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Abstract  
Decision-making underpins many important facets of our lives. Here, we 
assessed if a general ability factor underpins decision-making abilities. Using 
factor analysis of 32 decision-making measures in 830 adolescents and young 
adults, we identified a common factor we refer to as `decision acuity’ that was 
distinct from IQ and reflected advantageous decision-making abilities. Decision 
acuity decreased with low general social functioning and aberrant thinking. 
Crucially, decision acuity and IQ had dissociable neural signatures in terms of 
resting-state functional connectivity involving specific neural networks. Finally, 
decision acuity was reliable and its relationship with functional connectivity was 
stable when measured in the same individuals 18 months later. We conclude 
that our behavioural and brain data demonstrate a new cognitive construct 
encapsulating ability to perform decision-making across distinct domains, and 
that the expression of this construct may be important for understanding 
psychopathology. 
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A generic decision-making ability predicts psychopathology 
in adolescents and young adults and is reflected in distinct 

brain connectivity patterns   

Introduction  
Decision-making abilities are important for economic performance and 
social adaptation, and a computational characterization of decision-making 
processes is likely to advance the understanding of psychiatric disorders 
(Scholl & Klein-Flügge, 2018) . Yet, unlike traditional cognitive constructs 
such as intelligence, the distribution and covariation of decision-making 
characteristics in the population is unknown and the reliability of 
behavioral tasks typically used to measure them has been questioned 
(Brown et al., 2020; Hedge et al., 2020) . Likewise, we know little about 
the neural underpinnings of decision-making during adolescence and early 
adulthood, a crucial period for brain maturation (Giedd, 2004; Whitaker et 
al., 2016). Advancing our understanding here is rendered quite important 
by the fact that the bulk of psychopathology emerges during adolescence 
and early adulthood (Paus et al., 2008) .  
 
Decision-making involves an interplay of multiple cognitive abilities 
needed to evaluate available options and settle on a course of action 
(Kable & Glimcher, 2009; Phelps et al., 2014) . Reinforcement-learning has 
helped characterize the computational and neurobiological processes by 
which individuals evaluate options (Dayan & Daw, 2008; Sutton & Barto, 
1998). This literature is often framed in terms of model-based and 
model-free evaluations (Daw et al., 2005; Dolan & Dayan, 2013) . In the 
former, the value of different actions is calculated prospectively based on 
the goals and actions that will lead to these goals. In contrast, the latter 
involves learning the value of actions by associating them with the value 
of experienced outcomes. 
 
The relative importance of different evaluation systems is an important 
individual difference, likely to be trait-like at least in part. Importantly, 
model based and model free approaches trade off at different levels in 
different individuals  (Eppinger et al., 2017; Kool et al., 2017) . Similarly, 
the impact of Pavlovian heuristics, that is, the propensity to attach value 
to specific actions by mere association with perceived features of a 
context, also varies across individuals (de Boer et al., 2019; Guitart-Masip 
et al., 2012; Moutoussis et al., 2018). Individuals also differ with respect 
to other factors affecting the evaluation of options, for example, in their 
aversion to variability of outcomes for an action rather than its mean 
outcome (Christopoulos et al., 2009; Payzan-LeNestour et al., 2013). 
Similarly, individuals balance the need to actively collect rewards against 
the risks of potential dangers in the environment (Bach et al., 2020; Loh 
et al., 2017; O’Neil et al., 2015). In the temporal domain, individuals 
balance a need to exploit known choices against uncertainty of exploring 
unknown ones (Badre, Doll, Long, & Frank, 2012; Sutton & Barto, 1998). 
Finally, understanding of intentions and emotions of others has a big 
impact when making decisions in social contexts (King-Casas et al., 2008; 
Moutoussis, Dolan, & Dayan, 2016). 
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Although fundamental decision-making characteristics are likely to be 
largely distinct, we hypothesised that they would also be subject to 
covariation in the population. In this frame of reference, shared variance 
along latent dimensions is analogous to the structure of intelligence, 
where a cornucopia of abilities covaries with latent dimensions such as 
general and domain-specific intelligence (Van Der Maas et al., 2006). We 
hypothesised that the main constructs influencing performance across 
distinct instances of decision-making would include sensitivity to gains and 
losses, the extent to which model-based approaches dominate choice 
evaluation, an overall propensity to take risks, and an ability to make 
good social judgements.  
 
To assess dimensions of decision-making ability, we examined a battery of 
seven decision-making tasks (table 1), administered to 830 14-24 year 
olds sampled from a pool of about 2400 young people living in the 
community in England (Kiddle et al., 2017). We used computational 
modelling and key descriptive statistics to extract component measures of 
decision-making (Bach et al., 2014; Fett et al., 2012; Moutoussis, Bentall, 
El-Deredy, & Dayan, 2011; Moutoussis et al., 2018, 2016; Rigoli et al., 
2016; Shahar, Hauser, et al., 2019). We then derived latent cognitive 
constructs underlying decision-making across tasks, by submitting the 
component measures to factor analysis (see Methods) and assessed their 
reliability using the data of 571 participants that performed the 
decision-making battery a second time on a follow up 18 months apart on 
average. Next, we characterised the relationship between the inferred 
latent cognitive constructs and external measures such as age, IQ, and 
mental health characteristics. Here, we hypothesized that latent 
dimensions of decision-making would correlate with self-reported 
psychological dispositions and mental health symptoms. To test this latter 
hypothesis, we utilised participants' derived scores for both general and 
specific factors of dispositions (Polek et al., 2018) and mental health 
symptoms (St Clair et al., 2017). 
 
Crucially, we also characterised the neural circuitry underpinning the 
latent decision-making factors. To achieve that, we analysed functional 
connectivity from resting-state fMRI data (rsFC), providing a metric of 
coupling between blood-oxygen-level-dependent (BOLD) time series from 
different brain regions or networks (nodes). Patterns of rsFC are known to 
behave to a large degree as dispositions (Finn et al., 2015) and predict a 
subject's cognitive abilities in other domains (Dubois, J., Galdi, P., Lynn, 
P.K., & Adolphs, R., 2018; Kong et al., 2018; Li et al., 2019; Rosenberg et 
al., 2015; Smith et al., 2015). We thus asked which connectivity networks 
predict latent decision-making factors and whether the identified 
connectivity networks were stable over time. 
  
We found evidence of a single dimension of covariation in the population            
to which multiple decision-making tasks contributed. This dimension,        
which we term 'decision acuity', reflected speed of learning, ability to heed            
cognitively distant outcomes, and low decision variability. It showed an          
acceptable reliability much higher than typical decision-making tasks        
(Moutoussis et al., 2018) and was associated with distinct patterns of           
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rsFC. Finally, decision acuity was distinct from IQ, as it had a distinct             
functional connectivity signature and was differentially related to        
psychological dispositions and symptoms. 
 

Results 

'Decision acuity' is an important dimension of decision-making 
A total of 830 young people aged 14-24 were tested with a battery of              
tasks assessing fundamental components of decision-making. 349 among        
them underwent brain functional magnetic resonance imaging at rest, on          
the same day as cognitive testing, to assess functional connectivity.          
Scanned participants had no history of neuropsychiatric disorder and were          
confirmed to be healthy on SCID interview. The Methods section and           
online Supplement provide further detail. 
 
The decision-making tasks included in the cognitive task battery are          
described in table 1. Conceptual decision-making constructs overlapped        
across tasks in the battery, although each task also had a unique focus.             
Thus we expected participants to show how much they cared about           
outcomes (reward sensitivity) in almost all tasks. In a similar vein, we            
expected participants engaging in more sophisticated planning to show         
increased model-basedness (table 1, task F), better information-gathering        
(task E), and less temporal discounting (task D). Likewise, we expected           
participants more capable in interpersonal decision-making to learn more         
from others (task D) and invest more in benign partners (task F). Finally,             
we expected those showing excessive risk tolerance to avoid hazards less           
(task B) and to be less economic risk-averse (esp. in task C). In all, we               
obtained 32 decision-making measures which we subjected to factor         
analyses. See Methods for details of the factor-analytic approach,         
including dimensionality estimation and stability analyses. 

 
 

Table 1: Cognitive task battery. 

Task (with key reference) Key constructs assessed Key individual parameters and descriptives 
measures. 

A. Go-NoGo task 
(Guitart-Masip et al., 
2012) 

Pavlovian biases, i.e. 
propensity to engage in action 
in order to obtain rewards and 
to abstain from action to avoid 
losses; Motivational power of 
outcomes; Instrumental 
learning rate in the appetitive 
and aversive domains. 

1. Pavlovian Bias; 

2.-3. Reaction times for action choices in the 
context of threat vs. opportunity. 
4. Sensitivity to outcomes. 
5. General bias for action rather than 
non-action; 
6. Motivation-independent, 'irreducible', 
variability in decision-making; 
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7.-8. Learning rates in the appetitive and       
aversive contexts. 

B. Approach-Avoidance 
conflict task 
(Bach et al., 2014) 

Willingness to expose oneself 
to different levels of risk for 
the sake of amassing 
rewards. 

9.-11. Factor-analytic scores summarizing 
variance over a comprehensive set of 
behavioural measures in the task. 
Approximately corresponding to sensitivity to 
overall level of threat, sensitivity to the time 
dependency of threat, and overall 
performance. 

C. Roulette task 
(Symmonds et al., 2011) 
 
(NB: administered at 
baseline only) 
 

Baseline taste for gambling 
Risk-avoidance (preference 
for outcome distributions of 
low variance). 

12. Overall preference for gambling over 
known returns. 
13. Preference weight for variance, compared 
to the mean, of an outcome distribution, 
named 'Economic risk preference'; 
14. Effect of outcome distribution asymmetry 
(skewness) on preferences. 
15. Sensitivity to expected value of 
outcomes. 

D. Interpersonal- 
Discounting task 
(Moutoussis et al., 2016) 

Baseline inter-temporal 
discounting; shift in 
discounting preferences upon 
exposure to peers' 
preferences. 

16. Basic hyperbolic temporal discounting 
coefficient; 
17. Relevance of others' observed 
preferences to the self; 
18. Discounting taste uncertainty, i.e. 
uncertainty about one's own tastes in this 
domain. 
19. Decision variability over choosing for 
others  
20. Irreducible decision noise. 

E. Information Gathering 
task 
(Moutoussis, Bentall, 
El-Deredy, & Dayan, 
2011) 

Assessment of whether future 
decisions will on balance be 
more advantageous if one 
gathers more information. 

21. Information Sampling noise, which 
determines not only decision variability but 
also effective depth of planning. 
22. Subjective cost of every piece of 
information asked for when experimenter 
imposes no such costs explicitly; 
23.-24. Ditto if a fixed, external cost-per-step 
is imposed. 

F. Multi-round 
Investor-Trustee task 
(Fett et al., 2012) 

Overall strategies used to 
elicit cooperation and avoid 
being exploited by one's 
anonymous, task partner. 

25. Initial trust, i.e. the amount given by the 
investor to the Trustee before they have any 
specific information about them. 
26. Cooperativeness: Average degree to 
which Investor and Trustee tended to 
respond to reductions (or increases) in each 
other's contributions in kind. 
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27. Responsiveness: Average magnitude of 
responding to the partner’s change in 
contribution. 

G. Two-Step task 
(Daw et al., 2011) 

Strength of habitual 
('model-free') and 
goal-directed ('model-based') 
decision-making 

28. Goal-directedness: tendency to shift in 
decisions as a consequence of a different 
decision being more advantageous according 
to the transition probabilities inherent in the 
task. 
29. Learning rate 
30. Perseveration tendency 
31. Reward sensitivity 
32. Eligibility trace (propensity of learning to 
affect not just the current state but also 
others related to it) 

 
 
Working with the full battery and the larger, baseline sample, we           
discerned four stable decision-making factors, but only the first loaded on           
measures from multiple tasks. We named this factor 'decision acuity' or d,            
as it loaded negatively on decision variability measures, especially         
decision temperature, and loaded positively on measures contributing to         
profitable decision-making, such as low temporal discounting and faster         
learning rates (Figure 1 and supplemental table S1). Thus, participants          
with high d had low decision variability in economic-risk,         
information-gathering, Go-NoGo and Two-Step tasks and had fast reaction         
times and high learning rates in the Go-NoGo task. Note that a decision             
temperature parameter can always be re-written as the inverse of reward           
(and/or loss) sensitivity one. Hence the prominent role of         
negatively-loading temperature parameters in d supported our a priori         
hypothesis that reward sensitivity constitutes an important shared        
characteristic across tasks. Still in the baseline sample, we confirmed that           
d correlated with profitable decision-making by estimating a measure of          
aggregate task performance which was based on net points won across           
tasks, and separate from the components of d (Pearson r=0.50, p           
<1e-10; see Supplement part C for details). Remarkably, d predicted this           
aggregate measure of performance independently from IQ, whereas most         
of the effect of IQ on performance depended on its shared variance with d              
(performance in tasks and d sharing common-method variance being a          
caveat here). 
 
The other three factors clearly addressed within-task behaviours, rather         
than hypothesized global decision-making constructs and were thus of         
peripheral interest here. The second selected the Delegated        
Inter-temporal Discounting task (D.), the third the Information Gathering         
task (E.) and the fourth the Economic Risk preference task (C; Figure S2).             
Over all factors, constituent cognitive measures showed high uniqueness         
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scores, as expected from each task being designed to have a unique            
focus. 22 of the 32 measures had uniqueness > 80% (Figure 1B).  

Decision Acuity increased with age, follow-up and IQ 

We first examined how d depended on age, both across and within            
participants. Linear mixed effects (LME) modelling over baseline and         
follow-up showed a strong fixed-effect dependence on age (beta=0.24,         
SE=0.022, p ~ 0.0 (undetectable)). d was stable from baseline to           
follow-up, although slightly less so than WASI IQ (r=0.68, p~0.0 for d;            
0.77, p~0.0 for WASI IQ; 95% CI for the difference =-0.135 to -0.044;             
Fig. 1B) and improved with testing wave (effect size=0.38, p~0.0), but           
we found no evidence here or in subsequent analyses that its rate of             
increase depended on baseline age. We then confirmed that both matrix           
and vocabulary raw IQ (WASI) subscores robustly correlated with d (fixed           
effect betas = 0.088, 0.179, SE= 0.008, 0.018, p ~ 0.0). However            
inclusion of raw IQ scores did not affect the significance of age as a              
regressor (age beta=0.121, SE=0.020, p ~ 0.0). Therefore, not only did           
decision acuity increase with age in our sample, but so did the component             
that was independent of IQ abilities. IQ subscores and age together           
accounted for r2adj=0.31 of the variance in d at baseline.  

At baseline, d scores for males were higher than females, t-test p=8.6e-5,            
effect size = 0.27. However, if both IQ subscores and age were entered in              
LME, the correlation between d and self-reported sex was no longer           
significant. Thus, any uncorrected sex dependence is likely to be due to            
participant self-selection, that is, amongst males, higher IQ participants         
volunteered relative to amongst females. 

Mental health factors were specifically associated with Decision 
Acuity 

We next examined the relationship between d and psychological         
symptoms and dispositions, using scores from published studies of the          
community sample from whence our participants were sampled (Polek et          
al., 2018; St Clair et al., 2017). These studies have established that the             
best descriptions in the symptom and disposition domains were provided          
by bi-factor models, each comprising a superordinate 'general factor' and          
subordinate 'specific factors'. Symptoms were described by a general         
distress factor (a.k.a. 'p-factor', (Caspi et al., 2014) and 5 specific           
factors: Mood, Self-confidence, Worry, Aberrant thinking and Antisocial        
behaviour. Dispositions were described by a general social functioning         
factor and 4 specific factors, Social sensitivity, Sensation seeking, Effortful          
control, and Suspiciousness. 

d could be significantly predicted by symptoms and dispositions. To test           
for this, we used LME analysis with participant as random effect, two            
timepoints of symptoms and decision acuity, and one (baseline) score per           
participant of dispositions. We first regressed all six symptom scores and           
five disposition scores against d, allowing all to compete to explain           
variance. We found that amongst symptom scores, d was most strongly           
and negatively associated with the 'Aberrant thinking' specific factor,         
(p=0.0007, bz=-0.19, SE(bz)=0.051). No other symptom factors were        
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significant, (symptom general factor, 'Distress', p=0.82, others ranging        
from p=0.35 to 0.99). d significantly related to the general disposition           
factor, ‘general social functioning’ (p=0.0002, bz=0.36, SE(bz)=0.096). It        
did not relate to specific dispositions (p ranging from 0.47 to 0.80). We             
then additionally included raw IQ scores in the LME models. As expected,            
both raw IQ scores and age significantly predicted d, and model fit            
improved substantially (BIC = 4873 vs. 5083 without IQ). Inclusion of IQ            
reduced significance of ‘Aberrant thinking’, which draws on schizotypy and          
obsessionality, to trend level, p=0.074, bz=-0.10, SE(bz)=0.053) but if         
anything strengthened the significance of ‘Prosociality’ (p=0.0001,       
bz=0.32, SE(bz)= 0.084). All these analyses also accounted for age as           
above, and did not benefit from more complex models of age. 
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Figure 1.  A.  Decision Acuity common Factor over cognitive parameters, based on the 
validated 4-factor analysis applied to our whole sample. See supplement table S1 for the key 
to measure labels. The top half of variables load positively, while grey vertical lines give a 
visual indication of which measures are important, being the thresholds used for inclusion of 
variables in the confirmatory analyses B. Decision Acuity was strongly correlated between 
baseline and follow-up, as expected for a dispositional measure. Mauve is regression line, 
black is identity line. 
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Patterns of brain Connectivity are associated with Decision Acuity         
differently from IQ 
 
Out of 349 subjects who were scanned at baseline, we discarded baseline 
scans without acceptable imaging data quality (3), whose ME-ICA 
denoising did not converge (4), who had a diagnosis of depression (36) or 
who had excessive motion while scanning (8), leaving 298 baseline scans 
for analysis. A further three subjects were removed from analyses 
involving IQ scores as they did not complete the IQ tests, leaving 295 
subjects for analysis. A population-average parcellation of brain data was 
obtained using independent component analysis in our sample, resulting 
in 168 networks (nodes) within each of which activity was highly 
correlated (see Online Methods for details). Patterns of connectivity 
between nodes were then estimated as partial correlation values, or 
resting state functional connectivity (rsFC). We then used rsFC values as 
features in sparse partial least squares (SPLS) analyses, to predict 
decision acuity and composite IQ. We used cross-validation to prevent 
overfitting, and predictive accuracy was assessed as Pearson's correlation 
coefficient between true scores and values predicted by the model (Figure 
S4 and Online Methods for details).  
 
Scores for d predicted on the basis of functional connectivity, d pr, 
significantly correlated with measured d controlling for demographic and 
imaging-related covariates (see methods for details), r=0.145, p<10-6. 
The correlation between measured IQ and IQ predicted on the basis of 
rsFC using all connections was lower but also significant (r=0.092, 
p=9e-5). 
  
To interpret the neuroanatomical structure of the predictive model, we 
first partitioned the nodes into anatomically meaningful 'modules' using a 
community detection algorithm ( (Blondel et al., 2008); see Methods), and 
then asked how well each of these modules predicted d. The community 
detection algorithm clustered the nodes into modules based on the 
strength of their intrinsic connectivity into disjoint communities to some 
extent analogous to large-scale functional networks. As shown in figure 2, 
we obtained the following modules: anterior temporal cortex including the 
medial temporal lobe (ATC); frontal pole (FPL); frontoparietal control 
network (FPN); left dorsolateral prefrontal cortex (LDC); medial prefrontal 
cortex (MPC); orbitofrontal cortex, medial and lateral (OFC); opercular 
cortex (OPC); posterior cingulate cortex (PCC); posterior temporal cortex 
(PTC); right dorsolateral prefrontal cortex (RDC); subcortical (SUB); 
salience network (SAN); somatosensory and motor areas (SMT); visual 
regions (VIS). We fitted a different SPLS model to the subset of 
connections involving the nodes in each module, including both intra- and 
inter-modular connections.  
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Figure 2. Modules detected by the community structure algorithm. The 
168 nodes of the parcellation were clustered in 14 modules with high 
average rsFC among their nodes. ATC, anterior temporal cortex including 
the medial temporal lobe; FPL, frontal pole; FPN, frontoparietal control 
network; LDC, left dorsolateral prefrontal cortex; MPC, medial prefrontal 
cortex; OFC, orbitofrontal cortex, medial and lateral; OPC, opercular 
cortex; PCC, posterior cingulate cortex; PTC, posterior temporal cortex; 
RDC, right dorsolateral prefrontal cortex; SUB, subcortical; SAN, salience 
network; SMT, somatosensory and motor areas; VIS, visual regions.  
 
The correlation between measured and predicted d scores was significant 
for the FPN, MPC, OFC, OPC, PCC,SMT, and VIS modules after correction 
for multiple tests (Figure 3A, Table 2), with the strongest correlations for 
OFC, PCC and SMT. For the PCC and SMT modules, the correlation 
coefficients exceeded to a small degree the correlation for a model 
employing all possible connections. This can be explained as a result of 
feature selection. In the full model it is harder to select just the right 
features and protect against over-fitting, resulting in a greater penalty in 
predictive accuracy. On the other hand, the model trained only on a 
smaller set of features is less likely to overfit. This paradoxical increase in 
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accuracy for a model with less features is known to be stronger when the 
number of observations is small, relative to the number of features (Chu, 
Hsu, Chou, Bandettini, & Lin, 2012), which is the case in our dataset. The 
different modules comprised diverse numbers of nodes but there was no 
significant association between the number of model features and the 
correlation between observed and predicted scores ( d : r=0.356, p=0.193; 
IQ composite scores: r=-0.158, p=0.574).  
 
Out of 235 subjects who were scanned at follow-up, adhering to the same 
criteria as for the baseline data, we discarded those without acceptable 
imaging data quality (4), whose ME-ICA denoising did not converge (5), 
and who presented with excessive motion (3), leaving 223 subjects 
available for analysis. We applied the model trained on the baseline data 
to the follow-up data (see online methods) for the modules where the 
prediction was significant at baseline. Importantly, the prediction of a 
subject at follow-up did not involve their own rsFC baseline data (see 
online methods), as this would have inflated the estimate of predictive 
performance. The baseline model predicted significantly the follow-up d 
values based on the follow-up connectivity data when using either all the 
connections or those with networks in the FPN, MPC, OFC and SMT 
modules, controlling for demographic and imaging related covariates, and 
correcting for multiple tests (Figure 3B, Table 2).  
 
In order to assess whether d and IQ can be predicted by specific rsFC 
patterns, or alternatively whether both are underpinned by similar 
patterns of neural connectivity, we controlled for IQ the partial correlation 
coefficients between dpr and d, on top of the nuisance covariates previously 
included. In a complementary manner, we controlled for d the partial 
correlation between IQpr and IQ (on top of the nuisance covariates). After 
correction for IQ composite scores, and correcting for multiple 
comparisons, the correlation between d and dpr remained significant for 
OPC, PCC and SMT (Figure 3C, Table 2), suggesting that these modules 
reflect decision acuity over and above their relation to IQ. On the other 
hand, the correlation between IQpr and IQ was significant for OPC and 
PTC after controlling for d (Figure 3D, Table 2), suggesting that these 
modules reflect IQ over and above their relation to decision acuity. These 
analyses demonstrate that decision acuity and IQ have distinguishable 
and specific signatures in functional connectivity networks: decision acuity 
taps on the default mode, salience and sensorimotor networks, whereas 
IQ taps on the salience network but also on temporal networks associated 
with language processing..  
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Figure 3. Model predictive performance for each of the functional 
modules. A.  Coefficient for the correlation between observed d and dpr 
predicted by models trained on all connections, and the connections 
involving nodes in each module. B.  Correlation between observed d and 
dpr predicted by models trained on the baseline data. Only modules for 
which the prediction was significant at baseline are shown here. All the 
models included as covariates demographic and imaging-related factors 
(brain volume, scanning site, head motion; see Online Methods). C.  As in 
A., correlation between observed d and dpr, but here additionally 
correcting for IQ. D. Correlation between observed and predicted IQ, but 
correcting for imaging related factors and decision acuity. In all plots, the 
leftmost bar corresponds to the model which includes all connections. The 
whiskers indicate the intervals containing the lower 95 % probability mass 
for the null distribution, corresponding to one-tailed tests. * significant 
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uncorrected ** significant with FDR correction for the 15 tests. ATC, 
anterior temporal cortex including the medial temporal lobe; FPL, frontal 
pole; FPN, frontoparietal control network; LDC, left dorsolateral prefrontal 
cortex; MPC, medial prefrontal cortex; OFC, orbitofrontal cortex, medial 
and lateral; OPC, opercular cortex; PCC, posterior cingulate cortex; PTC, 
posterior temporal cortex; RDC, right dorsolateral prefrontal cortex; SUB, 
subcortical; SAN, salience network; SMT, somatosensory and motor 
areas; VIS, visual regions.  
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Table 2. Correlation coefficients between observed and predicted scores, 
corresponding to the plots in Figure 3. * significant uncorrected ** 
significant with FDR correction for the 15 tests. 
 
 
Discussion 
This, to our knowledge, is the first study characterising a distribution of 
core decision-making measures in an epidemiologically informed sample 
of adolescents and young adults and relating them to brain function. We 
found that decision-making performance could be described by a broad 
construct receiving contributions from multiple domains of cognition. We 
term this  'decision acuity', d. In our sample, d showed satisfactory 
longitudinal stability, increased with age and with IQ. d also had specific 
associations with mental health measures, over and above IQ. 
Importantly, decision acuity showed a temporally stable association with 
rsFC, involving networks known to be engaged by decision-making 
processes. Moreover, rsFC patterns associated with d and IQ were 
distinguishable and specific, despite showing some overlap. 
  
Decision acuity had an interpretable structure, conducive to good 
decision-making. It increased as decision variability lessened, evidenced 
by its loadings on decision-noise-like parameters across all the tasks that 
provided such measures. The most prominent such loadings were inverse 
temperature parameters, also known as reward sensitivities. By definition, 
high temperature (a.k.a. reduced reward sensitivity) agents care less 
about relevant outcomes. This supported our hypothesis that reward 
sensitivity loaded on an important common factor. However, d also 
received substantial contributions from measures that did not directly 
reflect reward sensitivity, but characterised good decision-making. These 
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included low temporal discounting, fast reaction times, high learning 
rates, baseline trust in others, low propensity for retaliation, low 
propensity to show a Pavlovian bias and low lapse rates. Such 
non-temperature constructs may also be linked to decision variability, 
albeit less directly.  

An interesting interpretation of this pattern is that lower-acuity 
participants may find it too costly to eliminate computational errors in the 
fast pace of many tasks. For example, the computations required to make 
decisions about outcomes far in the future may be hard to perform for 
low-d agents, resulting in discounting-like behaviour. Lapse rates may be 
understood as 'floor' error rates imposed by computational costs. Higher 
decision variability may also be driven by effective beliefs about the world, 
for example a belief that over-values exploration. If working out the 
correct action is too difficult, trial-and-error may be an alternative way to 
find answers, so this may be a compensatory or adaptation strategy in the 
face of limited cognitive resources. Overall, the contrast of noise with 
precision-enhancing measures in this factor is reminiscent of the 
association between low ability to reach goals and low policy precision in 
active inference (Friston et al., 2013). The agnostic derivation but 
interpretable nature of d can thus be seen as an example of data-driven 
ontology (Eisenberg et al., 2019). 

High decision acuity was associated with older age, increasing by 0.37 SD 
over the decade of 14 to 24 years of age, once raw IQ scores were 
accounted for. This is important as component parameters have been 
found to have weak or variable relationships with age in this same sample 
(Moutoussis et al., 2018, 2016). Developmentally,  d increasing with age 
may reflect a process whereby adolescents and younger adults get more 
confident with the outcome of their actions as they age. Next, d was 
associated with psychopathology over and above IQ,  specifically 
increasing with the self-assessed interpersonal competence (‘general 
social functioning factor’). d also decreased with schizotypy/obsessionality 
traits (‘Aberrant thinking’ factor), but this could be better explained by 
raw IQ scores. d explained a small proportion of the variance in 
psychopathology, as risk factors often do (Pearson et al., 2015). Overall, 
though related to IQ, d had distinct relationships with mental health 
measures.  

Decision acuity was also associated with specific, distributed patterns of 
resting-state brain connectivity. The whole brain, connectivity-based 
predictive model depended on connections spread across the entire brain, 
implying that d, like IQ, depends on more extensive systems than those 
typically observed for state-tapping tasks in functional imaging studies 
(e.g. medial prefrontal, dorsolateral prefrontal). Strikingly, the pattern of 
connections predicting d was structured, with connections involving nodes 
in FPN, MPC, OFC, OPC, PCC, SMT and VIS being most predictive of d, 
irrespective of age and sex. Furthermore, the models trained at baseline 
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on all the features, as well as those restricted on features within FPN, 
MPC, OFC and SMT, were also predictive of d at follow-up, demonstrating 
the stability over time of the relationship between rsFC in these modules 
and d.  
It is unsurprising that decision acuity could be predicted by connections 
involving MPC and OFC, as these regions are typically recruited by 
decision-making tasks (Garvert et al., 2015; Padoa-Schioppa & Assad, 
2006; Rushworth et al., 2011). Circuits involving these regions receive 
highly processed sensory information and support goal-directed behaviour 
by representing subjective value of stimuli and choices. The OFC also 
supports credit assignment during reward learning (Jocham et al., 2016; 
Walton et al., 2010) probably by representing the associations between 
stimuli and outcomes (Boorman et al., 2016; Padoa-Schioppa & Assad, 
2006; Stalnaker et al., 2018) . Finally, the OFC has also been suggested to 
support the representation of latent states necessary to navigate 
decision-making tasks (Schuck et al., 2016; Wilson et al., 2014) . 
Similarly, involvement of the PCC, FPN and SMT is not surprising. Activity 
in the posterior cingulate cortex has been observed during 
decision-making tasks and it has been suggested that the PCC monitors 
the environment to detect transitions to new states (Pearson et al., 2011) . 
Although the frontoparietal circuit has mainly been associated with 
performance of working-memory tasks (Murray et al., 2017) , it has been 
shown that working memory mechanisms contribute to learning in typical 
reinforcement learning tasks (Collins et al., 2017; Collins & Frank, 2018) . 
Finally, connections involving motor and somatosensory areas may 
contribute to adaptive decision-making. For example, in  our tasks, motor 
actions were orthogonalized with respect to choices, and recent work 
suggests that only the more able decision-makers successfully uncouple 
motor action and option choice (Shahar, Moran, et al., 2019). Hence, SMT 
connectivity may be important to achieve this decoupling. Similarly, active 
suppression of Pavlovian tendencies that can corrupt optimal 
decision-making may also involve optimal sensorimotor functioning 
(Cavanagh et al., 2013; Swart et al., 2018) .  
 

Our ability to predict decision acuity at baseline when controlling for IQ, as 
well as IQ when controlling for decision acuity, based on particular 
connectivity modules demonstrates that both constructs have specific 
signatures in rsFC. This demonstrates that decision acuity has a 
neurobiological substrate distinct from that of IQ and further validates the 
distinctiveness of their association with psychological measures. Although 
IQ absorbed the predictive ability of the connections within the FPN, the 
MPC, and OFC, decision acuity tapped on modules within the default mode 
(PCC), salience (OPC) and sensorimotor (SMT) networks independently of 
IQ. On the other hand, IQ tapped on the salience network (OPC) too, but 
also on temporal networks associated with language processing (PTC), 
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consistent with  the vocabulary subscale of IQ being heavily reliant on 
linguistic ability (Axelrod, 2002). Interestingly, connections within the 
OPC, which encompasses the insula, independently contributed to 
predicting both decision acuity and IQ at baseline. As part of the salience 
network, these regions may contribute to modulate the switching between 
internally and externally directed cognitions (Uddin, 2015). 
Decision acuity was related to the mental health indicator, ‘general social 
functioning’, independently from IQ. This suggests that differences in 
decision acuity may confer (or indicate) vulnerability to specific 
psychopathologies. Future studies can usefully build on these 
observations,  as rsFC data can be acquired quickly and does not impose 
cognitive demands on patients.  This endeavour can benefit from 
advances in computational modelling of cognitive and behavioural data 
(Huys, Maia, & Frank, 2016), improvements in imaging data collection, 
processing and modelling (Ciric et al., 2018; Kundu et al., 2017; Todd et 
al., 2016; Vidaurre, Smith, & Woolrich, 2017), and initiatives to acquire 
high quality large-scale datasets (Kiddle et al., 2017; Van Essen et al., 
2013).  

 
We acknowledge limitations of the present study. We had a retention rate 
between baseline and follow up of  70%. Although this is acceptable, it 
meant that our follow-up sample was smaller and we had reduced power 
to detect longitudinal effects. Although epidemiologically stratified, our 
sample was a volunteer one, introducing potential self-selection biases. 
Finally, the reliability and ecological validity of task-based measures would 
benefit from further improvement.  
 
Conclusion 
 
We describe a new cognitive construct, decision acuity, that captures          
global decision-making ability. High decision acuity prominently reflected        
low decision variability. Decision acuity showed acceptable reliability,        
increased with age and was associated with mental health symptoms          
independently of intelligence. Crucially, it was associated with distinctive         
resting-state networks, in particular in brain regions typically engaged by          
decision-making tasks. The association between decision acuity and        
functional connectivity was temporally stable and distinct from that of IQ.  
 
 

Methods 

Participants 
Participants were invited from a non-clinical community sample until 780          
were evenly recruited across 5 age bins (14-16 years,16-18 etc.) and two            
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sexes. Of these, 300 healthy participants were invited for MRI scanning.           
We supplemented this non-clinical sample with 50 young people recently          
diagnosed with DSM-5 major depressive disorder. The depressed cohort         
was excluded from MRI analyses reported here. The study was approved           
by the Cambridge Research Ethics Committee (12/EE/0250). All        
participants (and their parents, if less than 16 years old) gave informed            
consent to participate.  

Decision measures 
We used a task battey to assess fundamental aspects of decision-making, 
namely sensitivity to rewards and losses, attitudes to risk, inter-temporal 
and reflection impulsivity, pro-sociality and goal-directedness. The battery 
is presented in table 1 and described in more detail in the supplement. 
Good performance attracted proportionally greater fees in real money (see 
Supplement).  

Key measures were first extracted from each task according to published 
methodologies. 830 participants (including all scanned participants) 
yielded usable data across tasks. 
 
We were interested in whether common factors operated across domains 
of decision-making. We therefore pre-processed the data to reduce strong 
correlations among measures within-task, which would otherwise 
dominate the factor analysis, as is described in the Supplement. In total 
we formed 32 measures, listed in table 1 and detailed in the Supplement. 

Derivation, validation and psychometric correlates of Decision Acuity 
We tailored our analysis to test the hypothesis that around three 
dimensions of covariation would meaningfully load across decision-making 
measures, expecting reward sensitivity, risk preferences, 
goal-directedness and prosociality to be represented in these dimensions. 
We allowed, however,  the data to determine the number of factors in the 
model. We used an exploratory-confirmatory approach to establish the 
structure of the factor model using the baseline data. Then, we made use 
of the longitudinal nature of our sample to test the temporal stability and 
predictive validity of the key derived measure. 

Task measures at baseline only were randomly divided into a 'discovery' 
and 'testing' samples. N=416 participants were used for exploratory 
common factor analysis (ECFA) and 414 were used for out-of-sample 
testing. We found  loadings on the first ECFA factor to vary smoothly 
across all parameters, and the great majority of loadings to be lower than 
the conventional threshold of 0.4 ( Muthén & Muthén, 2008)  (cf. Figure 1). 
Therefore, for the out-of-sample confirmatory analysis, we allowed for all 
decision-making items to contribute, recognizing that individual item 
weights might be poorly estimated, but expecting that the resulting 
overall scores would be well estimated. We tested this by comparing (i) 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 22, 2020. ; https://doi.org/10.1101/2020.08.20.259697doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.259697
http://creativecommons.org/licenses/by/4.0/


 

discovery vs. test samples and (ii) purposeful half-splits of the population 
with respect to sex and age (see Supplement).  Overall, the exploratory 
analyses suggested that only one common factor,  - which we termed 
'decision acuity', d - was relevant to our study questions and that within 
the range of three to five factors, d scores were not sensitive to the exact 
number of factors. (see supplement). We thus opted for a 4-factor model 
for all subsequent analyses.  

 
We then tested whether decision acuity as a construct was stable with 
respect to (i) the random discovery/confirmation split (ii) median-split age 
and (iii) sex ( Supplement B). Finally, we tested for external validity of 
decision acuity in correlating with (iv) mental health scores for 
symptomatology and dispositions, using bifactor scores and (v) patterns 
of functional brain connectivity, as described in Results. 
 

MRI data acquisition 
MRI scans were acquired on three identical 3T whole-body MRI systems 
(Magnetom TIM Trio; VB17 software version; Siemens Healthcare): two 
located in Cambridge and one located in London. Reliability of the MRI 
procedures across sites has been demonstrated elsewhere (Weiskopf et 
al., 2013). Structural MRI scans were acquired using a multi-echo 
acquisition protocol with six equidistant echo times between 2.2 and 14.7 
ms, and averaged to form a single image of increased signal-to-noise ratio 
(SNR); TR = 18.70 ms, 1.0 mm isotropic voxel size, field of view (FOV) = 
256 x 256, and 176 sagittal slices with parallel imaging using GRAPPA 
factor 2 in anterior-posterior phase-encoding direction. Resting-state 
blood-oxygen-level dependent (BOLD) fMRI (rsfMRI) data were acquired 
using multi-echo acquisition protocol with three echo times (TE = 13, 31, 
48 ms), TR of 2420 ms, 263 volumes, 3.8 mm isotropic voxel size, 34 
oblique slices with sequential acquisition and a 10% gap, FOV = 240 x 
240 mm and matrix size = 64 x 64 x 34. The duration of the functional 
scan was approximately 11 minutes. 

 

Connectivity Analysis 
The rsfMRI data were denoised with multi-echo independent component 
analysis (ME-ICA) (Kundu et al., 2017). ME-ICA leverages the echo time 
dependence of the BOLD signal to separate BOLD-related from artifactual 
signal sources, like head motion. The functional images were normalized 
to MNI space by composing a rigid transformation of the average 
functional image to the participant’s structural image and a non-linear 
transformation of the structural image to the MNI template, and finally 
smoothed with a 5 mm full-width-at-half-maximum Gaussian kernel. 
Following (Smith et al., 2015), group-ICA was applied to the 
pre-processed fMRI baseline data to decompose it in 200 nodes, 32 of 
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which were identified as artefacts by visual inspection and excluded. The 
remaining 168 nodes are either confined brain regions or networks formed 
by regions where BOLD signal time-series are strongly correlated. Multiple 
spatial regressions against the group-ICA spatial maps were used to 
estimate time-series for each network and subject, for both baseline and 
follow-up scans. RsFC matrices (168 x 168 nodes) were then computed 
using partial correlation with limited L2 regularisation (Smith et al., 2011). 
All these preprocessing steps were conducted with the ME-ICA toolbox 
(https://afni.nimh.nih.gov/pub/dist/src/pkundu/README.meica) and the 
FMRIB Software Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl ). 
 
The obtained rsFC values were used as features in a sparse partial least 
squares (SPLS) model to predict two outcome measures of interest 
(decision acuity and IQ composite scores). SPLS ((Chun & Keleş, 2010); 
'spls' R library, https://cran.r-project.org/web/packages/spls/) is a 
multivariate regression model that simultaneously achieves data reduction 
and feature selection. It has application in datasets with highly correlated 
features and sample size much smaller than the total number of features, 
as was the case in the present study. SPLS models are governed by two 
parameters (number of latent components and a threshold controlling 
model sparsity) that were adjusted using a nested cross-validation 
scheme (i.e. using data in the training dataset only) with 10 folds 
(supplement Figure S4).  
 
Predicted scores were estimated by 20-fold cross-validation repeated 5         
times. For each training-testing partition we performed the following         
steps. To elucidate whether the predictions were driven by rsFC values           
independently of age, sex or covariates of no interest (see below), we            
fitted a linear model to the training dataset and regressed out from the             
target variable (in both training and testing datasets) age , sex and their             
interaction as well as brain volume, scanning site and head-motion-related          
parameters. Head motion is known to originate spurious correlations that          
bias connectivity estimates and therefore (besides the ME-ICA        
preprocessing explained above) we regressed out average framewise        
displacement (FD), a summary index of the amount of in-scanner motion           
(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), and the degrees of           
freedom resulting from the ME-ICA denoising, which may differ across          
subjects depending on how much nuisance variance is removed from their           
data. As an additional control for head motion, subjects whose mean FD            
was above 0.3 mm were not included in the analysis. We also            
standardized both training and testing data with respect to the mean and            
standard deviation of the training data (separately for each feature). As a            
first step to filter out uninformative features and speed up computations,           
only those significantly (p < 0.05) correlated with the outcome variable in            
the training dataset were entered in the SPLS model. We then used a             
bagging strategy where data were resampled with replacement 200 times          
and as many SPLS models were fitted to the resampled datasets, and            
their feature weights averaged to produce a final model. The purpose of            
this step was 1) to improve the generalizability of the final average model             
and 2) to allow estimation of the stability of the feature weights selected.             
The final, average model was used to compute the predicted scores for            
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the testing partition. The same procedure was repeated for all folds to            
obtain one predicted score for each subject, where the predicted score for            
each participant depended only on data from other subjects in the sample.            
These procedures were implemented with R ( https://www.r-project.org/)       
and MATLAB ( https://www.mathworks.com). 
 

Network node community structure 
To enhance our understanding of the anatomical distribution of the          
predictive connections, we performed a ‘virtual lesion’ analysis (Dubois, J.          
et al., 2018), which entails assessing the performance of the model when            
it is trained only on subsets of connections instead of the full ensemble.             
First, we partitioned the set of nodes into disjoint modules or communities            
(to some extent analogous to large-scale functional networks (Smith et          
al., 2009)) formed by nodes which displayed high connectivity among          
them but lower connectivity with nodes in other modules. We obtained the            
community structure directly from our dataset instead of relying on          
previous partitions that have been derived from adult connectomes (Ito et           
al., 2017; Power et al., 2011) (Ito et al., 2017; Power et al., 2011),              
because brain connectivity of adolescents and adults is known to differ           
(Fair et al., 2009).  
 
To produce the partition, we averaged the baseline rsFC matrices across           
participants and removed negative entries. The resulting matrix was         
submitted to the Louvain community detection algorithm for weighted         
graphs (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) and this         
partition was refined using a modularity fine-tuning algorithm (Sun,         
Danila, Josić, & Bassler, 2009). Since the algorithm is not deterministic, it            
was applied 100 times and the results gathered in a nodes x nodes             
consensus matrix that indicates the frequency by which the corresponding          
node pair was assigned to the same module. The consensus matrix was            
partitioned repeatedly until convergence. The algorithm depends on a         
parameter γ that controls the resolution (which determines the ensuing          
number of modules). We adjusted this parameter to maximize the          
normalized mutual information between solutions at different resolutions.        
The optimal value of γ ensures the most stable partitioning and in our             
dataset (γ=2.7) led to a solution with 14 modules, a number that yielded             
interpretable modules and is on par with the cardinality used in previous            
studies. These analyses are similar to those reported in (Geerligs,          
Rubinov, Cam-CAN, & Henson, 2015) and were performed with the Brain           
Connectivity Toolbox ( (Rubinov & Sporns, 2010),       
www.brain-connectivity-toolbox.net) for MATLAB. Having parcellated the      
connectome in the 14 modules, we trained the prediction model for each            
one of them using only connections implicating nodes in that module (i. e.             
either connections among nodes in the module or connections between          
nodes in the module and the rest of the brain). We employed the same              
module decomposition in the analysis concerning the follow-up dataset. 
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Predictive performance 
We assessed predictive performance as the Pearson correlation coefficient 
r between measured d and (cross-validated) predicted d (dpr), averaged 
across repetitions of the cross-validation splits. After Fisher 
transformation, the null distribution of r should follow a zero-centered 
Gaussian distribution. In order to appraise significance, we estimated the 
variance of this distribution by generating 30 random permutations of the 
target variable  (Winkler et al., 2016)  and repeating the model-fitting 
procedures mentioned above, separately for each fold. We then derived 
p-values for the observed r from the estimated null distribution. We 
assessed predictive performance for a model based on the full set of 
connections, as well as for models trained on the subsets of connections 
corresponding to the modules described in the previous subsection. 
To demonstrate that the relationships between connectivity and decision 
acuity were stable over time and replicate, we used the model estimated 
at baseline to predict d based on the follow-up rsFC data for modules that 
were significant at baseline. Given that the data at baseline and follow-up 
are not independent, we kept the same cross-validation fold structure in 
both datasets, so that the prediction of a subject at follow-up did not 
involve their own rsFC baseline data, as this would have inflated the 
estimates of predictive performance at follow-up. 

Connectivity patterns predictive of d vs IQ 
For imaging analyses, we derived a composite score of IQ by averaging            
standardized vocabulary and matrix IQ subscores, rather than using the          
standardized WASI score, because of two reasons. First, we wanted          
analyses involving both age and IQ to have a straightforward          
interpretation where IQ represents a measure of raw ability, as opposed           
to age-standardized ability, and explicitly test for age-dependence        
separately. Second, we found evidence (Results) that our sample was          
different from the original on which standardised scores were derived, and           
hence the standardisation procedure might be invalid. Next, we trained          
models both on the complete set of connections and the subsets           
corresponding to the individual modules to predict the IQ composite          
scores, as we had done previously to predict d, yielding IQpr, and assessed             
predictive performance for each of the modules separately. To compare          
the connectivity patterns that were predictive of d with those predictive of            
IQ, for each of the modules we assessed the partial correlation between d             
and dpr when controlling for IQ, and the partial correlation between IQ and             
IQpr when controlling for d. In all these analyses we corrected for age, sex              
and imaging-related confounds as above.  
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