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A generic dynamical model of gamma-ray burst remnants

Y. F. Huang,1 Z. G. Dai1 and T. Lu1,2,3w

1Department of Astronomy, Nanjing University, Nanjing 210093, China
2CCAST (World Laboratory), PO Box 8730, Beijing 100080, China
3LCRHEA, IHEP, CAS, Beijing 100039, China

Accepted 1999 June 2. Received 1999 May 14; in original form 1999 March 30

A B S T R A C T

The conventional generic model is considered to explain the dynamics of gamma-ray burst

remnants very well, no matter whether they are adiabatic or highly radiative. However, we

find that, for adiabatic expansion, the model cannot reproduce the Sedov solution in the non-

relativistic phase, and thus it needs to be revised. In this paper a new differential equation is

derived. The generic model based on this equation is shown to be correct for both radiative

and adiabatic fireballs, and in both ultrarelativistic and non-relativistic phases.
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1 I N T R O D U C T I O N

Since the BeppoSAX detection of GRB 970228, X-ray afterglows

have been observed from about 15 gamma-ray bursts (GRBs), of

which 10 have been detected optically and five also at radio

wavelengths (Costa et al. 1997; Kulkarni et al. 1998; Bloom et al.

1998; Piran 1999, and references therein). The cosmological

origin of at least some GRBs is thus firmly established. The so-

called fireball model (Goodman 1986; PaczynÂski 1986; Rees &

MeÂszaÂros 1992, 1994; MeÂszaÂros & Rees 1992; Katz 1994; Sari,

Narayan & Piran 1996) is strongly favoured, and is successful at

explaining the major features of the low-energy light curves

(MeÂszaÂros & Rees 1997; Vietri 1997; Tavani 1997; Waxman 1997;

Wijers, Rees & MeÂszaÂros 1997; Sari 1997; Huang et al. 1998b;

Dai & Lu 1998a; Dai, Huang & Lu 1999). A variant of this model,

in which central engines (e.g. strongly magnetized millisecond

pulsars) supply energy to post-burst fireballs through magnetic

dipole radiation, has been proposed to account for the special

features of the optical afterglows from GRB 970228 and 970508

(Dai & Lu 1998b,c).

Since the expansion of a fireball may be either adiabatic or

highly radiative, extensive attempts have been made to find a

common model applicable to both cases (Blandford & McKee

1976; Chiang & Dermer 1999; Piran 1999). As a result, a

conventional model has been suggested by various authors (e.g.

Chiang & Dermer 1999; Piran 1999). A dynamical model should

be correct not only in the initial ultrarelativistic phase, which is

well described by those simple scaling laws (MeÂszaÂros & Rees

1997; Vietri 1997; Waxman 1997), but also in the consequent non-

relativistic phase, which is correctly analysed by using the Sedov

solution (Sedov 1969; Wijers et al. 1997). Although the

conventional model is correct for the ultrarelativistic phase, we

find that it cannot match the Sedov solution in the non-relativistic

limit. In this paper we will therefore construct a dynamical model

that is really capable of describing generic fireballs, no matter

whether they are radiative or adiabatic, and no matter whether

they are ultrarelativistic or non-relativistic.

2 C O N V E N T I O N A L DY N A M I C A L M O D E L

A differential equation has been proposed to depict the expansion

of GRB remnants (Chiang & Dermer 1999; Piran 1999):

dg

dm
� 2

g2 2 1

M
; �1�

where m is the rest mass of the swept-up medium, g is the bulk

Lorentz factor and M is the total mass in the comoving frame,

including the internal energy U. Since the thermal energy pro-

duced during the collisions is dE � �g 2 1� dm c2, we usually

assume that dM � �1 2 e� dE=c2 � dm � ��1 2 e�g� e� dm; where

e is defined as the fraction of the shock-generated thermal energy

(in the comoving frame) that is radiated (Piran 1999). It is

supposed that equation (1) is correct in both the ultrarelativistic

and non-relativistic phases, for both radiative and adiabatic fire-

balls. However, after careful inspection, we find that, during the

non-relativistic phase of an adiabatic expansion, equation (1) cannot

give a solution consistent with the Sedov results (Sedov 1969).

2.1 Radiative case

In the highly radiative case, e � 1; dM � dm; equation (1) reduces

to

dg

dm
� 2

g2 2 1

Mej � m
; �2�

where Mej is the mass ejected from the GRB central engine.

Then an analytic solution is available (Blandford & McKee 1976;
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Piran 1999):

�g 2 1��g0 � 1�
�g� 1��g0 2 1� �

m0 �Mej

m�Mej

� �2

; �3�

where g0 and m0 are initial values of g and m respectively.

Usually we assume g0 , h=2; m0 , Mej=h; where h ;
E0=�Mejc

2� and E0 is the total energy in the initial fireball

(Waxman 1997; Piran 1999).

During the ultrarelativistic phase, g .. 1; Mej .. m; equation

(3) gives �g� 1�m < Mej; or equivalently the familiar power law

g / R23; where R is the radius of the blast wave. In the later non-

relativistic phase, g , 1; m .. Mej; we have m2b2 � 4M2
ej, or

b / R23, where b � v=c and v is the bulk velocity of the

material. This is consistent with the late isothermal phase of the

expansion of supernova remnants (SNRs) (Spitzer 1968). From

these approximations, we believe that equation (2) is really correct

for highly radiative fireballs.

2.2 Adiabatic case

In the adiabatic case, e � 0; dM � g dm; equation (1) also has an

analytic solution (Chiang & Dermer 1999):

M � �M2
ej � 2g0Mejm� m2�1=2; �4�

g � m� g0Mej

M
: �5�

During the ultrarelativistic phase, g0Mej .. m .. Mej=g0; g .. 1;
this solution can produce the familiar power law g / R23=2;
which is often quoted for an adiabatic blastwave decelerating in a

uniform medium. In the non-relativistic limit �g , 1; m .. g0Mej�;
Chiang & Dermer (1999) have derived g < 1� g0Mej=m; so that

they believe it also agrees with the Sedov solution (Lozinskaya

1992). However, we find that their approximation is not accurate

enough, because they have omitted some first-order infinitesimals

of g0Mej=m. The correct approximation can be obtained only by

retaining all the first- and second-order infinitesimals, which in

fact gives g < 1� �g0Mej=m�2=2; then we have b / R23. This is

not consistent with the Sedov solution! We have also evaluated

equation (1) numerically: the result is consistent with equations

(4) and (5), all pointing to b / R23, not the relation b / R23=2 as

often quoted in the literature (Chiang & Dermer 1999; Piran

1999).

This discrepancy is serious. First, it means that equation (1) is

not a dependable model for non-radiative fireballs, although it can

reproduce the major features in the ultrarelativistic phase.

Secondly, the expansion of a realistic fireball is widely believed

to be highly radiative at first, but after only a few days the

expansion will become non-radiative (Sari, Piran & Narayan

1998; Dai et al. 1999). In the non-relativistic phase, therefore, the

fireball is likely to be adiabatic rather than highly radiative.

However, it is under just this condition that the conventional model

fails. So any calculation made according to equation (1) will lead to

serious deviations in the light curves in the non-relativistic phase.

3 O U R G E N E R I C M O D E L

Equation (1) is not consistent with the Sedov solution, and we

need to revise it. In the fixed frame, since the total kinetic energy

of the fireball is EK � �g 2 1��Mej � m�c2 � �1 2 e�gU (Panai-

tescu, MeÂszaÂros & Rees 1998), and the radiated thermal energy is

eg�g 2 1� dmc2 (Blandford & McKee 1976), we have

d��g 2 1��Mej � m�c2 � �1 2 e�gU� � 2eg�g 2 1� dm c2: �6�
For the variable U, it is usually assumed that dU � �g 2 1� dm c2

(Panaitescu et al. 1998). Equation (1) has been derived just in this

way. However, the jump conditions (Blandford & McKee 1976) at

the forward shock imply that U � �g 2 1�mc2, so we suggest that

the correct expression for dU should be dU � d��g 2 1�mc2� �
�g 2 1� dmc2 � mc2 dg: Here we simply use U � �g 2 1�mc2 and

substitute it into equation (6); then it is easy to obtain

dg

dm
� 2

g2 2 1

Mej � em� 2�1 2 e�gm
: �7�

We expect this equation to describe a generic fireball correctly.

Indeed, in the highly radiative case �e � 1� equation (7) reduces

to equation (2) exactly, while in the adiabatic case �e � 0�
equation (7) reduces to

dg

dm
� 2

g2 2 1

Mej � 2gm
: �8�

This equation has an analytic solution:

�g 2 1�Mejc
2 � �g2 2 1�mc2 ; EK0; �9�

where EK0 is the initial value of EK. In the ultrarelativistic phase

�g0Mej .. m .. Mej=g� we obtain the familiar relation g / R23=2;
and in the non-relativistic phase �m .. Mej� we obtain b / R23=2

as required by the Sedov solution.

For any other e-value between 0 and 1, equation (7) describes

the evolution of a partially radiative fireball. Unfortunately, we

now cannot find an exact analytic solution for equation (7). In the

non-relativistic phase, however, by assuming that m .. Mej, we

can still get m�g 2 1��22e�=2 ; constant; that is,

b / R23=�22e�: �10�

4 N U M E R I C A L R E S U LT S

We have evaluated equation (7) numerically, bearing in mind that

(Huang et al. 1998b)

dm � 4pR2nmp dR; �11�

dR � bcg g�
��������������
g2 2 1

p� �
dt; �12�

where n is the number density of the interstellar medium, mp is the

mass of a proton, and t is the time measured by an observer. We

take E0 � 1052 erg; n � 1 cm23 and Mej � 2 � 1025 M(. Figs 1±

4 illustrate the evolution of g , v, R and EK respectively. In these

figures, we have set e � 0 (full lines), 0.5 (dotted lines) and 1

(dashed lines). It is clearly shown that our generic model

overcomes the shortcomings of equation (1).

For example, for highly radiative expansion, the dashed lines in

these figures approximately satisfy g / t23=7; R / t1=7; g / R23;
EK / t23=7 when g .. 1; and v / t23=4; R / t1=4; v / R23;
EK / t23=4 when g , 1. For adiabatic expansion, the full lines

satisfy g / t23=8; R / t1=4; g / R23=2 when g .. 1; and v /
t23=5; R / t2=5; v / R23=2 when g , 1.

5 D I S C U S S I O N A N D C O N C L U S I O N

The conventional dynamical model is successful at describing
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highly radiative GRB remnants, but it has difficulty in reproducing

the Sedov solution for adiabatic fireballs. This has gone

completely unnoticed in the literature. We have constructed a

new generic model to overcome this shortcoming. Numerical

evaluation has proved that our model is highly credible. We hope

that this work will remind researchers of the importance of the

transition from the ultrarelativistic to the non-relativistic phase,

which might occur as early as 106±107 s after the initial burst

(Huang, Dai & Lu 1998a).

In the above analysis, for simplicity, we have assumed that e is

a constant. In realistic fireballs, however, e is expected to evolve

from 1 to 0 owing to the changes in the relative importance of

synchrotron-induced and expansion-induced loss of energy (Dai

et al. 1999). Assuming that electrons in the comoving frame carry

a fraction je � 1 of the total thermal energy and that the magnetic

energy density is a fraction j2
B � 0:01 of it, we re-evaluate

equation (6) numerically. The results are plotted in Figs 1±4 with

dash±dotted lines. We see from Fig. 4 that the evolution of e
changes EK(t) dramatically.

It is worth mentioning that SNRs evolve from the non-radiative

to the radiative stage, but GRB remnants are just the opposite.

This is not surprising, because GRB remnants radiate mainly

through synchrotron radiation while SNRs lose energy as a result

of excited ions. It is reasonable to deduce that at very late stages,

when the cooling resulting from ions becomes important, GRB

remnants may become highly radiative again, in the same way as

SNRs do. The transition may occur when the temperature drops to

below , 106 K and the velocity is just several tens of kilometres

per second. This needs to be addressed in more detail.

Another interesting problem is the possibility that HI super-

shells might be highly evolved GRB remnants (Loeb & Perna

1998; Efremov, Elmegreen & Hodge 1998). Our Figs 3 and 4 have

shown that typical adiabatic GRB fireballs can evolve to R , 1 kpc

at t , 106±107 yr; with v , 10 km s21; but highly radiative

fireballs are obviously not powerful enough. To discuss this in

detail, we should pay attention to the possible adiabatic-to-

radiative transition mentioned above.
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Figure 1. Evolution of the bulk Lorentz factor g. We take E0 � 1052 erg;

n � 1 cm23 and Mej � 2 � 1025 M(. The full, dotted and dashed lines

correspond to e � 0 (adiabatic), 0.5 (partially radiative) and 1 (highly

radiative) respectively. The dash±dotted line is plotted by allowing e to

evolve with time (see Section 5).

Figure 2. Evolution of the bulk velocity v. Parameters and line styles are

the same as in Fig. 1.

Figure 3. Evolution of the shock radius R. Parameters and line styles are

the same as in Fig. 1.

Figure 4. Evolution of the total kinetic energy EK. Parameters and line

styles are the same as in Fig. 1.
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