [1, Q], Pw(xj) = 0 and Pw(x

∗) = 1. Finally, the challenger artificially
aborts with probability max(0, 1− τmin/τ

′). If it aborts then it chooses a random bit γ ← {0, 1}, and
A wins if γ = 1. Otherwise, A wins if b′ = b.

16

Game 3: This is same as Game 2, except the challenger also constrains the PRF key K on constraint u.
And instead of generating c3 as a commitment to K, it is computed as a commitment to the constrained key.
Note that the proofs πj for each evaluation query are generated same as before since the witness depends
only on r1 and r2.

1. The challenger generates a PRF key for constrained pseudorandom function as K ← CPRF.Setup(1λ).
It samples u ← AdmSample(1λ, Q) and computes the constrained key Ku ← CPRF.Constrain(K,u).
It generates commitments c1 and c2 as ci ← CS.Commit(1λ,K; ri), and commitment c3 as c3 ←
CS.Commit(1λ,Ku; r3) where ri ← Rλ for i ≤ 3. Finally, it sets the verification key as VK = (c1, c2, c3),
and sends VK to A.

Game 4: This is same as Game 3, except the challenger uses (2, 3,K,Ku, r2, r3) as the witness instead of
(1, 2,K,K, r1, r2) for generating all NIWI proofs.

2. A queries the challenger on polynomially many messages xj to receive corresponding evaluations and
proofs as (yj , πj). For each queried message xj , the challenger first computes Pu(xj). If Pu(xj) = 1,
then it chooses a random bit γ ← {0, 1} and aborts. If it aborts, then A wins if γ = 1. Otherwise, it
computes yj = CPRF.Eval(K,h(xj)) and πj as the NIWI proof for the statement (c1, c2, c3, xj , yj) ∈ L
using (2, 3,K,Ku, r2, r3) as the witness.

4. A is allowed to query the challenger on polynomially many messages xj (6= x∗) as before. The challenger
handles these as in pre-challenge query phase, i.e. performs the abort step and uses (2, 3,K,Ku, r2, r3)
as the witness.

Game 5: This is same as Game 4, except the challenger computes c1 as a commitment to Ku instead of
key K. Note that the proofs πj for each evaluation query are generated same as before since the witness
depends only on r2 and r3.

1. The challenger generates a PRF key for constrained pseudorandom function as K ← CPRF.Setup(1λ).
It samples u← AdmSample(1λ, Q) and computes the constrained key Ku ← CPRF.Constrain(K,u). It
generates commitment c2 as c2 ← CS.Commit(1λ,K; r2) and commitments c1, c3 as ci ← CS.Commit(1λ,Ku; ri)
where ri ← Rλ for i ≤ 3. Finally, it sets the verification key as VK = (c1, c2, c3), and sends VK to A.

Game 6: This is same as Game 5, except the challenger uses (1, 3,Ku,Ku, r1, r3) as the witness instead
of (2, 3,K,Ku, r2, r3) for generating all NIWI proofs.

2. A queries the challenger on polynomially many messages xj to receive corresponding evaluations and
proofs as (yj , πj). For each queried message xj , the challenger first computes Pu(xj). If Pu(xj) = 1,
then it chooses a random bit γ ← {0, 1} and aborts. If it aborts, then A wins if γ = 1. Otherwise, it
computes yj = CPRF.Eval(K,h(xj)) and πj as the NIWI proof for the statement (c1, c2, c3, xj , yj) ∈ L
using (1, 3,Ku,Ku, r1, r3) as the witness.

4. A is allowed to query the challenger on polynomially many messages xj (6= x∗) as before. The challenger
handles these as in pre-challenge query phase, i.e. performs the abort step and uses (1, 3,Ku,Ku, r1, r3)
as the witness.

Game 7: This is same as Game 6, except the challenger computes c2 as a commitment to Ku instead of
key K. Note that the proofs πj for each evaluation query are generated same as before since the witness
depends only on r1 and r3.

1. The challenger generates a PRF key for constrained pseudorandom function as K ← CPRF.Setup(1λ).
It samples u← AdmSample(1λ, Q) and computes the constrained key Ku ← CPRF.Constrain(K,u). It
generates commitments c1, c2, c3 as ci ← CS.Commit(1λ,Ku; ri) where ri ← Rλ for i ≤ 3. Finally, it
sets the verification key as VK = (c1, c2, c3), and sends VK to A.

17

4.3 Indistinguishability of Hybrid Games

We now establish via a sequence of lemmas that the difference of the adversary’s advantage between each
adjacent game (described in Section 4.1) is at most negligible in the security parameter. Finally we show
that if any adversary wins in the last game, then it wins pseudorandomness game against the constrained
PRF challenger as well.

Lemma 4.1. If (h,AdmSample) is θ-admissible hash function in the sense of Definition 2.5, then for all PPT
A, Adv2A ≥ O(τmin · ǫ)Adv1A, where ǫ is the non-negligible lower bound on Adv1A.

Proof. In Game 2, T = O(ǫ−2τ−1
min log(1/ǫ) log(1/τmin)) samples are taken to approximate the abort probabil-

ity τ(x) as τ ′. Let Abort denote the event that the challenger aborts (both artificial and regular). Applying
standard concentration bounds on the estimate of τ ′ (see [Wat05, HW10]), we could show that the following
holds:

Pr[Abort] ≥ 1− τmin − τmin
3ǫ

8
, Pr[Abort] ≥ τmin(1−

ǫ

4
).

Using the above lower bounds, we can conclude that Adv2A ≥ O(τmin · ǫ)Adv1A. The analysis is same as
that provided by Hohenberger and Waters [HW10, Lemmas 5.3 - 5.5].

Lemma 4.2. If (CS.Commit,CS.Verify) is a computationally hiding commitment scheme, then for all PPT
A, |Adv2A − Adv3A| ≤ negl(λ) for some negligible function negl(·).

Proof. We describe a reduction algorithm B which plays the hiding security game, and uses A’s advantage
in distinguishing between Games 2 and 3. B runs Step 1 as in Game 3, except it does not compute c3 itself.
It sends K and Ku to the commitment scheme challenger and receives c∗ as the commitment. It sets c3 = c∗

and opening r3 = ǫ (i.e. the empty string). Next, it runs steps 2-5 as in Game 3. If A wins (b′ = b), then B
guesses 0 to indicate that c∗ was a commitment to K, else it guesses 1 to indicate it was a commitment to
Ku.

We observe that when c∗ is generated as a commitment to K, then B simulates exactly the view of Game
2 to A. Otherwise if c∗ is chosen as a commitment to Ku the view is of Game 3. In addition, B does not
need to know the real opening of c∗ for the NIWI proofs, thus the simulation is perfectly done. Therefore if
Adv2A − Adv3A is non-negligible, then B must also have non-negligible advantage in the hiding game.

Lemma 4.3. If (P,V) forms a secure NIWI proof system, then for all PPT A, |Adv3A−Adv4A| ≤ negl(λ) for
some negligible function negl(·).

Proof. For proving indistinguishability of Games 3 and 4, we define Q intermediate hybrid games between
these two, where Q is the number of evaluation queries made by A. Observe that in Game 3, NIWI proofs
for all evaluation queries use (1, 2,K,K, r1, r2) as the witness, however in Game 4 (2, 3,K,Ku, r2, r3) is used
as the witness. The proof idea is to use witness indistinguishability of the NIWIs to switch each witness one
by one. Concretely, ith intermediate hybrid between Game 3 and 4 proceeds same as Game 3 except it uses
(2, 3,K,Ku, r2, r3) as the witness for first i queries, i.e. for j ≤ i, (2, 3,K,Ku, r2, r3) is the witness and for
j > i, (1, 2,K,K, r1, r2) is used as the witness. For the analysis, Game 3 and 4 are regarded as the 0th and
Qth intermediate hybrids (respectively). Below we show that A’s advantage in each consecutive intermediate
hybrid is negligibly close.

We describe a reduction algorithm B which breaks witness indistinguishability of the NIWI proof system,
if A distinguishes between intermediate hybrids i and i + 1 with non-negligible probability. B runs the
Step 1 as in Game 3 (i.e., honestly sets up all the key components). Next, it also runs Steps 2-5 same
as in Game 3 except the following modifications. For j ≤ i i.e. first i evaluation queries, B computes πj

as the NIWI proof for the statement (c1, c2, c3, xj , yj) ∈ L using (2, 3,K,Ku, r2, r3) as the witness. For
(i+ 1)th evaluation query i.e. j = i+ 1, B sends ((c1, c2, c3, xj , yj), (1, 2,K,K, r1, r2), (2, 3,K,Ku, r2, r3)) as
the instance and witnesses to the NIWI challenger and receives π∗ as the proof. B sets πj = π∗ for j = i+1.

18

For j > i + 1, it uses (1, 2,K,K, r1, r2) as the witness. Finally, if A wins (b′ = b), then B guesses 0 to
indicate that (1, 2,K,K, r1, r2) was used as the witness in the NIWI proof, else it guesses 1 to indicate that
(2, 3,K,Ku, r2, r3) was used.

We observe that when (1, 2,K,K, r1, r2) is used as the witness by the NIWI challenger, then B simulates
exactly the view of intermediate hybrid i to A. Otherwise the view is of intermediate hybrid i+1. Therefore,
A’s advantage in any two consecutive intermediate hybrids is negligibly close as otherwise NIWI proof system
does not satisfy witness indistinguishability. Hence, using Q intermediate hybrids we have proved that
switching all the witnesses in the NIWI proofs causes at most negligible dip in A’s advantage in Game 3.

Therefore if Adv3A − Adv4A is non-negligible, then the NIWI proof system is not secure in the sense of
witness indistinguishability.

Lemma 4.4. If (CS.Commit,CS.Verify) is a computationally hiding commitment scheme, then for all PPT
A, |Adv4A − Adv5A| ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is also analogous to that of Lemma 4.2.

Lemma 4.5. If (P,V) forms a secure NIWI proof system, then for all PPT A, |Adv5A−Adv6A| ≤ negl(λ) for
some negligible function negl(·).

Proof. The proof of this lemma is also analogous to that of Lemma 4.3.

Lemma 4.6. If (CS.Commit,CS.Verify) is a computationally hiding commitment scheme, then for all PPT
A, |Adv6A − Adv7A| ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is also analogous to that of Lemma 4.2.

Lemma 4.7. If CPRF is a secure single-key constrained pseudorandom function (as per Definition 2.7), then
for all PPT A, Adv7A ≤ negl(λ) for some negligible function negl(·).

Proof. We describe a reduction algorithm B which plays the single-key constrained pseudorandomness game,
and uses A’s advantage in Game 7. B first samples u← AdmSample(1λ, Q). It sends u to the PRF challenger
as the constraint and receives constrained key Ku. B continues to run Step 1 as in Game 7, except now it
does not sample the PRF master key K and uses Ku (sent by the challenger) as the constrained key instead.
Next, it runs step 2 (i.e., answer evaluation queries) as in Game 7, except it uses Ku for evaluating the PRF.
It also runs step 3 as in Game 7, except on challenge input x∗, it sends h(x∗) as its challenge to the PRF
challenger and forwards the challenger’s response y∗ to A. Next, it answers evaluation queries as before, and
finally performs the artificial abort step. If B aborts, then it submits a random bit γ ← {0, 1} as its guess
to the PRF challenger. Otherwise, B outputs whatever A outputs.

First, note that the reduction algorithm does not need the PRF master key since whenever B does not
abort during evaluation phase, then it could evaluate the PRF using constrained keyKu because by definition
CPRF.Eval(Ku, h(x)) = CPRF.Eval(K,h(x)) whenever Pu(x) = 0. Second, if Pu(x

∗) = 1, then h(x∗) is a
valid challenge point. Finally, we observe that whenever B doesn’t abort, then B exactly simulates the view
of Game 7 to A. Therefore if Adv7A is non-negligible, then B must also have non-negligible advantage in the
single-key constrained pseudorandomness game.

Remark 4.1. We would like to note that if we use a constrained unpredictable function instead of a con-
strained PRF in the above construction, then it results in an adaptively-secure VUF (verifiable unpredictable
function).

19

4.4 Selectively-Secure VRFs

In this section, we give a modified construction which assumes puncturable PRFs instead of constrained
PRFs for admissible hash compatible constraints. The trade-off is that we could only prove selective security
of this construction. However, if we make sub-exponential security assumptions, then it could be proven to
be adaptively-secure as well.

Let (P,V) be a NIWI proof system for language L̃ (where the language will be defined later), (CS.Commit,CS.Verify)
be a perfectly binding commitment scheme with {Mλ}λ , {Rλ}λ and {Cλ}λ as the message, randomness and
commitment space, and PPRF = (PPRF.Setup,PPRF.Puncture,PPRF.Eval) be a constrained pseudorandom
function with {Xλ}λ , {Yλ}λ , {Kλ}λ and {Kp

λ}λ as its domain, range, key and constrained key spaces. For
simplicity assume that Kλ ∪Kp

λ ⊆Mλ, or in other words, all the PRF master keys and constrained keys lie
in the message space of the commitment scheme.

First, we define the language L̃. It contains instances of the form (c1, c2, c3, x, y) ∈ C3λ × Xλ × Yλ with
the following witness relation:

∃ i, j ∈ {1, 2, 3} , K,K ′ ∈ Kλ ∪ Kp
λ, r, r′ ∈ Rλ such that

i 6= j ∧ CS.Verify(K, ci, r) = 1 ∧ CS.Verify(K ′, cj , r
′) = 1 ∧ PPRF.Eval(K,x) = PPRF.Eval(K ′, x) = y.

Clearly the above language is in NP as it can be verified in polynomial time. Next we describe our
construction for selectively-secure VRFs with message space {Xλ}λ and range space {Yλ}λ.

• Setup(1λ) → (SK,VK). It generates a PRF key for punctured pseudorandom function as K ←
PPRF.Setup(1λ). It also generates three independent commitments to the keyK as ci ← CS.Commit(1λ,K; ri)
for i ≤ 3 where ri is sampled as ri ← Rλ, and sets the secret-verification key pair as SK =(
K, {(ci, ri)}i≤3

)
,VK = (c1, c2, c3).

• Evaluate(SK, x) → (y, π). Let SK =
(
K, {(ci, ri)}i≤3

)
. It runs the PRF evaluation algorithm on x as

y = PPRF.Eval(K,x). It also computes a NIWI proof π for the statement (c1, c2, c3, x, y) ∈ L̃ using
NIWI prover algorithm P with (i = 1, j = 2,K,K, r1, r2) as the witness, and outputs y and π as the
evaluation and corresponding proof.

• Verify(VK, x, y, π)→ {0, 1}. Let VK = (c1, c2, c3). It runs NIWI verifier to check proof π as V((c1, c2, c3, x, y), π)
and accepts the proof (outputs 1) iff V outputs 1.

Theorem 4.2. If (CS.Commit,CS.Verify) is a secure perfectly binding commitment scheme, (P,V) is a secure

NIWI proof system for language L̃, and PPRF is a secure puncturable pseudorandom function according to
Definitions 2.4, 2.3, and 2.9 (respectively), then the above construction forms a selectively-secure VRF
satisfying correctness, unique provability and pseudorandomness properties as described in Definition 2.2.

Proof Sketch. Correctness and unique provability of the above scheme could be proven similar to as
in Section 4.2. The proof of pseudorandomness is also similar to that provided before with the following
differences — (1) since we are only targeting selective security, the reduction algorithm receives the challenge
input from the adversary at the start of the game, thus it does not need to perform any partitioning or
abort, (2) in the final hybrid game, the reduction algorithm uses the adversary to attack the punctured
pseudorandomness property. The main idea in the reduction to punctured pseudorandomness is that since
at the start of the game adversary sends the challenge input to the reduction algorithm, the reduction
algorithm could get a punctured key from the PRF challenger and use it inside the commitments as well as
to answer each evaluation query.

20

5 Perfectly Binding Commitment Schemes

In this section, we give new constructions of perfectly binding non-interactive commitments from the Learning
with Errors assumption and the Learning Parity with Noise assumption. These constructions are in the
standard model without trusted setup. As mentioned in the introduction, there are already simple solutions
[JKPT12] known from LWE/LPN when there is a trusted setup.

We will first present a construction based on the LWE assumption. Next, we will adapt this solution to
work with the LPN assumption. However, this adaptation only works with low noise (that is, the Bernoulli
parameter is 1/

√
n). We also propose a different approach for constructing perfectly binding non-interactive

commitments from the standard constant noise LPN problem. This approach reduces to finding error
correcting codes with ‘robust’ generator matrices. Currently, we do not have any explicit 6 constructions for
such error correcting codes, and finding such a family of generator matrices is an interesting open problem.

5.1 Construction from Learning with Errors

In this commitment scheme, our message space is {0, 1} for simplicity. To commit to a bit x, one first chooses
two vectors s, w and outputs w and wT s + x. Clearly, this is not binding since there could be different s

vectors that open to different messages. Therefore, we need to ensure that the vector s is fixed. To address
this, we choose a matrix B with certain structure and output B and BT s + noise. The special structure
of the matrix ensures that there cannot be two different vectors s1, s2 and noise vectors noise1, noise2 such
that BT s1 + noise1 = BT s2 + noise2. Computational hiding of the committed bit follows from the fact that
even though B has special structure, it ‘looks’ like a random matrix, and therefore we can use the LWE
assumption to argue that BT s+ noise looks random, and therefore the message x is hidden.

We will now describe the algorithms formally. Let ⌊·⌋ denote the floor operation, i.e. ⌊x⌋ = max{y ∈ Z :
y ≤ x}.

• Commit(1n, x ∈ {0, 1}) : The commitment algorithm first sets the LWE modulus p = 2n
ǫ

for some
ǫ < 1/2 and error distribution χ = Dσ where σ = nc for some constant c. Next, it chooses a matrix
A ← Zn×n

p , low norm matrices C ← χn×n, E ← χn×n and constructs D = ⌊p/(4nc+1)⌋ · I (here I is
the n× n identity matrix). Let B = [A | AC+D+E].

It then chooses vectors s ← χn, w ← Zn
p , e ← χ2n and f ← χ, and computes y = BT s + e and

z = wT s + x(p/2) + f . If either ‖C‖ > nc+2 or ‖E‖ > nc+2 or ‖e‖ > 2nc+1 or ‖s‖ > nc+1 or
f > ⌊p/100⌋, the commitment algorithm outputs x as the commitment. Else, the commitment consists
of (p, c,B,w,y, z).

• Verify(com, x, (C,E, e, s, f)) : Let com = (p, c,B,w,y, z). The verification algorithm first checks if
‖C‖ ≤ nc+2, ‖E‖ ≤ nc+2, ‖e‖ ≤ 2nc+1, ‖s‖ ≤ nc+1 and f ≤ ⌊p/100⌋. Next, it checks that B =
[A | AC +D + E], BT s + e = y and wT s + x(p/2) + f = z, where D = ⌊p/(4nc+1)⌋ · I. If all these
checks pass, it outputs 1.

Theorem 5.1. If (n,m, 2n
ǫ

,Dnc)-LWE-ss assumption (Assumption 2) holds, then the above construction is
a perfectly binding computationally hiding commitment scheme as per Definition 2.4.

Perfect Correctness Suppose there exist two different openings for the same commitment. Let s1, e1, f1,C1, f1
and s2, e2, f2,C2, f2 be the two openings. We will first show that s1 = s2 and e1 = e2. Next, we will argue
that if s1 = s2, then the commitment cannot be opened to two different bits.

Suppose s1 6= s2. Since B
T s1+e1 = BT s2+e2, it follows that B

T (s1−s2) = e2−e1. Let e11 and e12 denote
the first n components of e1 and e2 respectively. Then AT (s1− s2) = e11−e12. Note that ‖e2 − e1‖ ≤ 4nc+1,
and therefore,

∥∥AT (s1 − s2)
∥∥ ≤ 4nc+1.

Since C1 and C2 are matrices with low norm entries, it follows that ‖C1‖ ≤ nc+2 and ‖C2‖ ≤ nc+2.
This implies

∥∥CT
1 A

T (s1 − s2)
∥∥ ≤ 4n2c+3. Similarly, since ‖E1‖ ≤ nc+2,

∥∥ET
1 (s1 − s2)

∥∥ ≤ 2n2c+3. However,

6We note that most randomly chosen linear codes satisfy this property.

21

since the matrix D has ‘medium-sized’ entries, if s1 6= s2, it follows that
∥∥DT (s1 − s2)

∥∥
∞ ≥ ⌊p/(4n

c+1)⌋.
Additionally, since D has medium-sized entries, we could also say that each entry of vector DT (s1− s2) is at
most p/2. This is because

∥∥DT (s1 − s2)
∥∥
∞ ≤

∥∥DT
∥∥
∞ · ‖s1 − s2‖∞ ≤ ⌊p/(4nc+1)⌋ · 2nc+1 ≤ p/2. Therefore,

the vector DT (s1 − s2) is sufficiently long, i.e.
∥∥DT (s1 − s2)

∥∥
∞ ∈

[
⌊p/(4nc+1)⌋, p/2

]
.

Next, let us consider the norm of vector BT (s1−s2). Recall that B = [A |AC+D+E]. Consider the ma-
trix X = [A | AC+E], i.e. it is same as B except it does not contain matrix D. Using triangle inequality, we

can write that
∥∥∥XT (s1 − s2)

∥∥∥ ≤
∥∥AT (s1 − s2)

∥∥+
∥∥CT

1 A
T (s1 − s2)

∥∥+
∥∥ET

1 (s1 − s2)
∥∥ ≤ 8n2c+3. Therefore,

we could also say that each entry of vector XT (s1 − s2) is at most 8n2c+3, i.e.
∥∥∥XT (s1 − s2)

∥∥∥
∞
≤ 8n2c+3.

We know that BT (s1 − s2) = XT (s1 − s2) + [0 | D]T (s1 − s2). Therefore, given the above bounds, we

could conclude that ⌊p/(4nc+1)⌋ − 8n2c+3 ≤
∥∥∥BT (s1 − s2)

∥∥∥
∞
≤ p/2 + 8n2c+3. Since, p = 2n

ǫ

, we know that

for sufficiently large values of n, ⌊p/(8nc+1)⌋ ≤
∥∥∥BT (s1 − s2)

∥∥∥
∞

< p. However, this is a contradiction since

BT (s1 − s2) = e2 − e1 and ‖e2 − e1‖ ≤ 4nc+1, thus
∥∥∥BT (s1 − s2)

∥∥∥
∞

< 4nc+1.

Now, if s1 = s2 and f1, f2 are both at most ⌊p/100⌋, then wT s1+ f1 cannot be equal to wT s2+ f2+ p/2.
This implies that any commitment cannot be opened to two different bits.

5.1.1 Computational Hiding

The computational hiding proof follows from a sequence of standard hybrid games. First, we can switch
B to a uniformly random matrix. This follows from LWE with short secrets (C is the secret here). After
that, y and z can be made random, again using LWE with short secrets. At this point, since z is random,
there is no information about the commitment bit x. The formal proof is described via a sequence of hybrid
experiments.

• Hybrid 0: This corresponds to the real experiment.

• Hybrid 1: This hybrid experiment is identical to the previous one, except that the challenger never
outputs the message in clear.

The challenger chooses A ← Zn×n
p , low norm matrices C ← χn×n, E ← χn×n, constructs D =

⌊p/(4nc+1)⌋ · I and B = [A|AC+D+E].

It then chooses vectors s ← χn, w ← Zn
p , e ← χn and f ← χ, and computes y = BT s + e and

z = wT s+ x(p/2) + f . The commitment consists of (B,w,y, z).

• Hybrid 2: In this hybrid, the challenger sets B to be a uniformly random matrix.

It chooses B ← Zn×2n
p , s ← χn, w ← Zn

p , e ← χn and f ← χ, and computes y = BT s + e and

z = wT s+ x(p/2) + f . The commitment consists of (B,w,y, z).

• Hybrid 3: In this hybrid, the challenger sets y and z to be uniformly random.

It chooses B← Zn×2n
p , w← Zn

p , y← Z2n
p and z ← Zp. The commitment consists of (B,w,y, z).

Let AdvAi denote the advantage of adversary A in Hybrid i. We will now show that for all i ∈ {0, 1, 2},
AdvAi − AdvAi+1 is negligible in the security parameter n.

Claim 5.1. For any adversary A, AdvA0 − AdvA1 ≤ negl(n).

Proof. The only difference between Hybrid 0 and Hybrid 1 is that the challenger, in hybrid 0, outputs the
message in clear if either ‖C‖ > nc+2 or ‖E‖ > nc+2 or ‖e‖ > 2nc+1 or ‖s‖ > nc+1 or f > ⌊p/100⌋.
From Lemma 2.1, it follows directly that Pr[‖C‖ > nc+2 or ‖E‖ > nc+2 or ‖e‖ > 2nc+1 or ‖s‖ > nc+1 or
f > ⌊p/100⌋] ≤ negl(n).

22

Claim 5.2. Assuming LWE with Short Secrets problem is hard for p = 2n
ǫ

and χ = Dσ (where σ = nc),
for any PPT adversary A, AdvA1 − AdvA2 ≤ negl(n).

Proof. Suppose there exists a PPT adversary A such that AdvA1 − AdvA2 = η. Then there exists a PPT
algorithm that can break the LWE with short secrets assumption with advantage at least η. The algorithm
B receives as LWE challenge two matricesX,Y, whereY is either a uniformly random matrix, orY = XC+E

andC,E are matrices with entries from Dσ. B then chooses a diagonal matrix D with ⌊p/(4nc+1)⌋ as diagonal
entries, sets A = X, B = [A|Y +D]. Next, it chooses vectors w, s, e, f and bit b. It sets y = BT s+ e and
z = wT s+ f + b(p/2). If the adversary guesses b correctly, then B guesses that Y is an LWE sample, else it
guesses that Y is truly random.

Claim 5.3. Assuming LWE with Short Secrets problem is hard for p = 2n
ǫ

and χ = Dσ (where σ = nc),
for any PPT adversary A, AdvA2 − AdvA3 ≤ negl(n).

Proof. Suppose there exists a PPT adversary A such that AdvA2 − AdvA3 = η. Then there exists a PPT
algorithm that can break the LWE with short secrets assumption with advantage at least η. For this
reduction, let us assume the reduction algorithm gets as LWE challenge (X,w) and (a, c) where (a, c) are
either truly random, or there exist low norm vectors s, e and f such that a = XT s + e and c = wT s + f .
The reduction algorithm sets B = X, y = a, z = c + b(p/2) and sends (B,w,y, z) to the adversary. If the
adversary guesses b correctly, then B guesses that a, c are LWE samples, else it guesses that they are truly
random.

Finally, since y, z is uniformly random in the final hybrid, any adversary has 0 advantage in the final
hybrid game.

5.2 Construction from Learning Parity with Low Noise

We will now construct a perfectly binding non-interactive commitment scheme that can be proven secure
under the low noise LPN assumption. At a high level, this solution is similar to our LWE solution. The
message space is {0, 1}, and to commit to a bit x, we choose a vector w, secret vector s and output w,wT s+x
as part of the commitment. However, this is not enough, as there could exist s1, s2 such that wT s1 + 1 =
wT s2. To prevent this, the commitment also consists of a matrix B chosen from a special distribution, and
BT s+ noise′ fixes the vector s. Drawing parallels with the LWE solution, we use an error correcting code’s
generator matrix G instead of the matrix D used in the LWE solution. Both these matrices have a similar
role: to map non-zero vectors to vectors with high hamming weight/high norm.

An important point to note here is that the Bernoulli parameter needs to be O(1/
√
n). This is necessary

for proving perfect binding. Recall, in the LWE perfect binding proof, we argue that since AT s has low
norm, CTAT s also has low norm. For the analogous argument to work here, the error distribution must
be O(1/

√
n). In that case, we can argue that if the error distribution has hamming weight fraction at most

1/100
√
n and each row of C has hamming weight fraction at most 1/100

√
n, then CTAT s has hamming

weight fraction at most 1/10000. If the noise rate was constant, then we cannot get an upper bound on the
hamming weight fraction of CTAT s.

We will now describe the formal construction. Let β = 1/(100
√
n) and χ = Berβ the noise distribution.

Let {Gn ∈ Z
n×10n
2 }n∈N be a family of generator matrices for error correcting codes where the distance of

the code generated by Gn is at least 4n.

• Commit(1n, x ∈ {0, 1}) : Let m = 10n. Choose random matrices A← Z
n×m
2 , w← Zn

2 and C← χm×m.
Let B = [A | AC+G]. Choose secret vector s ← Zn

2 , error vector e ← χ2m and set y = BT s + e.
If either Ham-Wt(e) > m/(25

√
n) or there exists some row ci of matrix C such that Ham-Wt(ci) >

m/(50
√
n), output the message x in clear as the commitment. Else, let z = wT s+x. The commitment

string com is set to be (B,w,y, z).

23

• Verify(com, x, (s, e,C)) : Let com = (B,w,y, z). The verification algorithm first checks that Ham-Wt(e) ≤
m/(25

√
n) and all rows ci of C satisfy Ham-Wt(ci) ≤ m/(50

√
n). Next, it checks if B = [A | AC+G],

y = BT s+ e and z = wT s+ x. If all checks pass, it outputs 1, else it outputs 0.

Theorem 5.2. Assuming the Extended Learning Parity with Noise problem LPNn,m,p (Assumption 4) and
Knapsack Learning Parity with Noise problem KLPNn,m,β (Assumption 5) (for β = 1/(100

√
n)) is hard, the

above construction is a perfectly binding computationally hiding commitment scheme as per Definition 2.4.

Perfect Correctness First, we will argue perfect correctness. Suppose there exists a commitment com =
(B,w,y, z) that can be opened to two different messages. Then there exist two different reveals (s1, e1, C1)
and (s2, e2, C2) such that BT s1 + e1 = y = BT s2 + e2, w

T s1 + 0 = z = wT s2 + 1 and [A|AC1 +G] = B

= [A|AC2 +G]. We will first show that s1 = s2, and then show that this implies perfect binding.
For proving that s1 = s2 and e1 = e2, notice that BT (s1 + s2) = e1 + e2, which implies that

Ham-Wt([A|AC1 +G]
T
(s1+s2)) ≤ 2m/(25

√
n) (recall, the hamming weight of e1+e2 is at most 2m/(25

√
n)).

This implies, in particular, Ham-Wt(AT (s1+ s2)) ≤ 2m/(25
√
n). Since each row of C1 and C2 has ham-

ming weight at mostm/(50
√
n), Ham-Wt((AC1)

T (s1+s2)) ≤ m2/(625n) < n. As a result, Ham-Wt([A|AC1]
T
(s1+

s2)) < 2n. But if s1 6= s2, then Ham-Wt(GT (s1 + s2)) ≥ 4n which implies, using triangle inequality, that
Ham-Wt(BT (s1 + s2)) ≥ 2n. This brings us to a contradiction since Ham-Wt(e1 + e2) ≤ 2m/(25

√
n) < n.

Next, given that s1 = s2, it follows that w
T s1 + 1 6= wT s2. This concludes our proof.

5.2.1 Computational Hiding

For computational hiding, at a high level, we will first switch B to a uniformly random matrix. This will
follow from Knapsack LPN with low (O(1/

√
n)) noise. Next, we will switch y and z to uniformly random

vectors. This will use LPN with low (O(1/
√
n)) noise. At this point, the vector z has no information about

the committed bit x. We will now argue this formally via a sequence of hybrids.

• Hybrid 0: This corresponds to the real world.

• Hybrid 1: This hybrid is identical to the previous one, except that the challenger does not output
the message for ‘bad’ matrix C and error vector e.

It chooses random message b ← {0, 1}, random matrices A ← Z
n×m
2 , w ← Zn

2 , C ← χm×m, sets
B = [A | AC+G]. Next, it chooses secret vector s← Zn

2 , error vector e← χm and sets y = BT s+e,
z = wT s+ b and sends (D,B,y, z) to the adversary.

• Hybrid 2: In this hybrid, the challenger chooses B uniformly at random.

It chooses random message b← {0, 1}, random matrices w← Zn
2 , B← Z

n×2m
2 . Next, it chooses secret

vector s← Zn
2 , error vector e← χ2m and sets y = BT s+ e, z = wT s+ b and sends (B,w,y, z) to the

adversary.

• Hybrid 3: In this hybrid, the challenger chooses y and z uniformly at random.

It chooses random message b ← {0, 1}, random matrices w ← Zn
2 , B ← Z

n×2m
2 . Next, it chooses

y← Zm
2 , z ← Zn

2 and sends (B,w,y, z) to the adversary.

Let AdvAi denote the advantage of adversary A in Hybrid i. We will now show that for all i ∈ {0, 1, 2},
AdvAi − AdvAi+1 is negligible in the security parameter n.

Claim 5.4. For any adversary A, AdvA0 − AdvA1 ≤ negl(n).

Proof. The only difference between Hybrid 0 and Hybrid 1 is that the challenger, in hybrid 0, outputs the
message in clear if either the error vector e or some row of C has hamming weight greater than m/(50

√
n).

Since e ← Bermβ and β = 1/(100
√
n), using Chernoff bounds, Pr[Ham-Wt(e) > m/(50

√
n)] ≤ negl(n). We

can use a similar argument for the rows of C.

24

Claim 5.5. Assuming the Knapsack Learning Parity with Noise assumption for β = 1/(100
√
n), for any

PPT adversary A, AdvA1 − AdvA2 ≤ negl(n).

Proof. Suppose there exists a PPT adversary A such that AdvA1 − AdvA2 = ǫ. We will construct a reduction
algorithm B that breaks the knapsack LPN assumption with advantage ǫ. The reduction algorithm B receives
matrices X ∈ Z

n×m
2 , Y ∈ Z

n×m
2 where Y is either a uniformly random matrix, or Y = XZ for some matrix

Z ← Berm×m
β . It sets A = X, B = [A | Y +G], chooses b ← {0, 1}, w ← Zn

2 , s ← Zn
2 , e ← Bermβ and sets

y = BT s+ e and z = wT s+ b. It sends (B,w,y, z) to the adversary and receives bit b′ in return. If b = b′,
the reduction algorithm guesses that Y = XZ, else it guesses that Y is uniformly random.

The algorithm B thus breaks the Knapsack LPN assumption with advantage ǫ.

Claim 5.6. Assuming the Extended Learning Parity with Noise assumption for β = 1/(100
√
n), for any

PPT adversary A, AdvA2 − AdvA3 ≤ negl(n).

Proof. Suppose there exists a PPT adversary A such that AdvA2 − AdvA3 = ǫ. We will construct a reduction
algorithm B that breaks the LPN assumption with advantage ǫ. The reduction algorithm B receives matrices
X ∈ Z

n×m
2 , matrix Y ∈ Z

n×m
2 , vector c = YT s and a, where a is either a uniformly random vector, or

a = XT s+ e for some matrix e ← Bermβ . It sets B = X, w = Y, chooses b ← {0, 1} and sets z = y + b. It
sends (B,w,y, z) to the adversary and receives bit b′ in return. If b = b′, the reduction algorithm guesses
that a = XT s+ e, else it guesses that a is uniformly random.

The algorithm B thus breaks the Extended LPN assumption with advantage ǫ.

Finally, note that any adversary A has advantage 0 in Hybrid 3. This concludes our proof.

5.3 Construction from Learning Parity with Constant Noise

For this construction, we will require a polynomial time algorithm GenECC that generates ‘robust’ error
correcting code generator matrices. More formally, GenECC(1n) takes as input a parameter n and outputs ℓ
matrices G1, . . . ,Gℓ of dimension n×m such that the following property holds: for every matrix A ∈ Z

n×m
2 ,

there exists an i ∈ [ℓ] such that every non-zero vector in the rowspace of A + Gi has hamming weight at
least m/3. Let β = 1/100 denote the error rate.

• Commit(1n, x ∈ {0, 1}) : The commitment algorithm first computes (G1, . . . ,Gℓ) ← GenECC(1n),
where Gi ∈ Z

n×m
2 . Next, it chooses A ← Z

n×m
2 and sets Di = [A+Gi]. It chooses secret vectors

si ← Zn
2 and error vectors ei ← χm for i ≤ ℓ. If any of the error vectors have hamming weight greater

than 2mβ, then the algorithm outputs x in the clear. Else, it chooses w ← Zn
2 , sets yi ← DT

i si + ei
for i ∈ [ℓ], zi = wT si + x and outputs com = (A, {yi, zi}) as the commitment.

• Verify(com, x, ({si, ei})) : Let com = (A, {yi, zi}). The verification algorithm first checks that yi =
[A+Gi]

T si + ei for all i ∈ [ℓ] and zi = wT si + x. Next, it checks that each error vector has hamming
weight less than 2mβ. If all these checks pass, it outputs 1, else it outputs 0.

Perfect Correctness. This will crucially rely the robustness property of GenECC algorithm. Suppose
there exist two sets of vectors {s1i }, {s2i } and error vectors {e1i } and {e2i } such that DT

i s
1
i + e1i = DT

i s
2
i + e2i .

Then, for all i ≤ ℓ, DT
i (s

1
i + s2i) has hamming weight at most 4mβ. This implies that for all i ≤ ℓ, there

exists at least one non-zero vector in the rowspace of Di that has hamming weight at most 4mβ. But by
the robustness property, for every A ∈ Z

n×m
2 , there exists at least one index i ∈ [ℓ] such that the row space

of A+Gi has hamming weight at least m/3. This brings us to a contradiction.

Computational Hiding Proof Sketch The proof is fairly simple, and follows from the LPN assumption.
First we introduce ℓ hybrid experiments, where in the ith experiment, (yj , zj) are random for all j ≤ i. The
remaining (yj , zj) components are same as in the actual construction. The only difference between the

(i− 1)th and ith hybrid is the distribution of (yi, zi).

25

Hybrid Hybridi In this experiment, the challenger chooses a matrix A← Z
n×m
2 , vector w ← Zn

2 and sets
Di = A +Gi. Next, it chooses sj ← Zn

2 and ej ← Bermβ for all j ≤ ℓ. For j ≤ i, it chooses yj ← Zm
2 and

zj ← Z2. For j > i, it chooses the commitment bit b ← {0, 1}, sets yj = DT
j sj + ej and zj = wT sj + b. It

sends (A,w, {yi, zi}i) to the adversary. The adversary outputs a bit b′ and wins if b = b′.

Suppose there exists an adversaryA that can distinguish between these two hybrids. Then we can construct
a reduction algorithm B that can break the extended LPN assumption. B receives (X,w,y, z) from the LPN
challenger, where y = XT s+e or is random, and z = wT s. It sets A = X−Gi. The remaining components
can be generated using A (note that there is a different si for each i, so the reduction algorithm does not
need the LPN secret s to generate the remaining components). Depending on whether y is random or not,
B either simulates Hybrid i or Hybrid i− 1.

6 Constrained PRFs for Admissible Hash Compatible Constraints

In this section, we will provide two separate constructions of constrained PRFs for admissible hash compatible
constraints. We prove security of the first construction under the n-powerDDH assumption and the second
construction is proven to be secure under the Phi-Hiding assumption.

6.1 Constrained PRFs from n-powerDDH Assumption

At a high level, our base PRF looks like the Naor-Reingold PRF [NR04]. The PRF key consists of 2n
integers and a random group generator g. The PRF evaluation on an n bit strings is performed as follows:
first choose n out of the 2n integers depending on the input, compute their product and then output this
product in the exponent of g.

• Setup(1λ): The setup algorithm takes as input the security parameter λ. It first generates a group
of prime order as (p,G, g) ← G(1λ), where p is a prime, G is a group of order p and g is a random
generator. Next, it chooses 2n integers ci,b ← Z∗

p for i ≤ n, b ∈ {0, 1}. It sets the master PRF key as

K =
(
(p,G, g), {ci,b}i≤n,b∈{0,1}

)
.

• Constrain(K,u ∈ {0, 1,⊥}n): The constrain algorithm takes as input the master PRF key K =
((p,G, g), {ci,b}i,b) and constraint u ∈ {0, 1,⊥}n. It first chooses an integer a ∈ Z∗

p and computes,
for all i ≤ n, b ∈ {0, 1},

vi,b =

{
ci,b/a if ui = b ∨ ui = ⊥
ci,b otherwise.

It sets the constrained key as Ku =
(
(p,G, g), u, {g, ga, ga2

, . . . , ga
n−1}, {vi,b}i,b

)
.

• Evaluate(K,x ∈ {0, 1}n): The evaluation algorithm takes as input a PRF key K (which could be either
the master PRF key or constrained PRF key) and an input string x ∈ {0, 1}n.
If K is a master PRF key, then it can be parsed as K = ((p,G, g), {ci,b}i,b). The evaluation algorithm
computes t =

∏
i≤n ci,xi

and outputs gt.

If K is a constrained key, then it consists of the group description (p,G, g), constraint u ∈ {0, 1,⊥}n,
group elements (g0, g1, . . . , gn−1) and 2n integers {vi,b}i,b. The evaluation algorithm first checks if
Pu(x) = 0. If not, it outputs ⊥. Else, it computes the product v =

∏
i≤n vi,xi

. Next, it counts the
number of positions s such that ui = xi ∨ ui = ⊥. It outputs the evaluation as gvs (note that since
Pu(x) = 0, 0 ≤ s < n, and therefore the output is well defined).

Theorem 6.1. If n-powerDDH assumption (Assumption 8) holds over G, then the above construction is a
secure single-key no-query secure constrained pseudorandom function for admissible hash compatible con-
straint family as per Definition 2.7.

26

Correctness. We need to show that for any PRF key K, any constraint u ∈ {0, 1,⊥}n, any key Ku

constrained at u and any input x ∈ {0, 1}n such that Pu(x) = 0, evaluation at x using the master PRF key
K matches the evaluation at x using the constrained key Ku.

More formally, let K ← Setup(1n), and let K = ((p,G, g), {ci,b}). Let u ∈ {0, 1,⊥}n be any constraint,

and let Ku = ((p,G, g), u, {g, ga, . . . , gan−1}, {vi,b}) be the constrained key. On input x ∈ {0, 1}n, the PRF
evaluation using the master PRF key computes t =

∏
ci,xi

and outputs h = gt.
Let S = {i : ui = xi ∨ ui = ⊥}, and let s = |S|. Since Pu(x) = 0, it follows that s < n (since there

is at least one index where ui 6= ⊥ ∧ xi 6= ui). For all i ∈ S, vi,xi
is set to be ci,xi

/a, and for all i /∈ S,
vi,xi

= ci,xi
. As a result, v =

∏
i vi,xi

= (
∏

i ci,xi
)/as. Therefore, (ga

s

)v = gt = h, which is equal to the
master key evaluation.

Security. We will now show that the construction described above is secure as per Definition 2.7. Recall,
in the single-key no-query security game, the adversary is allowed to query for a single constrained key,
after which the adversary must output a challenge point not in the constrained set and then distinguish
between the PRF evaluation at the challenge point and a truly random string. We will show that such an
adversary can be used to break the n-powerDDH assumption. The reduction algorithm receives as challenge
(g, ga, ga

2

, . . . , ga
n−1

) and T , where T = ga
n

or a uniformly random group element. The reduction algorithm
then receives a constrained key query u from the adversary. The reduction algorithm chooses 2n random
integers and sends them along with (g, ga, . . ., ga

n−1

). Now, the adversary sends a point x such that
Pu(x) = 1. The reduction algorithm will use T to respond to the adversary. The crucial point here is that
the reduction does not need to know a to construct this response.

Lemma 6.1. Assuming the n-powerDDH assumption, for any adversary A, AdvCPRF
A (n) ≤ negl(n).

Proof. Suppose there exists an adversary A such that AdvCPRF
A (n) = ǫ. We will use A to construct a

reduction algorithm B that breaks the n-powerDDH assumption. The reduction algorithm receives the group
description (p,G, g), n group elements (g0, g1, . . ., gn−1) and the challenge term T from the challenger. It
then chooses 2n random integers vi,b ← Z∗

p for all i ≤ n, b ∈ {0, 1}. It receives constrained key query u from
A, and sends ((p,G, g), u, {g0, . . . , gn−1}, {vi,b}i,b) to A. Next, it receives the challenge input x ∈ {0, 1}n
from A such that Pu(x) = 1. The reduction algorithm computes v =

∏
i vi,xi

and sends T v to the adversary.
If A guesses that the challenge string is random, then B guesses that T is random, else it guesses that
T = ga

n

, where gi = ga
i

.
We now need to argue that B perfectly simulates the single-key no-query constrained PRF game. First,

let us consider the case when gi = ga
i

and T = ga
n

. The constrained key is distributed as in the actual
security game. The reduction algorithm implicitly sets ci,b = vi,ba for all i, b such that ui = b ∨ ui = ⊥.
On challenge input x such that Pu(x) = 1, let v =

∏
i vi,xi

. Note that t =
∏

i ci,xi
= anv. As a result, its

outputs T v = gt is the correct PRF evaluation at x.
Now, suppose T is a uniformly random group element. Then, once again, the constrained key’s distri-

bution is identical to the real security game distribution, and the response to PRF challenge is a uniformly
random group element. This implies that B can break the n-powerDDH assumption with advantage ǫ.

6.2 Constrained PRFs from Phi-Hiding Assumption

The PRF key consists of a RSA modulus, its factorization, 2n integers, a random group generator h and a
strong extractor seed. The PRF evaluation on an n bit strings is performed as follows: first choose n out of
the 2n integers depending on the input, compute their product, then compute this product in the exponent
of h and finally apply a strong extractor on the product.

• Setup(1λ): The setup algorithm takes as input the security parameter λ. It first sets input length
n = λ, parameter ℓRSA = 20(n + 1), generates RSA modulus N = pq, where p, q are primes of
ℓRSA/2 bits each. Next, it chooses 2n integers ci,b ← Zφ(N) for i ≤ n, b ∈ {0, 1} and h ← Z∗

N .

Finally, it sets ℓs = O(n) and chooses an extractor seed s ← {0, 1}ℓs . It sets the master PRF key as
K =

(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h, s

)
.

27

• Constrain(K,u ∈ {0, 1,⊥}n): The constrain algorithm takes as input the master PRF key K =
((N, p, q), {ci,b}i,b, h, s) and constraint u ∈ {0, 1,⊥}n. It first chooses an integer e ∈ Z∗

φ(N) and com-

putes, for all i ≤ n, b ∈ {0, 1},

vi,b =

{
(ci,b − 1) · e−1 mod φ(N) if ui = b ∨ ui = ⊥
ci,b · e−1 mod φ(N) otherwise.

It sets the constrained key as Ku = (N, u, e, {vi,b}i,b, he, s).

• Evaluate(K,x ∈ {0, 1}n): The evaluation algorithm takes as input a PRF key K (which could be either
the master PRF key or constrained PRF key) and an input string x ∈ {0, 1}n.
IfK is a master PRF key, then it can be parsed asK =

(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h, s

)
. The evaluation

algorithm computes t =
∏

i≤n ci,xi
and outputs Ext(ht, s).

If K is a constrained key, then it can be parsed as K =
(
N, u, e, {vi,b}i≤n,b∈{0,1}, g, s

)
. Recall g is set

to be he. The evaluation algorithm first checks if Pu(x) = 0. If not, it outputs ⊥. Since Pu(x) = 0,
there exists an index i such that ui 6= ⊥ and ui 6= xi. Let i∗ be the first such index. For all i 6= i∗,
compute wi,b = vi,b · e + 1 if ui = b ∨ ui = ⊥, else wi,b = vi,b · e. Finally, set wi∗,xi∗

= vi∗,xi∗
and

compute t′ =
∏

wi,xi
. Output Ext(gt

′

, s).

Theorem 6.2. If Phi-Hiding assumption (Assumption 7) holds and Ext is a (ℓRSA/5, 1/2
2n) strong extrac-

tor as per Definition 2.11, then the above construction is a secure single-key no-query secure constrained
pseudorandom function for admissible hash compatible constraint family as per Definition 2.7.

Correctness. We need to show that for any PRF key K, any constraint u ∈ {0, 1,⊥}n, any key Ku

constrained at u and any input x ∈ {0, 1}n such that Pu(x) = 0, evaluation at x using the master PRF key
K matches the evaluation at x using the constrained key Ku.

More formally, let K ← Setup(1n), and let K = ((N, p, q), {ci,b}, h, s). Let u ∈ {0, 1,⊥}n be any
constraint, and let Ku = (N, u, e, {vi,b}, he, s) be the constrained key. On input x ∈ {0, 1}n, the PRF
evaluation using the master PRF key computes t =

∏
ci,xi

and outputs Ext(ht, s).
Since Pu(x) = 0, there is at least one index i∗ where ui∗ 6= ⊥ ∧ xi∗ 6= ui∗ . As a result, vi∗,xi∗

= ci∗,xi∗
·e−1.

For all i 6= i∗, we can compute ci,b given vi,b and e. Therefore, if we define wi,b as in the evaluation algorithm

and compute t′ =
∏

i wi,xi
, then (he)t

′

= h
∏

ci,xi . Since both the constrained key evaluation and PRF key
evaluation use the same extractor seed, the evaluation using the constrained key is correct.

Security. If Pu(x) = 1, then there exists no i such that vi,xi
= ci,xi

· e−1. As a result, suppose there exists
an adversary A that can win the single-key no-query constrained PRF security game. Then we can use A
to break the Phi-hiding assumption. We will prove security via a sequence of hybrid experiments. First, we
will switch the exponent e in the constrained key from being a random element (co-prime w.r.t. φ(N)) to
a factor of φ(N). This step will rely on the Phi-hiding assumption. Next, we will show that any adversary
has negligible advantage if e divides φ(N). Intuitively, this step will follow because the quantity γ = he in
the constrained key does not reveal h — there could be e different eth roots of γ. As a result, running the
extractor on h

∏
ci,xi outputs a uniformly random bit.

We will now formally define the hybrids.

Hybrid H0: This corresponds to the real security game.

1. The adversary A sends constrained key query u ∈ {0, 1,⊥}n.

2. The challenger first chooses primes p, q and sets N = pq. Next, chooses 2n uniformly random integers
ci,b ← Zφ(N), exponent e ← Z∗

φ(N) and h ← Z∗
N . Finally, it chooses an extractor seed s. It sets

vi,b = (ci,b − 1) · e−1 if ui = b ∨ ui = ⊥, else vi,b = ci,b · e−1.

The constrained key for u is set to be Ku = (N, u, e, {vi,b}, he, s). The challenger sends Ku to A.

28

3. The adversary sends its challenge input x ∈ {0, 1}n such that Pu(x) = 1. The challenger computes
t =

∏
ci,xi

.

It sets y0 = Ext(ht, s) and y1 ← {0, 1}. Finally, it chooses a bit b← {0, 1} and sends yb.

4. The adversary sends its guess b′ and wins if b = b′.

Hybrid H1: This experiment is identical to the previous one, except for syntactical changes. Instead of
first choosing ci,b and then defining vi,b using the ci,b values, the challenger chooses the vi,b values uniformly
at random and then defines ci,b accordingly. Note that since the ci,b values are uniformly random and
gcd(e, φ(N)) = 1, these two experiments will be identical.

2. The challenger first chooses primes p, q and sets N = pq. Next, chooses 2n uniformly random integers
vi,b ← Zφ(N), exponent e← Z∗

φ(N) and h← Z∗
N . Finally, it chooses an extractor seed s.

The constrained key for u is set to be Ku = (N, u, e, {vi,b}, he, s). The challenger sends Ku to A.

3. The adversary sends its challenge input x ∈ {0, 1}n such that Pu(x) = 1. The challenger computes
ci,b = vi,b · e+ 1 if ui = b ∨ ui = ⊥, else ci,b = vi,b · e .

It then computes t =
∏

ci,xi
. It sets y0 = Ext(ht, s) and y1 ← {0, 1}. Finally, it chooses a bit b← {0, 1}

and sends yb.

Hybrid H2: This experiment is identical to the previous one, except that vi,b is chosen from ZN instead
of Zφ(N). Since φ(N) = (p − 1)(q − 1), any element chosen uniformly at random from ZN is an element of
Zφ(N) with overwhelming probability.

2. The challenger first chooses primes p, q and sets N = pq. Next, chooses 2n uniformly random integers
vi,b ← ZN , exponent e← Z∗

φ(N) and h← Z∗
N . Finally, it chooses an extractor seed s.

The constrained key for u is set to be Ku = (N, u, e, {vi,b}, he, s). The challenger sends Ku to A.

Hybrid H3: In this experiment, the exponent e divides φ(N). This change will be indistinguishable because
of the Phi-Hiding assumption.

2. The challenger first chooses e ← [2ℓRSA/5], N ← RSAe(1
ℓRSA). Next, it chooses 2n uniformly random

integers vi,b ← ZN and h← Z∗
N . Finally, it chooses an extractor seed s.

The constrained key for u is set to be Ku = (N, u, e, {vi,b}, he, s). The challenger sends Ku to A.

Analysis. We will now show that any PPT adversary has negligible advantage in each of the hybrid
experiments. For any adversary A, let AdviA(λ) denote the advantage of A in hybrid experiment Hi with
security parameter λ.

Claim 6.1. For any adversary A, Adv0A(λ) = Adv1A(λ).

Proof. The only difference between hybrids H0 and H1 is that in H0, the challenger chooses ci,b uniformly at
random from Zφ(N) and sets vi,b depending on constraint query u. In H1, the vi,b terms are chosen uniformly
at random, and ci,b are set depending on the constraint query u. Since e is invertible, choosing ci,b uniformly
at random, setting vi,b = (ci,b − 1) · e−1 (resp. vi,b = ci,b · e−1) and outputting (vi,b, ci,b) is identical to
choosing vi,b uniformly at random, setting ci,b = vi,b · e + 1 (resp. ci,b = vi,b · e) and outputting (vi,b, ci,b).

Claim 6.2. For any adversary A, |Adv1A(λ)− Adv2A(λ)| ≤ negl(λ).

29

Proof. The only difference in these two hybrids is that in one case, each vi,b is sampled from Zφ(N), while in
the other case, vi,b is sampled from ZN . Since φ(N) = (p− 1)(q − 1), we know that

Pr[vi,b /∈ Zφ(N) | vi,b ← ZN] = (p+ q − 1)/N = negl(λ).

Therefore, using union bound we can write that

Pr[∃i, b such that vi,b /∈ Zφ(N) | ∀i, b; vi,b ← ZN] = negl(λ).

Hence, the statistical distance between the distributions of {vi,b}i,b is at most negligible. Thus, the claim

follows.

Claim 6.3. Assuming the Phi-Hiding assumption, for any PPT adversaryA, |Adv2A(λ)−Adv3A(λ)| ≤ negl(λ).

Proof. The proof of this claim follows directly from the Phi-Hiding assumption. Suppose there exists a PPT
adversary A such that |Adv2A(λ) − Adv3A(λ)| = ǫ. Then there exists a PPT reduction algorithm B that
breaks the Phi-Hiding assumption with advantage ǫ. The reduction algorithm first receives (N, e) from the
Phi-Hiding challenger. It then receives a constraint key query u from A. B chooses 2n integers vi,b ← ZN ,
h ← Z∗

N and extractor seed s. It sends (N, e, {vi,b}, he, s) to A. The adversary sends its challenge input x
such that Pu(x) = 1. The reduction algorithm then computes the terms ci,b as in hybrids H2 and H3, sets
t =

∏
ci,xi

, computes y0 = Ext(ht, s), chooses y1 ← {0, 1}, bit b← {0, 1} and sends yb to A. The adversary
then sends its guess b′, and if b = b′, B guesses that e divides φ(N), else it guesses that gcd(e, φ(N)) = 1.

Clearly, if N are derived from RSA(ℓRSA), then B simulates hybrid H2, else it simulates H3. Therefore,
the advantage of B in the Phi-Hiding game is equal to ǫ.

Finally, we will show that any adversary A has at most negligible advantage in hybrid H3. This step will
be information theoretic. We would like to point out that in the following argument we will use complexity
leveraging, but since it is a statistical argument, thus our reduction to the Phi-Hiding assumption is still
polynomial.

Claim 6.4. For any adversary A, Adv3A(λ) = negl(λ).

Proof. Let us first consider a modified hybrid experiment H ′
3. This experiment is similar to H3, except for

two changes. First, the challenger guesses the challenge input at the start of the experiment. Let x′ be the
challenger’s guess. Secondly, it alters the PRF evaluation at the challenge input.

3. The adversary sends its challenge input x ∈ {0, 1}n such that Pu(x) = 1.

If x′ 6= x, the challenger aborts.

Else, the challenger computes ci,b = vi,b · e+ 1 if ui = b ∨ ui = ⊥, else ci,b = vi,b · e .

It then computes t =
∏

ci,xi
.

Let {h1, . . . , he} denote the eth roots of y = he. The challenger chooses j ← [e], sets y0 = Ext(ht
j , s)

and y1 ← {0, 1}. Finally, it chooses a bit b← {0, 1} and sends yb.

4. The adversary sends its guess b′ and wins if b = b′ and x′ = x.

Note that if an adversary has advantage ǫ in H3, then it has advantage ǫ/2n in H ′
3. In particular, the

adversary’s advantage does not decrease if we use a random eth root of y = he for computing the PRF
evaluation on x. Let ǫ′ denote the advantage of A in H ′

3. We will show that ǫ′ ≤ 1/22n by constructing a
reduction algorithm B that uses A to break the (information theoretic) security of Ext.

The reduction algorithm B first receives the constrained key query u from A. It chooses x′, e← [2ℓRSA/5],
N ← RSAe(1

ℓRSA), {vi,b} and h. Let {hi}i≤e denote the eth roots of y = he. Let X denote the following
distribution: choose j ← [e], compute ci,x′

i
= 1 + vi,x′

i
· e, set t =

∏
i ci,x′

i
and output ht

j . The reduction
algorithm sends the distribution X to the extractor challenger, and receives (γ, s) from the challenger. It

30

sends (N, e, {vi,b}, y = he, s) to A, and then receives the challenge input x. If x′ 6= x, the reduction algorithm
aborts, else it sends γ to A. Depending on the adversary’s final guess, it guesses whether γ is the extractor
evaluation or a truly random bit.

First, we will argue that the entropy of distribution X is at least log e. Note that t = 1 + e · t′ for some
integer t′, and therefore ht

j = hj · yt
′

. Since y, t′ are already fixed, it follows that the distribution X has
min-entropy log(e) = ℓRSA/5. Note that it is important that we guessed the challenge input at the start of
the game because otherwise we could not claim that the min-entropy of X is at least ℓRSA/5.

Using the strong extractor guarantee, it follows that ǫ′ ≤ 1/22n. Hence, we can conclude that the
advantage of A in H3 is at most 1/2n, which is negligible in λ.

Acknowledgements

We give a large thanks to David Zuckerman for helpful discussions regarding the error correcting code
described in Section 5.3.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In CRYPTO, pages 595–618,
2009.

[Ale03] Michael Alekhnovich. More on average case vs approximation complexity. In Foundations of
Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, 2003.

[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In
CRYPTO, pages 443–459, 2004.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In PKC, pages 501–519, 2014.

[BGJS16] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Verifiable functional
encryption. In Advances in Cryptology – ASIACRYPT 2016: 22nd International Conference on
the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part II, 2016.

[BGJS17] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. A note on vrfs from
verifiable functional encryption. Cryptology ePrint Archive, Report 2017/051, 2017. http:

//eprint.iacr.org/2017/051.

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-indistinguishable proofs.
Cryptology ePrint Archive, Report 2017/018, 2017. http://eprint.iacr.org/2017/018.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical
hardness of learning with errors. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 575–584, 2013.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil Vadhan. Derandomization in cryptography. SIAM J.
Comput., 2007.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability from in-
distinguishability obfuscation. In Theory of Cryptography, pages 401–427. Springer Berlin Hei-
delberg, 2015.

31

http://eprint.iacr.org/2017/051
http://eprint.iacr.org/2017/051
http://eprint.iacr.org/2017/018

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from standard
lattice assumptions - or: How to secretly embed a circuit in your PRF. In Theory of Cryptography
- 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015,
Proceedings, Part II, pages 1–30, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
ASIACRYPT, pages 280–300, 2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In CRYPTO, 2014.

[CM14] Melissa Chase and Sarah Meiklejohn. Déjà q: Using dual systems to revisit q-type assumptions.
In EUROCRYPT, pages 622–639, 2014.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information re-
trieval with polylogarithmic communication. In Advances in Cryptology - EUROCRYPT ’99,
International Conference on the Theory and Application of Cryptographic Techniques, Prague,
Czech Republic, May 2-6, 1999, Proceeding, pages 402–414, 1999.

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages 283–293, 2000.

[Dod02] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. In YvoG.
Desmedt, editor, Public Key Cryptography PKC 2003, volume 2567 of Lecture Notes in Computer
Science, pages 1–17. Springer Berlin Heidelberg, 2002.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and
keys. In Proceedings of the 8th International Conference on Theory and Practice in Public Key
Cryptography, PKC’05, pages 416–431, Berlin, Heidelberg, 2005. Springer-Verlag.

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. In CRYPTO, pages 513–530, 2013.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In STOC,
pages 416–426, 1990.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,
2013.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (ex-
tended abstract). In FOCS, pages 464–479, 1984.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In Pro-
ceedings of the twenty-first annual ACM symposium on Theory of computing, 1989.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge.
J. ACM, 59(3):11, 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

[HJ16] Dennis Hofheinz and Tibor Jager. Verifiable random functions from standard assumptions. In
Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part I, pages 336–362, 2016.

[HKW14] Susan Hohenberger, Venkata Koppula, and Brent Waters. Adaptively secure puncturable pseu-
dorandom functions in the standard model. IACR Cryptology ePrint Archive, 2014:521, 2014.

32

[HOR15] Brett Hemenway, Rafail Ostrovsky, and Alon Rosen. Non-committing encryption from Φ-hiding.
In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I, pages 591–608, 2015.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In EUROCRYPT, pages 201–220, 2014.

[HW10] Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large input
spaces. In EUROCRYPT, pages 656–672, 2010.

[Jag15] Tibor Jager. Verifiable random functions from weaker assumptions. In Yevgeniy Dodis and
JesperBuus Nielsen, editors, Theory of Cryptography, volume 9015 of Lecture Notes in Computer
Science, pages 121–143. Springer Berlin Heidelberg, 2015.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Commitments and effi-
cient zero-knowledge proofs from learning parity with noise. In Proceedings of the 18th Inter-
national Conference on The Theory and Application of Cryptology and Information Security,
ASIACRYPT’12, pages 663–680, Berlin, Heidelberg, 2012. Springer-Verlag.

[KMP15] Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Simple chosen-ciphertext security from low-
noise LPN. IACR Cryptology ePrint Archive, 2015:401, 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegat-
able pseudorandom functions and applications. In ACM Conference on Computer and Commu-
nications Security, pages 669–684, 2013.

[Lys02] Anna Lysyanskaya. Unique signatures and verifiable random functions from the dh-ddh sepa-
ration. In Proceedings of the 22Nd Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’02, pages 597–612, London, UK, UK, 2002. Springer-Verlag.

[MM11] Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of
LWE search-to-decision reductions. In Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 465–
484, 2011.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput., 37(1):267–302, April 2007.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In In Proc. 40th
IEEE Symposium on Foundations of Computer Science (FOCS, pages 120–130. IEEE, 1999.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random func-
tions. J. ACM, 51(2):231–262, 2004.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
October 1994.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 333–342, 2009.

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939,
2015. http://eprint.iacr.org/.

33

http://eprint.iacr.org/

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 84–93, 2005.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[Sha83] Adi Shamir. On the generation of cryptographically strong pseudorandom sequences. ACM
Trans. Comput. Syst., 1(1):38–44, 1983.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475–484, 2014.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114–127, 2005.

A Constrained Unpredictable Functions from RSA Assumption

The PRF key consists of a RSA modulus, its factorization, 2n integers and a random group generator h. The
PRF evaluation on an n bit strings is performed as follows: first choose n out of the 2n integers depending
on the input, compute their product and then output this product in the exponent of h.

• Setup(1λ): The setup algorithm takes as input the security parameter λ. It first generates RSA modulus
N = pq, where p, q are primes of ℓRSA/2 bits each. Next, it chooses 2n integers ci,b ← Zφ(N) for i ≤ n,

b ∈ {0, 1} and h← Z∗
N . It sets the master PRF key as K =

(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h

)
.

• Constrain(K,u ∈ {0, 1,⊥}n): The constrain algorithm takes as input the master PRF key K =
((N, p, q), {ci,b}i,b, h) and constraint u ∈ {0, 1,⊥}n. It first chooses an integer e ∈ Z∗

φ(N) and com-

putes, for all i ≤ n, b ∈ {0, 1},

vi,b =

{
(ci,b − 1) · e−1 mod φ(N) if ui = b ∨ ui = ⊥
ci,b · e−1 mod φ(N) otherwise.

It sets the constrained key as Ku = (N, u, e, {vi,b}i,b, he).

• Evaluate(K,x ∈ {0, 1}n): The evaluation algorithm takes as input a PRF key K (which could be either
the master PRF key or constrained PRF key) and an input string x ∈ {0, 1}n.
If K is a master PRF key, then it can be parsed as K =

(
(N, p, q), {ci,b}i≤n,b∈{0,1}, h

)
. The evaluation

algorithm computes t =
∏

i≤n ci,xi
and outputs ht.

If K is a constrained key, then it can be parsed as K =
(
N, u, e, {vi,b}i≤n,b∈{0,1}, g

)
. Recall g is set to

be he. The evaluation algorithm first checks if Pu(x) = 0. If not, it outputs ⊥. Since Pu(x) = 0, there
exists an index i such that ui 6= ⊥ and ui 6= xi. Let i

∗ be the first such index. For all i 6= i∗, compute
wi,b = vi,b · e + 1 if ui = b ∨ ui = ⊥, else wi,b = vi,b · e. Finally, set wi∗,xi∗

= vi∗,xi∗
and compute

t′ =
∏

wi,xi
. Output gt

′

.

Theorem A.1. If RSA assumption (Assumption 6) holds, then the above construction is a secure single-key
no-query secure constrained unpredictable function for admissible hash compatible constraint family as per
Definition 2.10.

Correctness. The proof of correctness is identical to that provided for correctness of constrained PRF in
Section 6.2.

34

Security. If Pu(x) = 1, then there exists no i such that vi,xi
= ci,xi

· e−1. As a result, suppose there exists
an adversary A that can win the single-key no-query constrained unpredictable function security game. Then
we can use A to break the RSA assumption. We will prove security via a sequence of hybrid experiments.
The idea is to set he to be the RSA challenge. At a high level, if the adversary can win the unpredictability
game (i.e, correctly output h

∏
ci,xi at point x such that Pu(x) = 0), then it must have computed the eth

root of he.
We will now formally define the hybrids.

Hybrid H0: This corresponds to the real security game.

1. The adversary A sends constrained key query u ∈ {0, 1,⊥}n.

2. The challenger first chooses primes p, q and sets N = pq. Next, chooses 2n uniformly random integers
ci,b ← Zφ(N), exponent e ← Z∗

φ(N) and h ← Z∗
N . It sets vi,b = (ci,b − 1) · e−1 if ui = b ∨ ui = ⊥, else

vi,b = ci,b · e−1.

The constrained key for u is set to be Ku = (N, u, e, {vi,b}, he). The challenger sends Ku to A.

3. The adversary sends its challenge input x ∈ {0, 1}n as well as its guess y ∈ Z∗
N such that Pu(x) = 1.

The adversary wins if y = h
∏

ci,xi .

Hybrid H1: This experiment is identical to the previous one, except instead of first choosing ci,b and then
defining vi,b using the ci,b values, the challenger chooses the vi,b values uniformly at random and then defines
ci,b accordingly. Also, the vi,b values are chosen from ZN instead of Zφ(N). Since φ(N) = (p− 1)(q− 1), any
element chosen uniformly at random from ZN is an element of Zφ(N) with overwhelming probability. Note
that since the ci,b values are uniformly random and gcd(e, φ(N)) = 1, these two experiments will negligibly
close.

2. The challenger first chooses primes p, q and sets N = pq. Next, chooses 2n uniformly random integers
vi,b ← ZN , exponent e← Z∗

φ(N) and h← Z∗
N .

The constrained key for u is set to be Ku = (N, u, e, {vi,b}, he). The challenger sends Ku to A.

3. The adversary sends its challenge input x ∈ {0, 1}n as well as its guess y ∈ Z∗
N such that Pu(x) = 1.

The adversary wins if y = h
∏

ci,xi , where ci,b = vi,b · e+ 1 if ui = b ∨ ui = ⊥, else ci,b = vi,b · e.

Analysis. We will now show that any PPT adversary has negligible advantage in each of the hybrid
experiments. For any adversary A, let AdviA(λ) denote the advantage of A in hybrid experiment Hi with
security parameter λ.

Claim A.1. For any adversary A, |Adv0A(λ)− Adv1A(λ)| ≤ negl(λ).

Proof. The proof of this claim is identical to that of Claims 6.1 and 6.2.

Claim A.2. Assuming RSA assumption holds, for any PPT adversary A, Adv1A(λ) = negl(λ).

Proof. The proof of this claim follows directly from the RSA assumption. The following analysis is identical
to that in [HSW14, Lemma 8].

Suppose there exists a PPT adversary A such that Adv1A(λ) = ǫ. Then there exists a PPT reduction
algorithm B that breaks the RSA assumption with advantage ǫ. The reduction algorithm first receives
(N, e, g) from the RSA challenger. It then receives a constraint key query u from A. B chooses 2n integers
vi,b ← ZN . It sends (N, u, e, {vi,b}, g) to A. The adversary sends its challenge input x and guess y such that
Pu(x) = 1.

Since Pu(x) = 1, we know that for all i we have gcd(e, ci,xi
) = 1 as for all i, ci,b = vi,b · e+ 1. Therefore,

gcd(e,
∏

ci,xi
) = 1. Following Shamir’s theorem [Sha83], the attacker applies the Euclidean Algorithm to

35

obtain integers α and β such that α · e + β ·∏ ci,xi
= 1. Therefore, since ye = g

∏
ci,xi , it sets h = gα · yβ ,

and we have that he = gαe+β
∏

ci,xi = g. If y was a correct guess, then this value h is a solution to the RSA
challenge.

Clearly, B simulates hybrid H1 for the adversary. Therefore, the advantage of B in the RSA game is
equal to ǫ. Thus, the lemma follows.

36

	Introduction
	Technical Overview
	Concurrent Work

	Preliminaries
	Verifiable Random Functions
	Non-Interactive Witness Indistinguishable Proofs
	Perfectly Binding Commitments (with no setup assumptions)
	Admissible Hash Functions
	Constrained Pseudorandom and Unpredictable Functions
	Strong Extractors
	Lattice Preliminaries

	Cryptographic Assumptions
	Learning with Noise (LWE)
	Learning Parity with Noise (LPN)
	Factoring Based Assumptions
	RSA Assumption and Shamir's Lemma
	Phi-Hiding Assumption

	npower DDH Assumption

	Constructing Verifiable Random Functions
	Construction
	Correctness, Unique Provability and Pseudorandomness
	Indistinguishability of Hybrid Games
	Selectively-Secure VRFs

	Perfectly Binding Commitment Schemes
	Construction from Learning with Errors
	Computational Hiding

	Construction from Learning Parity with Low Noise
	Computational Hiding

	Construction from Learning Parity with Constant Noise

	Constrained PRFs for Admissible Hash Compatible Constraints
	Constrained PRFs from npower DDH Assumption
	Constrained PRFs from Phi-Hiding Assumption

	Constrained Unpredictable Functions from RSA Assumption

