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Abstract

Purpose The introduction of novel fuel and propulsion tech-
nologies, such as battery, (plug-in) hybrid and fuel cell electric
vehicles, and the need to combat the exhaust emission of local
and global pollutants from the passenger car fleet have en-
hanced the political interest in the vehicle purchase choices
made by private households and firms, and in how these
choices can be influenced through fiscal and regulatory pen-
alties and incentives.
Methods As a tool to understand and analyse such questions,
we have developed a generic nested logit model of automobile
choice, based on complete disaggregate vehicle sales data for
Norway for the period ranging from January 1996 until
July 2011. The data set contains 1.6 million vehicle transactions.
Results Being sensitive to changes in the vehicle purchase tax
and the fuel tax, the model discriminates well between various
fiscal policy scenarios. In using the model for such purposes,
one is greatly helped by the fact that the model distinguishes
between price changes due to taxation and those originating
from the manufacturing or marketing side.
Conclusions The strongly CO2 graduated vehicle purchase
tax, with exemptions granted for battery electric vehicles, is
shown to have a major impact on the average type approval

rate of CO2 emissions from new passenger cars registered in
Norway. The fuel tax also helps induce car customers to buy
low emission vehicles.

Keywords Nested logit . Passenger cars . Purchase tax .

Fiscal incentives . CO2 emissions

1 Introduction

Since the seminal papers by Lave and Train [24] and Manski
and Sherman [25], automobile demand and vehicle choice
have been the subjects of multiple studies by transport re-
searchers. Most studies (e. g., [3, 4, 8, 10, 21, 34]) are based
on disaggregate discrete choice modelling of household be-
haviour. But some are also based on aggregate sales data,
whereby one estimates total demand or market shares held
by various vehicle models (e.g., [1, 5, 14, 20, 22]). Common
to most of these studies is that their data sets and methodology
are too crude or too incomplete to allow for reliable predic-
tions of the car fleet composition under varying fiscal and
regulatory policy options. Some recent studies have, however,
come a long way towards modelling the complex, joint deci-
sion processes of vehicle choice and usage [6, 9, 18, 19, 28].

The introduction of novel fuel and propulsion technologies,
such as battery, (plug-in) hybrid and fuel cell electric vehicles,
and the need to combat the exhaust emission of local and
global pollutants from the passenger car fleet have enhanced
the political interest in the vehicle purchase choices made by
private households and firms, and in how these choices can be
influenced through fiscal and regulatory penalties and incen-
tives. In Norway, a large number of incentives have been
implemented over the last 10–12 years, most importantly a
steeply CO2-graduated vehicle purchase tax. These incite a
growing number of car buyers to prefer low and zero emission
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vehicles [13, 16]. In 2015, no less than 17% of all new auto-
mobiles registered in Norway were zero emission cars, almost
all of them battery electric vehicles (BEVs).

The Norwegian Parliament has adopted a non-binding tar-
get for the average type approval CO2 exhaust emission rate of
new passenger cars to be registered in Norway in 2020. The
target has been set at 85 gCO2/km, i. e. 10 gCO2/km lower
than the EU mandated target, which commits car manufac-
turers not to exceed 95 gCO2/km as averaged over all cars
sold in 2020/2021.

How can the continued use of fiscal incentives ensure that
this and subsequent – possibly sharpened – targets are
reached? Is it possible to fine-tune the vehicle purchase tax
so as to obtain desired market shares for certain, more envi-
ronmentally friendly vehicle types? If and when the fiscal
privileges currently enjoyed by BEVs are abolished, how
much will their market share drop? What kind of tax incen-
tives are needed in order for plug-in hybrid vehicles (PHEVs)
to obtain a certain share? How will the environmental attri-
butes of petrol and diesel driven cars develop under the pres-
ent tax regime, or under some stiffer or laxer alternative? Will
the environmentally oriented taxes eventually erode their own
basis, as consumers respond to the incentives by buying cars
with steadily lower exhaust emission rates and lower tax?
How can the government maintain the level of revenue from
vehicle purchase taxes?

In order to answer these questions, a detailed and compre-
hensive behavioural model of demand for new passenger cars
is needed.

2 Approach and method

We have developed a nested logit model of automobile choice,
based on complete vehicle sales data for Norway for the peri-
od ranging from January 1996 until July 2011.

For each year, more than 2000 different vehicle model
variants have been identified and their annual sales recorded.
Obviously, few – if any – of these model variants are available
on the market throughout the period. Only a certain subset of
variants enters the choice set in a given year.

In the nested logit model every single car sale is regarded as
a discrete choice where, in principle, every model variant
available in the market at that time is included in the buyers’
choice set. There are a total of approximately 1.6 million
transactions, or choice situations, registered in the new car
sales database. For each vehicle model variant, the database
includes information such as the vehicle’s make, list price,
purchase tax amount, type of fuel, calculated kilometre cost
of fuel, curb weight, engine power, drivetrain, and number of
seats and doors. The nested logit model uses these individual
vehicle characteristics as explanatory variables in the indirect
utility function.

Since the model is supposed to predict the market share of
potential new car model variants with known or assumed at-
tributes, care was taken to specify the model as a generic one.
There are no alternative specific coefficients, other than the
dummies capturing the vehicle’s make.

Extensive testing was done in order to find the appropriate
nest structure. At first, we tried a structure in which the upper
nests were defined by such segments as ‘mini’, ‘small’, ‘com-
pact’, ‘medium’, ‘fullsize’, ‘luxury’, ‘minivan’, ‘off-road’ or
‘sport-utility vehicle’ (SUV). Secondly, we examined struc-
tures based on more objective size categories, such as kilo-
gram curb weight intervals. Nesting based on fuel or propul-
sion technology was also tried. We found, however, that the
only nest structure compatible with a priori assumptions under
the utility maximization paradigm (scale parameters larger
than unity) was one in which each vehicle make forms one
nest. Thus, there are 21 such nests in the model, the last one
being a residual nest assembling ‘all other makes’. Fig. 1 il-
lustrates the model’s nest structure.

According to this structure, the probability of choosing a
given vehicle model variant i of make j is the product of the
probability of choosing make j and the conditional probability
of choosing model variant i given the set available within
make j. The mathematical formula for calculating the choice
probability in year t can be stated as:

Pt variant ¼ ið Þ ¼ Pt variant ¼ ijmake ¼ jð Þ � Pt make ¼ jð Þ

ð1Þ

Fig. 1 Nest structure in
automobile purchase model
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If we denote by Mtj the set of model variants of make j

available in year t, the two factors in Eq. (1) can be specified as

Pt variant ¼ ijmake ¼ jð Þ

¼
exp μ jV ij

� �

∑h∈M tj
exp μ jVhj

� � ; t ¼ 1996; 1997;…; 2011ð Þ ð2Þ

Pt make ¼ jð Þ ¼
exp

1
μ j
ln ∑i∈Mt j

exp μ jV i jð Þ
h i

∑
21

k¼1
exp

1
μk
ln ∑i∈Mtk

exp μkV ikð Þ½ �

t ¼ 1996; 1997;…; 2011ð Þ: ð13Þ

In these two expressions μj denotes the estimated scale
parameter for each make in the lower nest. When normalizing
the upper scale parameter to unity, these lower scale parame-
ters are restricted to be larger than unity. The indirect utility
function specified for each individual vehicle model variant i
of make j, denoted Vij, is specified as a linear combination of
coefficients and explanatory variables:

V ij ¼ ∑
k

βkxijk þ γ j: ð4Þ

Here, the explanatory variables xijk are vehicle attributes.
The γj are make-specific constants, estimated as the coeffi-
cients of a set of dummy variables – zij, say – equal to one if
and only if model variant i belongs to make j (see Table 1
below for details). Note that the βk coefficients are not indexed
by i or j – they are generic, i. e. identical across vehicle model
variants and makes.

As analysts, we do not have full information about the
indirect utility generated by each vehicle model variant.
Following common practice [2], we assume that the observ-
able utility Uij (say) consists of the systematic term Vij and
some random disturbance term eij, i. e.

U ij ¼ V ij þ eij; ð5Þ

where the eij are independent and identically Gumbel distrib-
uted random variables with scale parameters μj.

3 Estimation results

3.1 Model coefficients

Maximum likelihood estimates were derived using the
Biogeme Python software [7]. All coefficient estimates are
shown in Table 1.

Most coefficients are significantly different from zero at the
1% level. They also have the anticipated sign, whenever a
priori expectations apply.

The Price coefficient is negative, as expected. Other things
being equal, a higher price reduces a vehicle’s market share.

The Resourcecostshare variable, being constrained be-
tween zero and one, is defined as the share of the vehicle’s
retail price that is not made up by purchase tax or value added
tax (VAT), i. e. as the price net of tax divided by the price
including tax. As expected, its coefficient comes out positive,
suggesting that, other things (including the price) being equal,
buyers are more reluctant to choose a heavily taxed car than
one that is subject to zero or little tax. The Resourcecostshare
variable allows us to distinguish the effect of a tax increase
from that of a higher manufacturing or marketing cost.

The variable Fuelcost, defined as the relevant per litre real
fuel price (in NOK 2010) times the type approval rate of fuel
consumption per 10 km, captures the expected fuel cost per
unit of driving distance. Its coefficient is negative, as expect-
ed. For BEVs, zero fuel cost is assumed.

Bigger is better. The Size variable, defined by the log-
transformed product of the vehicle’s length and width, as mea-
sured in square metres, comes out with a positive coefficient.

The Acceleration variable, defined by the amount of engine
power in relation the vehicle’s weight, comes out with a pos-
itive sign, but the coefficient is not statistically significant. To
reflect the decreasing marginal utility of acceleration, the var-
iable is not entered linearly, but specified as the negative of the
inverse, squared ratio of engine power to weight, correspond-
ing to a Box-Cox transformation with parameter minus two.

Load measures the log-transformed, maximum utility load
of the vehicle (passengers and luggage, not including 75 kg
driver) relative to its size in square metres. It has the expected
positive sign, and is statistically significant at the 5% level.

TheDieseltrend variable captures the gradual improvement
of diesel vehicle technology as compared to petrol driven cars.
It is specified as a diesel vehicle dummy multiplied by the
natural logarithm of years passed since 1996. The starting
point of the diesel trend effect is determined by the dummy
C_Diesel, estimated at −0.803, which translates into a signif-
icant disadvantage as compared to petrol cars in 1996.

Dummy variables C_Electric and C_Hybrid capture the
effect of propulsion systems other than the petrol engine,
which acts as our reference category. The hybrid class in-
cludes plug-ins as well as ordinary hybrids. These coefficients
are both positive, but not highly significant.

Another set of dummy variables – C_Fourwheeldrive and
C_Frontwheeldrive – capture the quality differences with re-
spect to the standard rear-wheel drivetrain. 4-wheel drive is
highly valued byNorwegian consumers, but front-wheel drive
does not stand out as preferable to rear-wheel drive.

The dummy C_Fiveormoredoors typically captures station
wagons and multi-purpose vehicles (MPV) as opposed to
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Table 1 Estimation results from
generic automobile choice model.
Norway 1996–2011

Variable description Variable name Estimate Robust
t-statistic

Continuous variables

Real retail price measured in 100,000 NOK 2010 Price -0.153 -6.44

Share of retail price that is not purchase tax or VAT Resourcecostshare 1.310 5.15

Operating cost: fuel price x fuel consumption per
10 km

Fuelcost -0.063 -5.60

Log of vehicle length times width (square metres) Size 1.560 6.32

Log of allowed load divided by Size (kg/sq m) Load 0.187 2.18

Diesel dummy x log of years passed since 1996 Dieseltrend 0.309 3.84

Engine power (kW) per 100 kg curb weight, raised
to the power of −2, with sign reversed

Acceleration 0.519 0.87

Dummies for vehicle attributes

Diesel engine C_Diesel -0.803 -3.99

Hybrid vehicle C_Hybrid 0.133 1.80

Battery electric vehicle C_Electric 0.660 1.99

4-wheel drive C_Fourwheeldrive 0.352 6.04

Frontwheel drive C_Frontwheeldrive 0.024 0.89

5 seats C_Fiveseats 0.071 3.27

6 or more seats C_Sixormoreseats 0.023 0.42

5 or more doors C_Fiveormoredoors 0.228 4.90

Dummies for vehicle make

Toyota Ctoyota 3.12 8.66

Volkswagen Cvolkswagen 3.10 8.87

Ford Cford 2.46 7.81

Opel Copel 1.75 5.76

Peugeot Cpeugeot 2.31 6.41

Volvo Cvolvo 2.39 5.03

Audi Caudi 1.84 5.24

Nissan Cnissan 2.06 5.17

Mitsubishi Cmitsubishi 1.86 4.46

Mazda Cmazda 2.15 5.04

Hyundai Chyundai 1.46 4.37

Skoda Cskoda 1.77 4.79

BMW Cbmw 1.53 4.03

Mercedes-Benz Cmercedes 0.07 0.21

Renault Crenault 1.62 5.00

Honda Chonda 1.78 4.31

Suzuki Csuzuki 1.89 5.19

Citroën Ccitroen 1.30 3.80

Saab Csaab 1.90 4.91

Subaru Csubaru 1.32 3.00

Scale parameters

Toyota mutoyota 3.96 6.01

Volkswagen muvolkswagen 4.52 5.87

Ford muford 3.86 5.74

Opel muopel 2.65 6.23

Peugeot mupeugeot 3.89 5.79

Volvo muvolvo 3.91 8.68

Audi muaudi 3.07 7.51

Nissan munissan 3.79 5.78

Mitsubishi mumitsubishi 3.53 5.31
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ordinary sedans, while the variables C_Fiveseats and
C_Sixormoreseats measure differences with respect to cars
with four seats or less.

The dummies capturing vehicle make are all positive and,
with one exception, significantly different from zero, suggest-
ing a higher choice probability than the reference category ‘all
other makes’. These dummy variables are, however, hard to
interpret. On the one hand, they reflect the popularity of each
make as measured by their market share. On the other hand,
they are also affected, and negatively so, by the number of
different model variants offered by each manufacturer. The
larger the number of similar vehicles the consumer can choose
from, the smaller will be the market share of each particular
model variant – confer the famous ‘red bus – blue bus’ exam-
ple ([2]: 51–55). This explains why the prestigious Mercedes-
Benz (MB)make comes out with the smallest coefficient of all
makes. While, in our data set, the average number of model
variants offered annually by each manufacturer is 45
(disregarding ‘all other makes’), MB have split their sales
among, on average, 206 different model variants, with a mean
sale of only 15 cars per model variant per year. While their
aggregate market share is only 3.1%, they represent 8.6% of
all the model variants entering the market (Table 2).

3.2 Model predictions vs. observed outcomes

In Fig. 2 we show observed and predicted annual market
shares, at the most disaggregate level.

As can be expected in a data set where all choice probabil-
ities are quite small, the fit is rather poor, as measured by the
adjusted likelihood ratio index ρ2 = 0.054. One notes that for
model variants with a very low market share, some of the pre-
dicted values are widely off the mark. Certain variants sell only
one or two units in a given year, corresponding to an observed
market share between 0.0008 and 0.003%. On account, how-
ever, precisely of these variants’ infinitesimal market shares,
their weak fit is of little consequence to the model’s predictive
power. For variants with a higher market share, the correspon-
dence between observed and fitted values is stronger.

The differences between the various vehicle model variants
making up our data set are, in many cases, miniscule. To fix
ideas we show, in the Appendix, data lines pertaining to the
2010 assortment of Volkswagen Golf model variants. There
are 73 such variants in the market, no two of them being
exactly equal in terms of the attributes entering the discrete
choice model: engine power, curb weight, utility load, cylin-
der volume, fuel, no. of seats, no. of doors, length, width, body
style, or traction.

Obviously, the prediction of market share for each of these
individual variants is of limited commercial or political rele-
vance. Comparing observed and fitted market shares at the
somewhat more aggregate levels carries more interest. In
Fig. 3 we have grouped observations into segments defined
by energy carrier and/or curb weight.

Again, the predictive power is comparatively weak for seg-
ments with very low market shares. Within the more popular

Table 1 (continued)
Variable description Variable name Estimate Robust

t-statistic

Mazda mumazda 5.43 5.49

Hyundai muhyundai 2.81 3.74

Skoda muskoda 4.17 5.28

BMW mubmw 2.83 6.18

Mercedes-Benz mumercedes 1.63 7.73

Renault murenault 4.37 3.81

Honda muhonda 3.84 5.22

Suzuki musuzuki 4.50 4.96

Citroën mucitroen 3.26 4.36

Saab musaab 5.10 5.03

Subaru musubaru 3.55 6.31

All other makes muother 1.59 6.43

General statistics

Number of parameters estimated 56

Sample size (number of vehicles) 1,617,303

Initial log-likelihood 12,549,628.19

Final log-likelihood 11,866,231.32

Likelihood ratio test 1,366,793.7

Goodness-of-fit Rho bar 0.054
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vehicle segments, however, the fit seems quite satisfactory. A
case in point is the 1000–1199 kg class of petrol driven cars,
exhibiting a 40% observed and predicted market share in
1996, declining to a 7% observed and predicted market share
in 2011.

The model is somewhat less accurate in predicting the re-
spective market shares of different vehicle makes (Fig. 4), but
fairly precise in terms of the distribution between CO2 emis-
sion intervals (Fig. 5).

In Fig. 6, we show how well the model explains the trend
towards lower average type approval exhaust emission rates
during 1996–2011. The model picks up the trend reasonably
well.

3.3 Willingness-to-pay for vehicle attributes

Following common practice in hedonic demand modelling
[30], we derive the willingness-to-pay for a certain attribute
by taking the ratio of its coefficient estimate to the price coef-
ficient. Table 3 summarizes the calculated willingness-to-pay
for selected vehicle attributes.

Our nested logit model implies a value of NOK 8600 for a
one percentage point increase in the non-tax share of the ve-
hicle retail price. By extrapolation, the willingness-to-pay for
a non-taxed vehicle is NOK 430000 higher than for a vehicle
whose price consists of 50% tax.

The willingness-to-pay for a reduction in petrol or
diesel consumption by one litre per 100 km is estimated
at NOK 41,400. For a vehicle running 240,000 km dur-
ing its lifetime1, the energy saving is 2400 l, at a cost
of roughly NOK 30,000–35,000 (= appr. € 4000).
Hence, when car buyers make their choice, they may
seem to take more than full account of future energy
costs, while also not applying a discount rate much
higher than zero. The estimate may be affected by the
fact that the type approval rates of fuel consumption
entering our data set are typically 10 to 30% lower than
the actual consumption on-the-road [27]. It may seem as
if consumers are well aware of this. Also, the estimate
may reflect concern about future energy prices and a
desire to minimize such risk.

Norwegians love four-wheel drive, which provides superi-
or traction on snow and ice as well as enhanced accessibility
on the rough road to their mountain or seaside cottage. The
willingness-to-pay for four-wheel relative to rear-wheel drive
is calculated at NOK 230,000, while front-wheel drive is val-
ued at NOK 15,900.

A vehicle model variant with five seats rather than
four or less seats has an added value to the consumer of
NOK 46,500. A station wagon or 5-door multi-purpose
vehicle (MPV) is valued at NOK 149,000 more than the
otherwise similar sedan.

The willingness-to-pay for a hybrid vehicle rather
than a petrol car is approximately NOK 87,000 (2010
prices) (Fig. 7). This indicates that consumers assign an
extra value to this type of vehicle compared to petrol
driven ones, ceteris paribus.

The estimated willingness-to-pay for diesel vehicles,
rather than petrol cars, shifts from negative to positive
in 2008, amounting to approximately NOK 35,000 in
2011.

The added willingness-to-pay for battery electric ve-
hicles comes out at no less than NOK 431,000 = €

51,000. At first sight, this may seem exaggerated.
However, the estimate must be interpreted in light of
the fact that the Fuelcost variable is set to zero for
BEVs. The estimate includes, in other words, the per-
ceived advantage of having zero fuel cost throughout a
vehicle’s lifetime. When we adjust for this, applying an
average Fuelcost value of NOK 8.91 per 10 km, the

1 Travelling, on average, 14,000 km annually, Norwegian registered automo-
biles have a life expectancy of 17 years [15].

Table 2 Aggregate number of new automobiles sold, mean number of
model variants offered per year, and average number of vehicles sold
annually per model variant, by make. Norway January 1996–July 2011

Make Vehicles sold
1996–2011

Mean # of variants
offered per year

Vehicles sold
annually per
model variant

Toyota 221,167 140 99

Volkswagen 206,839 246 53

Ford 131,789 168 49

Opel 109,885 172 40

Volvo 92,587 109 53

Peugeot 87,958 141 39

Audi 83,115 196 27

Nissan 65,850 68 60

Mitsubishi 58,401 63 58

Mazda 49,072 45 68

Hyundai 48,325 49 62

Skoda 53,435 88 38

BMW 53,076 163 20

Mercedes-Benz 50,188 206 15

Renault 43,199 79 34

Honda 42,088 36 74

Suzuki 45,587 33 86

Citroën 37,304 61 38

Saab 31,287 57 35

Subaru 33,692 39 54

All other makes 72,514 247 18

Total 1,617,358 2406 42
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BEVs’ market advantage is reduced to around NOK
66,000 = € 7800. This estimate reflects the fact that,
in Norway, BEVs enjoy a large number of privileges,
such as access to the bus lane, exemption from road
tolls and public parking charges, strongly reduced ferry
fares, and free recharging in many public parking lots.
Among BEV owners in Norway as of March 2016, the
median value of these benefits has been estimated at
NOK 10,000 = € 1200 per year [13]. In certain parts
of the country, the value of the toll exemption alone can
exceed € 4000 per year for a motorist using a long
bridge or subsea tunnel on his daily commute.

4 Policy analysis

There are several ways in which our nested logit model can be
used as a policy support tool.

By simulating hypothetical changes in certain vehicle
attributes, we can calculate policy or marketing relevant
response surfaces at more or less aggregate levels.
Thanks to the generic character of the model, we can
predict the market shares of these hypothetical vehicles
as well as the change in demand for every other pas-
senger car in the market. Fridstrøm et al. [15] show
how, by integrating the discrete choice model into a

dynamic stock-flow model of the car fleet, one can as-
sess the long-term consequences of changes in vehicle
technology or in the fiscal incentives.

In this paper, we report on three other policy relevant
applications of the model. In Section 4.1, we present a
short-term analysis of potential changes in the
Norwegian vehicle purchase tax. In Section 4.2, we
present model simulations of changes in the fuel cost.
In Section 4.3, we present the results of a counterfactual
back-casting exercise, in which one simulates the mar-
ket development during 2007–2014 under the hypothet-
ical assumption that the strongly CO2-graduated pur-
chase tax and/or the tax exemptions for BEVs had nev-
er been introduced.

4.1 Simulated changes to the vehicle purchase tax

The Norwegian automobile purchase tax, payable upon first
registration of a vehicle, is a sum of four independent
components, calculated on the basis of curb weight, ICE
power, and type approval CO2 and NOX exhaust emis-
sion rates, respectively (Fig. 8). All but the NOX com-
ponent are convex, exhibiting increasing marginal tax
rates. The CO2 component is negative (as of 2014) for
vehicles emitting less than 105 gCO2/km by the type approval
test. That is, for these cars there is a deduction applicable to the

Fig. 2 Observed and fitted
annual market shares of
individual vehicle model variants
1996–2011. Logarithmic scale
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sum of the weight, power and NOX components. The total
purchase tax cannot, however, become negative, as in a
feebate system.

For PHEVs, the electric motor does not count towards the
tax on engine power, only the combustion engine does, and
the weight component is reduced by a benchmark 15% (as of
2014), so as to leave the weight of the battery pack out of the
tax base. As noted above, BEVs and FCEVs are altogether
exempt of purchase tax, as well as of the standard 25% value
added tax (VAT).

Relying on the discrete choice model shown in Table 1, we
have simulated six different policy options bearing on the
automobile purchase tax:

1. A 10% increase in all purchase tax components.
2. A 10% increase in the CO2 component
3. A 10% increase in the curb weight component
4. A 10% increase in the engine power component
5. Introduction of purchase tax on BEVs, according to same

rules as for PHEVs.

Fig. 3 Observed and fitted
annual market shares 1996–2011,
by energy carrier and/or curb
weight. Linear scale

Fig. 4 Observed and fitted
annual market shares 1996–2011,
by vehicle make. Linear scale
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6. Introduction of VATand purchase tax onBEVs, according
to same rules as for PHEVs.

Simulations were made on the basis of a benchmark calcu-
lated for 2014. As seen from Fig. 9, more than half the pas-
senger cars sold in 2014 had type approval CO2 exhaust emis-
sion rates between 100 and 149 gCO2/km. BEVs had a market
share of 12.5% in Norway 2014.

By adjusting the constant terms, we calibrated the model as
of 2014 so as to yield correct aggregate market shares for

battery electric, hybrid electric, petrol and diesel driven
cars, as well as for the Tesla make of BEVs. Since
the Teslas stand out as rather more expensive than other
BEVs, it was considered necessary to account for these
most expensive BEVs as accurately as possible. In all
of the simulations, it has been assumed that tax changes
are passed on 100% to the buyers, through correspond-
ing changes in the retail price.

Figure 10 shows changes in the market shares of vehicles
within different CO2 emission brackets. As shown by the left-

Fig. 5 Observed and fitted
annual market shares 1996–2011,
by type approval CO2 exhaust
emission bracket (gCO2/km).
Linear scale

Fig. 6 Mean observed and
predicted type approval CO2

exhaust emission rates of new
Norwegian registered
automobiles 1996–2011
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most cluster of bars (alt. 1), a 10% increase in every purchase
tax component would, when passed on entirely to the buyers,
translate into a 24% lower market share for the most extreme
‘fuel guzzlers’, but an almost 10% increase in the sales of zero
emission vehicles, i. e. BEVs.

Obviously, when only one tax component changes
(alt. 2 through 4), the resulting impact is smaller. If
only the CO2 component is increased, low emission cars
(emitting 1–99 gCO2/km) will gain market shares. Even
the weight and power components are seen to have
some effect on the market shares of low vs. high emis-
sion vehicles. An increased weight component will ben-
efit zero emission vehicles only.

The introduction of purchase tax on BEVs (alt. 5) will have
rather moderate effects, assuming BEVs would then be sub-
ject to the same tax rules as PHEVs. For most BEVs, the
negative CO2 component would in such a case more than
outweigh the positive weight component, resulting in zero
purchase tax.

But if both exemptions – from VAT and purchase tax –

were to be revoked (alt. 6), the BEV market share would drop
by an estimated 24%, while the fuel guzzlers would see their
market grow by around 10%.

The overall changes in average type approval CO2 exhaust
emissions from new passenger cars, under the six different
policy scenarios, are shown in Fig. 11.

A uniformly 10% higher purchase tax will reduce the mean
exhaust emission level by 2.4 gCO2/km, or about 2.2% com-
pared to the reference level of 113 gCO2/km. Increasing the
CO2 or weight component leads to a 1.1 gCO2/km decrease in
average exhaust emissions, while an increase in the power
component will have very little effect on the CO2 level.

Introducing a purchase tax for BEVs, identical to the one in
effect for PHEVs, will lead to a moderate, 0.56 gCO2/km
increase in the average exhaust emission level of new cars.

If, however, both the VAT and the purchase tax ex-
emptions are lifted, the result will be an estimated 3.85
gCO2/km higher level of exhaust emissions. The VAT
effect alone can be calculated as 3.85–0.56 = 3.3 gCO2/
km by the type approval test.

Since, for the 2014 cohort of passenger cars in Europe,
exhaust emissions on the road are roughly 40% higher than
according to the NEDC laboratory testing cycle [33], the 3.85
gCO2/km type approval differential corresponds to 5.4 gCO2/
km in real traffic. For a car running 240,000 km before scrap-
ping, accumulated CO2 savings over the car’s lifetime amount

Fig. 7 Willingness-to-pay for
hybrid, electric and diesel
powered vehicles relative to
petrol driven model variants

Table 3 Willingness-to-pay for
selected vehicle attributes Attribute Willingness-to-pay

(NOKa 2010)
Explanation

Resource cost share 8600 Value of 1 percentage point increased Resourcecostshare

Fuel cost per 10 km 41,400 Per litre decrease in consumption per 100 km

Four-wheel drive 230,000 Measured relative to rear wheel drive

Front-wheel drive 15,900 Measured relative to rear wheel drive

Five seats 46,500 Measured relative to four seats or less

Six or more seats 15,300 Measured relative to four seats or less

Five or more doors 149,000 Measured relative to four doors or less

aNOK = Norwegian kroner. As of 1 July 2014, € 1 = NOK 8.43
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to 1300 kgCO2. For the whole 2014 cohort of Norwegian
registered cars (144,202 vehicles), lifetime CO2 savings
amount to around 190,000 t.

The fiscal revenue impact of the six policy options is also
calculable from the model (Fig. 12).

Increasing all purchase tax components by 10% generates an
extra NOK 742 million per annum for the public treasury, ac-
cording to the model. Note, however, that the possible rebound
effect in the form of lower aggregate car sales is not taken into
account here, nor in any of the other scenarios studied.

Increasing the CO2 component by 10% will have compar-
atively small effects on the purchase tax revenue. The same is
true of the engine power component. The weight component,
however, is a potent one. Most of the revenue increase obtain-
ed by a uniform 10% increase in all tax components is due to
the weight component.

Interestingly, the purchase tax exemption for BEVs reduces
public revenue by only NOK 200 million – a small amount
compared to the large numbers featured in multiple media
announcements on the ‘cost’ of the electric vehicle incentives.
Note, however, that our point of reference is a tax regime in
which low and zero emission vehicles in general and PHEVs
in particular enjoy very much lower tax rates than do fuel
guzzlers.

A much larger increase in public revenue would take place
if the VATexemption were lifted as well. In such a case, some
car buyers would shift from BEVs to ICE vehicles, whereby
the purchase tax revenue would increase, not by NOK 200
million, but by more than NOK 500 million. A more than
twice as large revenue increase would come from the VAT
system2.

In the long run, reduced exhaust emissions from cars
will go along with a proportional decrease in fossil fuel
consumption and hence in fuel tax revenue. This effect
is not included in our revenue calculations. For a car
running 240,000 km before scrapping, a 3.85 gCO2/km
difference in type approval exhaust emissions corre-
sponds to fuel savings of roughly 500 l over the vehi-
cle’s lifetime, with a NOK 2500–3000 (= € 300–350)
reduced fuel tax bill. As applied to the entire 2014
cohort of new cars, the lifetime fuel tax revenue differ-
ential is around NOK 350–400 million.

There is thus an inherent contradiction between the fiscal
and environmental policy goals. An effective environmental
tax may erode its own base. The consequences could be wide-
reaching, since fuel taxes are probably the most important
market correction mechanism currently in place in Europe.
According to Thune-Larsen et al. [32], the Norwegian petrol
tax is just about high enough to balance the vehicles’ average
marginal external cost. The per litre diesel tax, however, falls
around NOK 3 (= appr. € 0.35) short of the associated external
cost. BEVs are subject to only a small electricity tax, despite
giving rising to an external cost that is only 30% lower than
for petrol cars.

If and when BEVs make up a major share of the car fleet,
the need for an alternative market correction mechanism, such
as generalised marginal cost road pricing, will come to the
fore. Satellite based road pricing was studied extensively in
the Netherlands [26], but not implemented. Interestingly, the
proposed Dutch scheme appears to have solved the privacy
problem, in that the detailed information on the vehicle’s
movements would be stored nowhere but in the vehicle
owner’s own on-board unit.

4.2 Simulated changes to the fuel cost

To assess the impact on car purchases of changes in the
price of fuel, as brought about e. g. by a higher fuel

2 In Norway 2014, 47.4% of new cars were registered to commercial busi-
nesses (source: www.ofv.no). Most of these firms are VAT registered. With the
exception of taxi companies, however, corporate buyers are not allowed to
deduct input VAT on automobiles in their VAT account. We have therefore
included the full amount of VAT on automobiles in our revenue calculations.

Fig. 8 Vehicle purchase tax as a
function of curb weight, engine
power, and type approval CO2

and NOX exhaust emission rates,
in Norway 2014
Source: Fridstrøm et al. [17]
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tax, we have simulated 10 and 50% increases in the
Fuelcost variable. A generally increased fuel price
would lead to proportional changes in the fuel cost of
every car model in the sample. Response in terms of
fuel consumption would translate into proportional
changes in CO2 emissions. The results are shown in
Fig. 13.

In the hypothetical event of a 10% higher fuel price
in 2010, the mean type approval CO2 exhaust emission
rate is predicted to fall from 138.91 to 138.22 gCO2/
km, i. e. by 0.5%, implying an elasticity of −0.05. In
the case of a 50% price rise, the predicted effect is just
about five times stronger: 2.43%, suggesting an almost
constant elasticity.

By comparison, estimates of the price elasticity of demand
for fuel, as measured in terms of short term car travel and fuel

demand responses, generally range between −0.25 and −0.1
[12]. The indirect effect channelled through vehicle choice
adds, in other words, an extra 20 to 50% on top of the direct
fuel demand response, when assessed in a long-term perspec-
tive. The indirect effect works only in the long run, i. e. over
the vehicle’s lifetime.

Underlying the indirect vehicle choice response to fuel
price increases is, of course, a reallocation from higher to
lower emission car models. This is shown explicitly in
Figs. 14 and 15. As in Fig. 13, simulations are done as of
2010 – our last full year of sales data.

A higher fuel cost would induce car customers to buy fewer
large cars and more small ones (Fig. 15). Also, since the diesel
engine is generally more energy efficient than the petrol en-
gine, a higher fuel price would, in general, boost demand for
diesel cars at the expense of petrol cars.

Fig. 10 Relative changes in market shares under six fiscal policy scenarios as of 2014, by CO2 exhaust emission interval, assuming that tax increases are
passed on 100% to buyers

Fig. 9 Calculated automobile
market shares for 2014, by type
approval CO2 exhaust emission
bracket
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4.3 A counterfactual back-casting

The CO2 component of the vehicle purchase tax was first
introduced in 2007 and has since become gradually steeper.
In Fig. 16 we show the outcome of a back-casting exercise
with five alternatives. The reference scenario (A)mirrors more
or less the actual history of the purchase and value added taxes
applicable to passenger cars since 2007. In scenario B, we
imagine that the CO2 component of the purchase tax was
never introduced, but the remaining tax components apply
as in the reference path. One notes that already in 2007, there
is a marked difference between the two developments, as car
buyers in the reference scenario are induced to choose more
energy efficient cars with lower CO2 emissions. This shift has
also been observed in reality [16].

Note, however, that since our model does not predict ag-
gregate automobile sales, only how it is distributed among
model variants, the rebound effect due to generally cheaper
cars in scenario B is not taken into account. D’Haultfoeuille
et al. [11] show that such rebound effects are potentially
important.

Under alternative C, the removal of the CO2 component is
compensated by a 15.5% increase in the weight and power
components, sufficient to uphold the government’s total pur-
chase tax revenue during 2007–2014. This scenario is, in other
words, fiscal revenue neutral compared to the reference path.

In scenario D, the tax exemptions for BEVs are abolished.
Since there are few BEVs on the market in 2007, this policy
measure does not take much effect until the last couple of
years.

In the most radical scenario E, where neither the CO2 com-
ponent nor the tax exemptions for BEVs are assumed to come
true, the predicted mean type approval rate of CO2 exhaust
emissions from new cars in 2014 is 136 gCO2/km, versus 113
gCO2/km under the reference path3. Apparently, the fiscal

policy pursued by the Norwegian government since 2007
has been successful in lowering the average CO2 emissions
from new cars registered. As of 2014, the CO2 component and
the purchase tax and VAT exemptions for BEVs together ac-
count for an estimated 23 gCO2/km reduction in the type
approval emission rate of new cars.

Note, however, that this estimate does not include the ef-
fects of numerous other incentives benefiting zero and low
emission cars in Norway, such as the 15% ‘rebate’ in the
weight tax component of PHEVs, the zero purchase tax on
electric motor power, the BEVs’ access to the bus lane, their
strongly reduced ferry fares and annual circulation tax, their
exemption from road tolls and public parking charges, and
their free recharging in many public parking lots.

Scenario E is not fiscal revenue neutral. A certain rebound
effect, of uncertain direction, would have to be expected if this
scenario had come true. The removal of the CO2 component
would tend to increase aggregate automobile demand, while
the imposition of VAT on BEVs would work in the opposite
direction.

5 Discussion

Although the issue of GHG abatement through vehicle
fleet renewal and electrification receives considerable
attention from scientists [23, 29, 31], extensive literature
reviews have shown no example of another approach to
automobile market forecasting equivalent to ours. It ap-
pears to be unique in combining the following three
features: (i) Nested logit modelling is applied to a dis-
aggregate set of complete nationwide new vehicle sales
data over an extended period. (ii) We specify and esti-
mate an entirely generic model, which can be used to
predict the market shares of hitherto non-existent vehi-
cle model variants with certain characteristics. (iii) The
model relies exclusively on objective vehicle registration
data, requiring no input on household characteristics or

3 The real, observed rates in 2007 and 2014 were 159 and 110 gCO2/km,
respectively. Being a stylized instrument, the model does not produce perfectly
accurate predictions.

Fig. 11 Absolute changes in
mean type approval CO2 exhaust
emission rates of new passenger
cars, compared to reference case,
under six fiscal policy
scenarios as of 2014
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preferences. Since our model keeps track of a five-digit
number of different passenger car model variants sold in
Norway during 16 years, with an average annual sale of
about 40 vehicles per model variant, it is as detailed as
any disaggregate approach, capturing differences be-
tween all the vehicles available in the market.

The generic character of the model does, however, come at
a price. The model does not predict automobile sales at the
level of the individual vehicle model variant with any degree
of precision. Nor is this the intention. Some vehicle model
variants are very similar – indeed, in some cases deciding
whether two cars represent two different model variants or
two versions of the samemodel variant may seem like a matter
of fine judgment. Hence the prediction of demand at the level
of the individual vehicle model variant carries less political
interest than forecasting at the somewhat more aggregate lev-
el, whereby cars are grouped according to, e. g., their make,
size, fuel economy or exhaust emissions. At this level, the
model appears to discriminate well between various policy
scenarios, as demonstrated by the simulation exercise de-
scribed in Section 4 above. When fed into a dynamic stock-
flow cohort model of the car fleet, it becomes a powerful
policy support tool [15, 16].

There is at least one big advantage to this kind of disaggre-
gate specification. Precisely because it does not involve aver-
aging across type approved model variants, except that vehi-
cles belonging to the same variant may be differently
equipped and styled, aggregation bias is minimized.

But since the model contains no information on the human
decision makers, it cannot predict trends rooted in changes
occurring to these individuals – such as their income, educa-
tion, family structure, residence pattern, employment, or travel
demand.

The logic of forecasting by means of our model may
appear intriguing. The future demand for automobiles
will depend, in the aggregate as well as by make and
model variant, on what car model variants manufac-
turers bring to the market. The suppliers determine the
assortment of automobiles available. Obviously, our
model cannot predict these changes in the choice set.
Instead, future choice sets must be formed by assuming
that (most) model variants available in our last year(s)
of observation continue to be offered in the market,
albeit possibly with certain alterations and improve-
ments, such as a steadily improved fuel efficiency.
When it is known – or assumed – that new vehicle

Fig. 13 Mean type approval CO2

exhaust emissions from new
automobiles, as simulated for
2010

Fig. 12 Differential annual VAT
and purchase tax revenue under
six fiscal policy scenarios as of
2014
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technology will enter the market, the model user can
specify any number of such model variants and include
them in the choice set for future years. For the most
part, however, forecasts must be based on the concrete
model variants already observed in the past or present.
In the forecast, these model variants play the role of
abstract representatives of the future vehicle assortment.

In econometric models of demand for heterogeneous
products, such as ours, an important source of omitted
variable bias may be present if the product quality is
positively related to its manufacturing cost and hence to
its price. Unless the regression model succeeds in cap-
turing all the quality aspects of the product through the
inclusion of appropriate independent variables, the nu-
merical value of the price coeff ic ient wil l be
underestimated, since the price embodies certain quality
factors not otherwise accounted for. Such a pitfall could
apply even to our model. Although our model does
include several important quality attributes such as

make, size, utility load, engine power, drivetrain, energy
carrier, fuel mileage, seat capacity, and number of
doors, the attributes not explicitly accounted for are
even more numerous – suffice it to mention automatic
shift, automatic cruise control, electronic stability con-
trol, anti-lock braking systems, airbags, power steering,
power windows, leather upholstery, metallic paint, or
the innumerable design features which distinguish model
variants visibly from one another.

We may, however, have avoided – and perhaps even
reversed – this type of bias through the inclusion of the
Resourcecostshare variable, defined as the share of the
retail price that is not made up by tax. Since it is pos-
itively related to the manufacturing and marketing cost
of the vehicle, one possible interpretation of the
Resourcecostshare variable could be as a residual mea-
sure of quality, over and above the quality attributes
already included in the regression. It could, on the other
hand, also reflect circumstances such as the manufacturer’s

Fig. 15 Predicted vehicle market
shares, by energy carrier and/or
curb weight, under actual 2010
and simulated 50% higher fuel
cost

Fig. 14 Predicted vehicle market
shares, by type approval CO2

exhaust emission bracket, under
actual 2010 and simulated 50%
higher fuel cost
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market power, profitability or production inefficiency, or sim-
ply the vehicle customers’ psychological aversion against tax-
paying. Being inversely related to the amount of purchase tax
payable, it tends to decrease with the vehicle’s weight, engine
power and rate of CO2 emissions. It must, in other words, be
interpreted with some caution.

One possible way of acquiring independent information on
vehicle quality could be to exploit the many Internet surveys
published on how owners perceive the properties of their car.
Further research would be needed to ascertain the validity and
practicality of such an approach.

6 Summary and conclusions

We have estimated a nested discrete choice model for new
passenger cars registered in Norway. The model is based on
exhaustive, disaggregate vehicle sales data covering almost
16 years. More than 1.6 million individual vehicle transac-
tions make up the data set.

Since the model was intended to predict the market share of
potential future car model variants with known or assumed
attributes, care was taken to specify the model as a generic
one. Model coefficients have the expected sign, almost all of
them being highly significant by the robust t-test. The per
kilometre fuel cost coefficient is compatible with car buyers
taking full account of future energy cost savings, while also
not applying a discount rate much higher than zero.

It was found that the only permissible nest structure is one
that assigns all cars of a given make to one nest. There are 21
such nests in the model, the last one being a residual nest
assembling ‘all other makes’.

At the disaggregate – i. e., single vehicle model variant –
level, estimated response surfaces must be interpreted with
great caution. At the more aggregate level, however, the mod-
el appears to discriminate well between various policy

scenarios, differentiated, e. g., by the size and structure of
fiscal penalties and incentives. In using the model for such
purposes, one is greatly helped by the fact the model distin-
guishes between price changes due to taxation and those orig-
inating from the manufacturing or marketing side.

Our vehicle choice model differs from most models report-
ed in the literature in that it contains no information on the
vehicle owners or their households. Hence the model cannot
predict the effect of changes occurring to the car owners rather
than to the vehicles themselves. The benefit of this approach is
one of considerable simplification, leaving room for a maxi-
mally detailed, exhaustive and disaggregate representation of
the passenger car market. Also, it means that no input is re-
quired on such variables as household structure, population
and income growth, or on transport infrastructure and prices,
in order for the model to produce a policy dependent forecast.

Automobile choice models are important climate policy
decision support tools, since the acquisition of a new car af-
fects GHG emissions for the coming 15–20 years, regardless
of whether the new vehicle remains at the hands of its first
owner, or is traded second hand.
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Fig. 16 Counterfactual back-
casting simulating the non-
introduction of CO2-graduated
purchase tax and/or tax
exemptions for battery electric
cars
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