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Abstract—Wireless sensor networks (WSNs) are widely used for
various applications. In some applications, it is very likely that the
number of sensors is limited, the initial deployment is random,
and deployment “holes” (i.e., subareas where there is no sensor)
may exist. Therefore, a major challenge in WSNs is to improve the
network coverage. A viable solution is to enhance some sensors
with mobility capability so that they can move inside the WSNs
after the initial deployment, which is referred to as mobile sensor
redeployment. In this paper, we target at a generic framework for
the optimal mobile sensor redeployment problem in WSNs. In
particular, in this paper, the area of a WSN is partitioned into
a number of grids, and the gap of each grid is defined as the
difference of the number of sensors in the grid from the desired
number of sensors. Then, the mobile sensor redeployment problem
is formulated as an optimization problem with three optimization
requirements: to minimize the sum of gaps of all grids, to minimize
the Lp-norm (1 ≤ p ≤ ∞) of the gap vector (where Lp-norm
represents a family of optimization objectives when p takes dif-
ferent values), and to minimize the total movement cost of all
mobile sensors. Bipartite matching-based redeployment (BMrD)
algorithms are provided to solve the optimization problems with
different values of p. In this paper, the framework is generic for
mobile sensor redeployment because 1) the mobility capabilities
of the sensors, the initial sensor distribution, the movement cost
measures, and the sensor types are all arbitrary; 2) the coverage
requirements in different grids can be heterogeneous; and 3) the
BMrD algorithms are generic for different p values. The effec-
tiveness of the BMrD algorithms is validated through theoretical
proofs and extensive simulations.

Index Terms—Bipartite graph, coverage, flow network, mobil-
ity, wireless sensor networks (WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are widely used
in various applications [1]–[4]. In some applications

(such as military sensing and tracking, fire/earthquake search
and rescue, and data collections in hazardous environments),
the WSNs may only have a random initial deployment of the
sensors due to the probability of high cost or high risk in
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sensor deployment in these applications. Some subareas may
be insufficiently covered by sensors, and some subareas may
even have no sensors (i.e., deployment “holes” may exist). To
improve coverage, a large amount of sensors can be deployed
so that the desired coverage requirement can be met with a high
probability [5], [6]. This approach, however, might be costly
and inefficient due to the normally uncontrollable random
deployment. Another solution is to enhance some sensors with
mobility capability. These mobile sensors can move inside the
WSNs after the initial deployment. This procedure is referred to
as mobile sensor redeployment, which is the focus of this paper.

The problem of mobile sensor redeployment has received
much attention recently. A number of movement schemes
have been proposed in the literature, typically based on three
basic techniques [7]: virtual force [8]–[10], coverage pattern
[11]–[13], or grid architecture [14]–[20]. Virtual force move-
ment schemes use repulsive and attractive forces to make nodes
distributed evenly. In particular, when two nodes are too close
(or far away), they expel (or attract) each other. The main idea
of coverage pattern movement schemes is to divide the sensor
area into some regular shapes (e.g., equilateral triangle, regular
hexagon, etc.) and then to move sensors to the vertices of the
shapes such that the coverage target is achieved. On the other
hand, the sensor area in a grid architecture-based scheme is
partitioned into a number of small grids. A grid is said to be
covered if it has one or more sensors in it, and the whole sensor
area is said to be covered if each grid is covered. In addition,
some applications may require each grid be covered by mul-
tiple sensors for the purposes of improved sensing accuracy,
balanced sensor load, and/or prolonged network lifetime. In
this paper, we focus on grid architecture-based mobile sensor
redeployment.

Several movement algorithms have been proposed in the
literature based on grid architecture. In [15], an optimal move-
ment solution is proposed, and the objective is to make each
grid covered by the same number of sensors and minimize the
movement cost. All sensors are assumed to be mobile, and
any sensor has the capability to move to any grid in the area.
However, it is likely in practical systems that only a portion
of sensors are mobile and with limited mobility capabilities.
Taking limited mobility capability into account, the mobile
sensor redeployment problem is studied in [16] and [17]. A
flip-based network scenario is considered, and a mobile sensor
can only hop from one grid to another. In [16], a movement
algorithm is proposed, which can maximize the number of
covered grids by using the minimum number of hops. A more
general algorithm is given in [17], focussing on the minimum
number of hops and the minimum variance of the numbers
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Fig. 1. Redeployment examples.

of sensors in the grids. The above two algorithms can only
be applied to flip-based networks. Different from the existing
works in the literature, we target at a generic framework for the
optimal mobile sensor redeployment in WSNs.

In this paper, the grid architecture-based mobile sensor re-
deployment problem is generalized with the following three
requirements. First, mobile sensors are the resources for im-
proving network coverage. Therefore, it is desired to make the
maximal use of these resources. More specifically, redundant
mobile sensors in a grid should be moved as many as possible
into uncovered or less-covered grids. Second, besides satisfying
the first requirement, it is also desired to achieve some sensor
distribution property. For instance, in some applications, it is
preferred that the sensors are distributed as evenly as possi-
ble such that the work load of the sensors can be balanced,
whereas in other applications whose emphasis is on network
survivability, it is preferred to maximize the number of sensors
in the worst covered grid(s). Third, the total movement cost of
mobile sensors for meeting the above two requirements should
be minimized. It can be seen that the first requirement has the
highest priority, while the third requirement has the lowest.

Fig. 1 shows a simple example, where a WSN has four grids,
denoted as g1, g2, g3, and g4. The target of each grid is to
have at least three sensors through a movement plan of mobile
sensors. In the initial deployment, grid 1 or 3 has no sensor;
grid 2 has two static sensors (denoted by the gray color) and
two mobile sensors (i.e., m1 and m2; denoted by the white
color); and grid 4 has a static sensor and a mobile sensor
(i.e., m3). It is assumed that 1) a mobile sensor can move at
most once and can move only to one of its neighboring grids,
and 2) the movement cost is measured by the total number of
movements. It is worth noting that these assumptions are just
to simplify the example, and they are actually not necessary in
our algorithm. Apparently, in this example, it is not feasible to
make each grid covered by at least three sensors. In this context,
we may have different movement plans according to different
requirements.

• When our target is to move as many redundant mobile
sensors as possible into less-covered grids (the first re-
quirement) and to minimize the movement cost (the third
requirement): In this example, only g2 has one redundant
sensor, and thus, moving a mobile sensor from g2 to g1 (or
to g4) can meet the first requirement, as shown in Fig. 1(a).
This movement scheme also has the minimum movement
cost (one hop) for fulfilling the first requirement, which
satisfies the third requirement.

• When our target is to move as many redundant mobile
sensors as possible into less-covered grids (the first re-
quirement), to make the sensors distributed as evenly as
possible (the second requirement), and to minimize the
movement cost (the third requirement): One solution is to
move the two mobile sensors in grid g2 to grids g1 and
g4, respectively, and move mobile sensor m3 to grid g3, as
shown in Fig. 1(b). In this solution, no grid has redundant
sensors, and thus, the first requirement is satisfied. The
numbers of sensors in the four grids are 1, 2, 1, and 2,
respectively, which apparently satisfies the second require-
ment. It can also be seen that the minimum movement
cost (three hops) is used, and thus, the third requirement
is satisfied.

• When our target is to move as many redundant mobile
sensors as possible into less-covered grids (the first re-
quirement), to maximize the number of sensors in the
worst covered grid(s) (the second requirement), and to
minimize the movement cost (the third requirement): One
solution is to move a mobile sensor from grid g2 to grid
g1 and move mobile sensor m3 to grid g3, as shown in
Fig. 1(c). In this solution, no grid has redundant sensors,
and thus, the first requirement is satisfied. Either of the two
worst covered grids (grids g1 and g3) has a sensor node,
which satisfies the second requirement. It can also be seen
that the minimum movement cost (two hops) is used, and
thus, the third requirement is satisfied.

To solve problems with different requirements, we present
in this paper a generic framework for the optimal mobile
sensor redeployment in WSNs. First, the gap of each grid is
defined as the difference of the number of sensors in the grid
from the desired number of sensors. Then, the general mobile
sensor redeployment problem is formulated as an optimization
problem with three optimization requirements: to minimize the
sum of gaps of all grids, to minimize the Lp-norm (1 ≤ p ≤
∞) of the gap vector (where Lp-norm represents a family
of optimization objectives when p takes different values), and
to minimize the total movement cost of all mobile sensors.
These three optimization objectives, respectively, correspond to
the three requirements of the general redeployment problem.
Bipartite matching-based redeployment (BMrD) algorithms are
provided to solve the optimization problems with different
values of p. The framework in this paper is generic because 1) a
family of optimization objectives are represented in a generic
form; 2) the mobility capabilities of the sensors, the initial
sensor distribution, the movement cost measures, and the sensor
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TABLE I
SUMMARY OF IMPORTANT SYMBOLS USED

types are all arbitrary; 3) the coverage requirements in different
grids can be heterogeneous; and 4) the algorithms to solve the
optimal redeployment problems are also generic for different
optimization objectives.

The rest of this paper is organized as follows. The problem
statement is given in Section II. Optimal algorithms to solve the
redeployment problems are provided in Section III. Some prop-
erties of the optimal algorithms are discussed in Section IV.
Performance evaluation is provided in Section V. Related
works are discussed in Section VI, followed by conclusions in
Section VII. Important symbols used in this paper are summa-
rized in Table I.

II. PROBLEM STATEMENT

A hybrid WSN is considered, which includes static sensors
and mobile sensors. A mobile sensor can move inside the
WSN. It is assumed that the movement capabilities of the
mobile sensors may be different from each other. Here,
the movement capability of a mobile sensor means the
largest distance that the mobile sensor can move. Similar
to [14]–[17], it is assumed that each sensor has a sensing
range denoted Rs and a transmission range denoted Rt. The
deployment region of the WSN is a square with the side
length being W . The deployment region is partitioned into
n smaller square-shaped grids denoted g1, g2, . . . , gn, each
with the side length being min{Rs/

√
2, Rt/

√
5}. Thus,

n = �W/min{Rs/
√

2, Rt/
√

5}�2, where �·� is the ceiling
function. By this setting, any sensor in a grid is able to sense
each corner of the grid and is also able to communicate with
any sensor in any of its neighboring grids (i.e., the top-side,
bottom-side, left-hand side, and right-hand side grids).

If a grid has x sensors, we say that the grid is x-covered.
In this paper, our objective is to design a movement plan,
which is denoted P , of the mobile sensors to make each grid
at least k-covered. Here, k (≥ 1) is a predefined constant. For
a grid gi (i ∈ {1, 2, . . . , n}), let |gi| denote the number of
sensors in it. The nonnegative-valued gap of grid gi, which is

denoted ri, is defined as the difference of |gi| from k. That
is, ri = max{k − |gi|, 0}. For instance, after the movements
shown in Fig. 1(a), the gap of g1, g2, g3, and g4 is 2, 0, 3, and
1, respectively.

Recall that the general redeployment problem has three re-
quirements. The first requirement is to move redundant mobile
sensors as many as possible into uncovered or less-covered
grids. When a redundant mobile sensor moves into an un-
covered or less-covered grid, then the gap of the destination
grid will decrease by one. Therefore, the first requirement is
equivalent to minimizing the sum of the gaps of all grids. For
example, all of the three movement schemes shown in Fig. 1
meet the first requirement. They all have the minimum sum of
gaps (i.e., six).

The second requirement is on sensor distribution subject to
satisfying the first requirement. In some cases, it is required
to make a balanced sensor distribution, which is equivalent
to minimizing the gap variance, whereas in other cases, it is
required to make the “worst” grid have the maximum coverage,
which is equivalent to minimizing the maximum gap of the
grids. In this paper, these requirements are generalized as min-
imizing the Lp-norm of the gap vector r = {r1, r2, . . . , rn},
which is defined as ‖r‖p = (rp

1 + rp
2 + · · · + rp

n)1/p, 1 ≤ p ≤
∞. Typical values of p are p = 1, p = 2, and p = ∞. It can
be seen that minimizing ‖r‖1 means minimizing the sum of
gaps of all the grids, minimizing ‖r‖2 means minimizing the
gap variance, and minimizing ‖r‖∞ means minimizing the
maximum gap.

The third requirement is to minimize the total movement
cost subject to satisfying the above two requirements. In a
movement plan P , a movement cost is associated with a mobile
sensor, which can be the moving distance, or the consumed
energy, or the number of hops,1 etc. Therefore, the third require-
ment is to minimize the movement cost of the movement plan
P , denoted cm(P), which is the sum of the movement costs of
all mobile sensors.

As a summary, we need to find a movement plan P with
three optimization requirements, i.e., to minimize the sum of
the gaps, the Lp-norm of the gap vector, and the movement cost.
In particular, a three-step optimization problem is formulated as
follows.

Step 1) Minimizing the sum of gaps, i.e.,

minimize
P

n∑
i=1

ri

subject to moving capability of each mobile sensor.

Let F1 denote the set of all optimal movement plans
in step 1.

Step 2) Minimizing the Lp-norm of the gap vector, i.e.,

minimize
P∈F1

‖r‖p. (1)

Let F2 denote the set of all optimal movement plans
in step 2.

1A hop is defined as a movement from a grid to one of its neighboring grids.
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Fig. 2. Optimal movement plan for (a) p = 1, (b) p = 2, and (c) p = ∞, when the WSN has nine grids and 17 mobile sensors.

Step 3) Minimizing the movement cost, i.e.,

minimize
P∈F2

cm(P). (2)

It can be seen that, in the preceding formulation, minimizing
the sum of gaps has the highest priority, whereas minimizing the
movement cost has the lowest priority. Note that, when p = 1,
steps 1 and 2 are the same.

When p = 2, we have an interesting observation: Step 2 is
equivalent to maximizing the Jain’s fairness index [21] of the
grid gaps, which is defined as

FI =
(
∑n

i=1 ri)
2

n
∑n

i=1 r2
i

. (3)

A higher fairness index value means better fairness perfor-
mance. When ri’s are all equal to each other, the fairness
index achieves its maximum value, which is 1. In step 2,
all the feasible movement plans are from F1. They have the
same (minimum) value of

∑n
i=1 ri and, thus, have the same

numerator in (3). Therefore, minimizing the L2-norm of the gap
vector is equivalent to minimizing the denominator in (3) and,
thus, is equivalent to maximizing the fairness index.

Different values of p will result in different optimal move-
ment plans for the three-step optimization problem. The three
examples in Fig. 1 correspond to p = 1, p = 2, and p = ∞,
respectively. It can be clearly seen that the optimal movement
plan depends on the value of p. Another example is given in
Fig. 2 in which a WSN has 9 grids and 17 mobile sensors.
In this example, the coverage task is k = 3, and each mobile
sensor can move at most once and can move only to one of its
neighboring grids.

Note that when it is feasible to meet the coverage require-
ments of all grids (i.e., each grid is at least k-covered), then
the optimal values of steps 1 and 2 will both be 0, regardless
of the value of p. In this case, the three-step optimization will
find a solution that meets the coverage requirements of all grids
(thereby achieving the optimality in steps 1 and 2) and has the
minimum movement cost. When it is infeasible to meet the
coverage requirements of all grids, the three-step optimization
will find a solution that achieves the optimization objectives in
the three steps.

Generally, it is challenging to solve a multistep optimization
problem due to the complexity that is involved in each step (e.g.,
we need to get all the optimal solutions in steps 1 and 2 of the
aforementioned three-step optimization problem). To address
this challenging issue, in Section III, bipartite matching-based
algorithms are provided to find optimal solutions for the three-
step optimization problems with different values of p.

III. BIPARTITE MATCHING-BASED

REDEPLOYMENT ALGORITHMS

Here, optimal algorithms are presented to solve the afore-
mentioned three-step optimization problems with different p
values. In particular, a bipartite graph is first constructed to
model the movement capabilities of the mobile sensors. Then,
based on the bipartite graph, a flow network is formed. An
optimal matching of the flow network determines an optimal
movement plan for the three-step optimization problem. This
algorithm is referred to as the Bipartite Matching-based Re-
Deployment (BMrD) algorithm, denoted BMrDk,p when the
target of each grid is to be at least k-covered, and the Lp-norm
of the gap vector is to be minimized in step 2 of the three-
step optimization problem. In the following two subsections,
the BMrDk,p algorithm with 1 ≤ p < ∞ is presented first,
followed by the BMrDk,∞ algorithm. Note that a bipartite
graph, a flow network, and matching are usually used to solve
machine-scheduling problems and personnel-assignment prob-
lems [22]. Here, the methods are adopted to solve our three-step
optimization problem.

A. BMrDk,p Algorithm (1 ≤ p < ∞)

The pseudocode of the BMrDk,p (1 ≤ p < ∞) algorithm is
shown in Algorithm 1 in Table II. Three phases are included
in the algorithm: bipartite graph construction, flow network
formation, and optimal matching computation.

1) Bipartite Graph Construction (Lines 1–5 in
Algorithm 1): Let M = {mj : mj is a mobile sensor}
denote the set of mobile sensors, and let G = {gi :
the number of static sensors in gi is less than k} denote
the set of grids that are needed to be considered, in which any
grid has less than k static sensors. Note that any grid with k
or more static sensors is not considered, since it is already at



SHEN et al.: GENERIC FRAMEWORK FOR OPTIMAL MOBILE SENSOR REDEPLOYMENT 4047

TABLE II
ALGORITHM 1: BMrDk,p, k ≥ 1, 1 ≤ p < ∞

least k-covered. Then, a bipartite graph Gb = (Vb, Eb) can be
constructed such that

• for the vertex set Vb : Vb = M ∪ G;
• for the edge set Eb: if a mobile sensor mj ∈ M is capable

of moving to grid gi ∈ G, then there is a directed edge
(mj , gi) in Eb.

Clearly, the bipartite graph is used to represent the moving
capabilities of the mobile sensors. The WSN with k = 3 in
Fig. 1 is used as an example, and its initial deployment is
repeated in Fig. 3(a). The associated bipartite graph is shown
in Fig. 3(b). The mobile sensor set (i.e., M) is listed on the
left-hand side, whereas the set of grids that are needed to
be considered (i.e., G) is listed on the right-hand side. Note
that, although grid g2 has 4 (> k = 3) sensors in the initial
deployment, it still needs to be included in G since the two
mobile sensors (i.e., sensors m1 and m2) may move to other
grids. Consider mobile sensor m1 as an example to demonstrate
how to determine the edges in the bipartite graph. m1 may move
to grid g1 or g4, or stay in grid g2. Therefore, in the bipartite
graph, there are directed edges from m1 to g1, g2, and g4.

In the bipartite graph, the value beside a grid is the mobile
sensor demand of the grid, which is defined as the number of
mobile sensors that are needed in the grid to make the grid
k-covered. Therefore, the mobile sensor demand is equal to the
difference of the number of static sensors in the grid from k. In
Fig. 3(a), grids g1 and g3 have no static sensors and, thus, have
the mobile sensor demand being 3. Grids g2 and g4 have two
and one static sensors and, thus, have mobile sensor demand
being 1 and 2, respectively.

2) Flow Network Formation (Lines 6–16 in Algorithm 1):
Based on the bipartite graph Gb, a flow network can be formed,
with the graph denoted Gf = (Vf , Ef ). In particular, we have
the following.

• Vf = Vb ∪ {s, t}, i.e., two special nodes are added, which
are a source node s and a sink node t.

• Ef = Eb ∪ {(s,mj)|mj ∈ M} ∪ {(gi, t)|gi ∈ G}, i.e., an
edge is added from source node s to each mobile sensor,
and an edge is added from each grid to the sink node t.

For the example WSN in Fig. 3(a), the graph of the associated
flow network is shown in Fig. 3(c).

In the flow network, each edge is associated with a capacity.
The capacity assignment rule is as follows.

• The capacity of edge (s,mj), which is denoted u(s,mj),
is equal to a unit.

• The capacity of edge (mj , gi), which is denoted u(mj , gi),
is equal to a unit.

• The capacity of edge (gi, t), which is denoted u(gi, t), is
equal to the mobile sensor demand of grid gi.

In the flow network shown in Fig. 3(c), the values on edges
(gi, t)’s mean the edge capacities, whereas the capacity of any
other edge is a unit (which is not shown in the figure).

Consider the cases when flows are sent out from the source
node s to the sink node t. Here, a flow follows a path from s to t
and has a unit amount. Therefore, if there are multiple flows on
an edge in Ef , then the amount of flows on the edge is an integer
larger than 1. If there is no flow on an edge, then the amount of
flows on the edge is said to be zero. With this setting, a set of
flows from s to t is considered feasible if 1) for each vertex in
Vf other than s or t, the amount of its incoming flows is equal
to the amount of its outgoing flows, and 2) the flow amount on
any edge in Ef does not exceed the capacity of the edge.

Define a matching as a subset of the edge set {(mj , gi)|mj ∈
M, gi ∈ G}. Therefore, from a feasible flow set, a matching can
be determined as follows: An edge (mj , gi) is included in the
matching if and only if it has a nonzero amount of flows in
the feasible flow set. Since the capacity of an edge (mj , gi)
is a unit, any edge in a matching has a unit amount of flows
or, equivalently, has a flow. Then, interestingly, a matching can
be used to represent a feasible movement plan of the mobile
sensors. In particular, if edge (mj , gi) is in a matching, then it
means that mobile sensor mj moves to grid gi in the associated
movement plan. Based on this observation, it can be seen that
the physical meaning of the unit capacity of edge (s,mj) and
edge (mj , gi) is to specify that each mobile sensor can move to
only one grid (or equivalently, in a matching, there is at most
one edge that originates from a vertex mj), and the physical
meaning of the capacity of edge (gi, t) is to specify grid gi’s
maximum demand for mobile sensors. Due to the mapping of a
feasible set of flows to a matching, and to a feasible movement
plan, the three terms are interchangeably used in the sequel and
are all denoted by P .

Each edge in the flow network is also associated with a cost,
as follows.

• The cost of edge (s,mj) does not have a physical mean-
ing, and thus, its value is assigned as zero.

• The cost of edge (mj , gi), which is denoted cm(mj , gi),
is the movement cost of mobile sensor mj if it moves to
grid gi.

• The cost of edge (gi, t), which is denoted cg(gi, t), is
defined as D · [u(gi, t) − f(gi, t)]p, where f(a, b) means
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Fig. 3. WSN when the target of each grid is to be at least 3-covered. (a) Initial deployment; (b) bipartite graph; (c) flow network.

Fig. 4. Optimal set of flows in the flow network in Fig. 3(c) when (a) p = 1, (b) p = 2, and (c) p = ∞.

the amount of flows on an edge (a, b) ∈ Ef , and D is a
constant given by

D = (|M| + 1) · (the maximal possible movement

cost of a mobile sensor) (4)

where |M| is the number of elements in M.

We refer to the cost of edge (gi, t), i.e., cg(gi, t), as the
gap cost since it is related to the gap of grid gi, as shown in
the following. Recall that the capacity of edge (gi, t) is the
difference of the number of static sensors in grid gi from k and
that a unit amount of flows into grid gi means moving a sensor
to the grid. Therefore, we have

u(gi, t) − f(gi, t) = ri. (5)

Note that, here, ri means the gap of grid gi after the asso-
ciated movement plan is implemented. Therefore, the cost of
edge (gi, t) is equal to D · rp

i , which is related to the gap of
grid gi.

The motivation of designing the gap cost is to achieve the
objective of step 2 in the three-step optimization problem, that
is, minimizing the Lp-norm of the gap vector, i.e., ‖r‖p. Since
‖r‖p = (rp

1 + rp
2 + · · · + rp

n)1/p, for 1 ≤ p < ∞, minimizing
‖r‖p is equivalent to minimizing (rp

1 + rp
2 + · · · + rp

n). Con-
sidering that the gap cost of grid gi is D · rp

i and that D is a
constant (will be explained later), a feasible set of flows that can
minimize the total gap cost of all grids will also minimize ‖r‖p,
1 ≤ p < ∞. Next, we will discuss how to find such a feasible
set of flows.

3) Optimal Matching Computation (Lines 17 and 18 in
Algorithm 1): For the flow network, we can find an opti-

mal feasible set of flows from s to t, which is denoted P∗,
which maximizes the total amount of flows from s to t (given
by

∑
mj∈M

f(s,mj)) and also minimizes the following cost
function:

C(P∗) =
∑

mj∈M,gi∈G

f(mj , gi) · cm(mj , gi) +
∑
gi∈G

cg(gi, t).

(6)

The cost of the flows (or the corresponding movement plan)
given in (6) consists of two components: the movement cost and
the gap cost. It can be seen that the gap cost and the movement
cost correspond to the objective functions in steps 2 and 3 of the
three-step optimization problem in Section II, respectively. This
means that C(P∗) manages to combine the two objectives in
the three-step optimization problem in a single form. However,
according to the three-step optimization problem, step 2 should
have a higher priority over step 3, that is, it is required to
minimize first the Lp-norm of the gap vector and then to
minimize the movement cost. To guarantee this priority, we
have introduced in the gap cost function a constant D [defined
in (4)] that is a strict upper bound of the total movement cost,
which makes the flow computation first minimize the total gap
cost and then minimize the total movement cost.

As an example, Fig. 4 gives the optimal feasible set of
flows in the flow network in Fig. 3(c) when p = 1, p = 2, or
p = ∞. Based on the optimal feasible set of flows, the optimal
matching and the optimal movement plan can be determined.
For instance, when p = 1, as shown in Fig. 4(a), the optimal
matching is the set {(m1, g1), (m2, g2), (m3, g4)}, and the
optimal movement plan is to move mobile sensor m1 to grid
g1 and keep mobile sensors m2 and m3 stay in grids g2 and g4,
respectively.
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Since the flow cost of each edge is a convex function of
the amount of flows through it,2 the capacity scaling algorithm
given in [22] can be used to find the optimal flow set with the
maximum amount of flows and minimum cost, with computa-
tion complexity O((|Ef |2 + |Ef | · |Vf | · log |Vf |) log k). This
is also the complexity of the BMrDk,p algorithm, since the
complexity of bipartite graph construction and flow network
formation is negligible.

Theorem 1: The movement plan that is determined in
BMrDk,p (1 ≤ p < ∞) is an optimal movement plan for the
three-step optimization problem defined in Section II.

Proof: See the Appendix.

B. BMrDk,∞ Algorithm

When p = ∞, the objective of step 2 is to minimize ‖r‖∞,
i.e., minimizing the maximum gap of all grids. This objective
is equivalent to finding the maximal possible coverage, for
example, α∗, that each grid can at least be. In other words, there
exists a movement plan that can make each grid at least α∗-
covered, but there does not exist a movement plan that can make
each grid at least (α∗ + 1)-covered. Then, when the maximum
gap is minimized, it is equal to k − α∗.

Because α∗ is an integer value between 0 and k, we can use
a binary search method to find this value. At each search value,
for example, α, we need to determine whether there exists a
movement plan that can make each grid at least α-covered. To
do this, we still use the method in the preceding subsection.
The difference from the procedure in the preceding subsection
lies in that we use a convex function hα(x) (to be defined) with
parameter α as the gap cost function. Based on the new convex
gap cost function, we can determine whether each grid can be
at least α-covered.

The function hα(x) (in which x ∈ [0, k] means the grid
gap,3 and α ∈ [0, k] is an integer parameter) is defined as any
continuous, increasing, and convex function that satisfies the
following: {

hα(x) = Ax, if 0 ≤ x ≤ k − α
hα(x) ≥ Ax + 1, if x = k − α + 1 (7)

where A is a constant with a positive value. The definition is
demonstrated in Fig. 5. We can see that, when 0 ≤ x ≤ k − α,
hα(x) is a line from (0, 0) to (k − α,A(k − α)). When k −
α + 1 ≤ x ≤ k, the above definition implies that hα(x) should
be in the shaded area with the left lower corner being (k − α +
1, A(k − α + 1) + 1).

A lot of functions can satisfy the above condition (7) of
hα(x). For instance, a realization of hα(x) is the modified
Huber function [23] given by

hα(x) =
{

(k − α)x, 0 ≤ x ≤ k − α
x2, k − α ≤ x ≤ k

(8)

as demonstrated in Fig. 6 when k = 4 and α = 2.

2The flow cost of edge (gi, t) is D · [u(gi, t) − f(gi, t)]
p, which is a

convex function of the amount of flows. The flow cost of edge (mi, gi) is equal
to f(mj , gi) · cm(mj , gi), which is a linear function of the amount of flows,
as well as a convex function of the amount of flows.

3Note that, although x is used to stand for the integer-valued grid gap, the
function hα(x) is still defined on continuous x values.

Fig. 5. Function hα(x).

Fig. 6. Modified Huber function when k = 4 and α = 2.

TABLE III
ALGORITHM 2: BMrDk,∞

Based on the convex function hα(x), in the BMrDk,∞ al-
gorithm, we use a binary search method to find the maximum
value of α such that each grid can be at least α-covered. The
algorithm is detailed in Algorithm 2 in Table III.

In the initialization phase of the algorithm (lines 1–3), similar
to BMrDk,p (1 ≤ p < ∞), the bipartite graph and the flow
graph are constructed, except that the gap cost of edge (gi, t)
is to be determined. A lower bound and an upper bound of α
in the binary search are initially set up as L = 0 and U = k,
respectively.

In the loop of the algorithm (lines 4–11), a binary search is
conducted to find the maximum α, which is denoted α∗, such
that each grid can be at least α∗-covered. The binary search
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starts with α = �k/2�. Then, the gap cost of an edge (gi, t) in
the flow network is assigned as cg(gi, t) = D · hα(u(gi, t) −
f(gi, t)), and the optimal matching of the flow network can
be obtained. If the associated movement plan can make each
grid at least α-covered, we set L ← α and α∗ ← α; otherwise,
we set U ← α − 1. This procedure is repeated until U = L.
Then, the optimal matching when hα∗(x) is used as the gap
cost function4 will devise the optimal movement plan of the
three-step optimization problem with p = ∞, to be proved.

In the BMrDk,∞ algorithm, the binary search has log k
rounds. The computation complexity in each round is
O((|Ef |2 + |Ef | · |Vf | · log |Vf |) log k). Therefore, the to-
tal computation complexity of the BMrDk,∞ algorithm is
O((|Ef |2 + |Ef | · |Vf | · log |Vf |) log2 k).

Before we prove the optimality of the above algorithm, we
provide some insights into the gap cost function hα(x). We
use the modified Huber function in (8) as an example. Recall
that our objective in each round of the binary search is to find
a movement plan that can make each grid at least α-covered.
From (8), it can be seen that the gap cost function linearly
increases with grid gap x when the grid is more than α-covered
(i.e., the gap is smaller than k − α) and increases faster when
the grid is less than α-covered (i.e., the gap is larger than
k − α). Because there is more penalty for less than α-covered
grids, the algorithm tends to make each grid at least α-covered.

Theorem 2: The movement plan determined by the
BMrDk,∞ algorithm is an optimal movement plan for the three-
step optimization problem with p = ∞.

Proof: See the Appendix.

C. Extension to the Case With Heterogeneous Sensors

In our problem statement in Section II, except for the
different mobility capabilities, all sensors are homogeneous.
However, in some scenarios, there might be different types of
sensors (for example, to sense smoke, temperature, pressure,
etc.). Suppose that there are L types of sensors. Each grid is
desired to be kl-covered by type l sensors, l ∈ {1, 2, . . . , L}.
Let ri,l denote the gap of grid gi in terms of type l sensors,
which is defined as the difference of the number of type l
sensors in grid gi from kl. The overall gap of grid gi is
given by ri =

∑L
l=1 ri,l. Then, similar to Section II, a three-

step optimization problem can also be formulated, in which
step 2 is to minimize the Lp-norm of the overall gap vector
(r1, r2, . . . , rn). The BMrD algorithms can still be used to
solve the problems for different p values, with the following
modifications.

In the bipartite graph, a column of subgrids is inserted
between the column of the mobile sensors and the column of
grids. Here, subgrids are virtual representation of grids. Each
grid (for example, grid gi) is represented by a number L of
subgrids (for example, subgrids gi,1, gi,2, . . . , gi,L), each for a
sensor type. If a mobile sensor mj is of type l and is capable
of moving to grid gi, then there is a directed edge from mj to

4For presentation simplicity, when we say “hα(x) is used as the gap
cost function,” it means “D · hα(u(gi, t) − f(gi, t)) is used as the gap cost
function for edge (gi, t).”

subgrid gi,l. For each grid gi, there is a directed edge from each
of its subgrids to itself.

In the bipartite graph, the mobile sensor demand of a subgrid
gi,l is the difference of the number of type-l static sensors
in grid gi from the value kl. Furthermore, the mobile sensor
demand of a grid is the summation of the mobile sensor demand
values of its subgrids in the bipartite graph.

After source s and sink t are added, a flow network can be
constructed, and the capacity and cost assignment rule is as
follows.

• The capacity and cost-assignment rule for edges from s to
mobile sensors and for edges from grids to t is the same as
the rule in the BMrDk,p algorithms.

• For an edge from mj to gi,l: The capacity has a unit value,
and the cost is the movement cost of sensor mj if it moves
to grid gi.

• For an edge from gi,l to gi: The capacity is equal to the
mobile sensor demand of subgrid gi,l; the cost does not
have a physical meaning and, thus, has a value of zero.

After the flow network is constructed, an optimal matching
in the flow network will lead to an optimal movement plan.

For presentation simplicity, in the discussion in Section IV
and performance evaluation in Section V, we consider only the
case with homogeneous sensors.

D. Extension to the Case With Heterogeneous
Coverage Requirements

In our problem statement in Section II, it is assumed that the
coverage requirement of each grid is the same: to be at least
k-covered. In some applications, the coverage requirement of
the grids may be different. Some crucial grids need more sen-
sors, whereas some unimportant grids need fewer sensors (even
no sensors). BMrD algorithms can be extended to deal with the
case with heterogeneous coverage requirements. Assume that
the target of grid gi (1 ≤ i ≤ n) is to be at least ki-covered.
Therefore, for grid gi, the gap is ri = max{ki − |gi|, 0}. Define
the unsatisfaction level of grid gi as ei = ri/ki, and define
e = {e1, e2, . . . , en} as the unsatisfaction level vector. Then,
we have the following three-step optimization problem.

Step 1) Minimizing the sum of gaps, i.e.,

minimize
P

n∑
i=1

ri

subject to moving capability of each mobile sensor.

Let F1 denote the set of all optimal movement plans
in step 1.

Step 2) Minimizing the Lp-norm of the unsatisfaction level
vector, i.e.,

minimize
P∈F1

‖e‖p. (9)

Let F2 denote the set of all optimal movement plans
in step 2.
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Step 3) Minimizing the movement cost, i.e.,

minimize
P∈F2

cm(P). (10)

The three-step optimization problem can be solved by similar
BMrD algorithms. Here, we only list the differences of the
BMrD algorithms from those in Sections III-A and B.

• When 1 ≤ p < ∞: Line 16 of Algorithm 1 is changed
to cost cg(gi, t) ← D · [wi · (u(gi, t) − f(gi, t))]p, where
wi = M/ki, and M is the least common multiple of
k1, k2, . . . , kn.

• When p = ∞: For grid gi, define (M/ki)(ki − ri) and
(M/ki)ri as the normalized satisfaction level and the
normalized unsatisfaction level, respectively, which are
integer values. For a specific target value α of the normal-
ized satisfaction level, let hi

α(x) define any continuous, in-
creasing, and convex function that satisfies the following:{

hi
α(x) = Ax, if 0 ≤ (M/ki)x ≤ M − α

hi
α(x) ≥ Ax + 1, if (M/ki)x = M − α + 1

(11)

where x stands for the grid gap, (M/ki)x stands for the
normalized unsatisfaction level, and A is a constant with
a positive value. Then, in Algorithm 2, line 6 should be
as follows: assign cg(gi, t) ← D · hi

α(u(gi, t) − f(gi, t)).
In Algorithm 2, the search range for α is from 0 to M ,
and the objective is to find the maximal value of α such
that each grid has at least α-normalized coverage (i.e., the
normalized satisfaction level is at least α).

It can be proved that the above BMrD algorithms can find an
optimal movement plan for the three-step optimization problem
define at the beginning of this subsection. The proofs are similar
to those in Theorems 1 and 2 and, thus, are omitted here.

For presentation simplicity, in the discussion in Section IV
and performance evaluation in Section V, we consider only the
case when the coverage requirement of each grid is to be at least
k-covered.

E. Features of the Framework

It can be seen that our framework for the optimal mobile sen-
sor redeployment problem is generic in the following aspects.

• A generic system model: A hybrid WSN with both static
and mobile sensors is considered; the initial sensor dis-
tribution, the moving capabilities of the mobile sensors,
the measures of the movement costs, and the sensor types
are all arbitrary, and the coverage requirements in different
grids can be heterogeneous.

• A generic cost function: The Lp-norm represents a family
of cost functions with different design objectives.

• A generic method: The BMrD algorithms are used to solve
problems with different p values.

IV. PROPERTIES IN SPECIAL SCENARIOS

Here, some interesting properties of the BMrD algorithms
are discussed in special scenarios. The following fact is used
in the proofs of the properties: F1 and F2 are the sets of the

optimal solutions in steps 1 and 2 of the three-step optimization
problem as defined in Section II, respectively.

Lemma 1: If there exists a feasible movement plan that can
make each grid at least k-covered, then BMrDk,p algorithms
are independent of the value of p (i.e., for whatever value of
p, BMrDk,p results in a movement plan that makes all grids at
least k-covered and has the minimum movement cost).

Proof: Consider a movement plan P that can make each
grid at least k-covered. After P is implemented, each grid has a
zero-valued gap, which minimizes the sum of gaps. Therefore,
it can be concluded that F1 is the set of movement plans that
can make each grid at least k-covered. Recall that F2 is the
set of movement plans from F1 such that the Lp-norm of
the gap vector is minimized. Since any movement plan in F1

makes each grid have a zero-valued gap, it also minimizes
the Lp-norm of the gap vector for whatever value of p (i.e.,
‖r‖p = 0). Therefore, we have F2 = F1 for whatever value of
p. Then, the optimal solution to the three-step optimization
problems is to select a movement plan in F1 (or, equivalently,
F2) whose movement cost is the minimum. Hence, BMrDk,p

algorithms are independent of p, and the optimal solution is a
movement plan that makes all grids at least k-covered and has
the minimum movement cost. �

Lemma 2: If there does not exist a movement plan such that
each grid is at least 1-covered, then the BMrDk,1 and BMrDk,∞
algorithms are equivalent.

Proof: In step 2 of the three-step optimization problem,
we have the following.

• When p = 1: Apparently, the set of optimal solutions in
step 2 is the same as F1.

• When p = ∞: Since there does not exist a movement plan
such that each grid is at least 1-covered, any solution in F1

will lead to the maximum gap being k. Therefore, the set
of optimal solutions in step 2 is the same as F1.

Then, it can be concluded that the three-step optimization
problems with p = 1 and p = ∞ are equivalent. As their opti-
mal solutions, the BMrDk,1 and BMrDk,∞ algorithms are also
equivalent. �

Lemma 3: An optimal movement plan from the BMrDk,1

algorithm has the minimum movement cost among those op-
timal movement plans from the BMrDk,p algorithms when
1 ≤ p ≤ ∞.

Proof: In step 2 of the three-step optimization problem,
we have the following.

• When p = 1: Apparently, the set of optimal solutions in
step 2 is the same as F1.

• When p ≥ 1: The set of optimal solutions in step 2 is a
subset of F1.

In step 3 of the three-step optimization problem, a movement
plan with the minimum movement cost is found in F1 when
p = 1 or in a subset of F1 when p ≥ 1. Therefore, an optimal
movement plan of the three-step optimization problem with p =
1 has the minimum movement cost. Equivalently, an optimal
movement plan from the BMrDk,1 algorithm has the minimum
movement cost among those optimal movement plans from the
BMrDk,p algorithms when 1 ≤ p ≤ ∞. �
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Fig. 7. Gap distribution for BMrD algorithms when k = 3 and σ = 10 m.
(a) λ = 20%; (b) λ = 50%; (c) λ = 80%.

V. PERFORMANCE EVALUATION

Extensive simulations are carried out over a customized C++
simulator to evaluate the performance of the BMrD algorithms
when p takes one of the three typical values: 1, 2, and ∞. When
p = ∞, the modified Huber function given in (8) is used as
the gap cost. A WSN is considered where the target of each
grid is to be at least 3-covered, i.e., k = 3. The WSN is to be
deployed in a 100 m × 100 m square area, which is further
partitioned into 100 square-shaped grids, each with the side
length being 10 m. Three hundred sensors are deployed. In the
initial deployment, both the horizontal and vertical coordinates
of each sensor follow a normal distribution with a mean value
being 50 m and a standard deviation being σ = 10, 25, or
50 m. A larger σ means that the sensors are relatively uniformly
distributed. Among all the sensors, a percentage λ of them
are mobile sensors, and the value of λ varies from 20%,
50%, to 80%. λ is also termed the mobile sensor percentage.
Mobile sensors are randomly selected from all the sensors. The
maximum moving distance values of the mobile sensors are in-
dependent and randomly selected from the range [10 m, 50 m].
If a mobile sensor moves to a grid, it moves to the center
point of the grid,5 and the movement cost is measured by the
moving distance. In the following, each statistic is collected in
50 simulation runs.

First, we fix the value σ at 10 m. Fig. 7 shows the gap distrib-
ution of all the grids after the BMrD algorithm is implemented,
when p is 1, 2, or ∞ (“INF”), and λ is 20%, 50%, or 80%. In
Fig. 7, the values of 0, 1, 2, and 3 in the horizontal axis mean
the gap values, whereas the vertical axis means the probabilities
of the gap values. The gap distribution in the initial deployment
(denoted by “initial”) is also given for reference.

From Fig. 7, it is observed that the BMrDk,1 algorithm tends
to have the maximum number of 3-covered (with gap value 0)

5This requirement is to simplify the simulations. In fact, in our framework, a
mobile sensor can move to any position in the grid according to the requirement
of specific applications.

Fig. 8. Gap distribution for BMrD algorithms when k = 3 and σ = 25 m.
(a) λ = 20%; (b) λ = 50%; (c) λ = 80%.

grids, among all BMrDk,p algorithms with different p. This is
reasonable as follows. The BMrDk,2 algorithm minimizes the
gap variance (or, equivalently, maximizes the Jain’s fairness
index) and, thus, will lead to a fair distribution of the gaps.
Therefore, the number of 3-covered grids is likely to be less
(than the number in BMrDk,1). The BMrDk,∞ algorithm needs
to minimize the maximum gap. Thus, sensors from initially
3-covered grids may move to the grids that initially have
the smallest number of sensors. Therefore, when p = ∞, the
number of 3-covered grids is also very likely to be less.

In Fig. 7, it is also observed that the BMrDk,1 and BMrDk,∞
algorithms have the same gap distribution when λ = 20%. This
is because the value of σ is a very small value, i.e., 10 m. A
very small σ means that a very large portion of the sensors
are located around the center of the WSN. When only a small
percentage (e.g., λ = 20%) of the sensors are mobile sensors,
it is very likely that there does not exist a movement plan that
makes each grid at least 1-covered. Then, from Lemma 2, the
BMrDk,1 and BMrDk,∞ algorithms are equivalent.

From Fig. 7, it can also be seen that, with the increase in
the mobile sensor percentage λ, more grids are with higher
coverage, i.e., are 3-covered or 2-covered.

To evaluate the impact of the initial deployment of the
sensors, Figs. 8 and 9 show the gap distribution of the BMrDk,p

algorithms when σ = 25 m (i.e., when sensors are initially de-
ployed less uniformly) and when σ = 50 m (i.e., when sensors
are initially deployed more uniformly), respectively.

• When the mobile sensor percentage is low [e.g., λ = 20%,
as shown in Figs. 8(a) and 9(a)]: The BMrDk,1 algorithm
still tends to make the largest number of 3-covered grids,
and BMrDk,2 still makes the gap distribution more fair. On
the other hand, BMrDk,∞ makes a good tradeoff between
the largest number of 3-covered grids and fairness.

• When the mobile sensor percentage increases, e.g.,
to λ = 50%, as shown in Figs. 8(b) and 9(b): The
BMrDk,∞ algorithm tends to be similar to BMrDk,2

since both the BMrDk,2 and BMrDk,∞ algorithms tend to
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Fig. 9. Gap distribution for BMrD algorithms when k = 3 and σ = 50 m.
(a) λ = 20%; (b) λ = 50%; (c) λ = 80%.

Fig. 10. Total moving distance of the movement plans decided by BMrD
algorithms. (a) σ = 10 m; (b) σ = 25 m; (c) σ = 50 m.

decrease the number of 0-covered grids. Interestingly,
when all the grids can be at least 2-covered, the BMrDk,2

and BMrDk,∞ algorithms are equivalent, as shown in
Figs. 8(b) and 9(b). This is because when α = 2, the gap
cost in the BMrDk,∞ algorithm is 0, 1, 4, and 9 when the
gap is 0, 1, 2, and 3, respectively, based on (8). This is
exactly the same as the gap cost in the BMrDk,2 algorithm.

• When the mobile sensor percentage increases to a very
large value, e.g., λ = 80%: It is very likely that all the
grids can be at least 3-covered. Then, based on Lemma 1,
it is very likely that the BMrDk,1, BMrDk,2, and BMrDk,∞
algorithms are equivalent, as shown in Figs. 8(c) and 9(c).

The total moving distance of the mobile sensors in the
three BMrD algorithms is shown in Fig. 10, when σ = 10,
25, or 50 m, and λ = 20%, 50%, or 80%. Apparently, the
BMrDk,1 algorithm has the lowest movement cost, which is
consistent with Lemma 3. On the other hand, the BMrDk,2

algorithm has the highest movement cost. This is because the
algorithm needs to distribute the gaps among the grids in a fairer
manner, and thus, it is likely that more mobile sensors need
to move.

As a summary, in our generic redeployment framework,
BMrDk,1 has the lowest movement cost and tends to have the
maximum number of k-covered grids; BMrDk,2 can be applied
to achieve an even distribution of sensors, which is helpful
to prolong the network lifetime or balance the workload of
sensors, at the cost of the highest movement cost; and BMrDk,∞
lies in between BMrDk,1 and BMrDk,2 in terms of the number
of k-covered grids and even sensor distribution.

VI. RELATED WORKS

As mentioned in Section I, most mobile sensor redeployment
algorithms are designed based on three basic techniques: virtual
force, coverage pattern, or grid architecture. Since our work
belongs to the category of grid architecture, here, we mainly
discuss related works in this category.

The work in [18] investigates how to deal with sensor failure
events. Once sensor failure events occur, redundant sensors are
found and are cooperatively moved to fix the problem. When
designing the movement plan of the sensors, the responding
time is used as a constraint.

In [14], a load-balanced state is achieved by mobile sensor
redeployment, in which the difference between the numbers of
sensors in any two grids is upper bounded by one. A scan-based
redeployment algorithm named SMART is proposed, which
has two scan processes (for rows and for columns). Based on
the two scan processes, sensors in overloaded grids are moved
to underloaded grids such that a balanced sensor distribution
can be eventually reached. To further improve SMART, the
Hungarian method is used in [15] to minimize the movement
cost. A complete bipartite graph is used to model the load
balance problem. The graph has two sets of vertices: overloaded
grids and underloaded grids. An edge exists from an overloaded
grid to any underloaded grid, and the cost of the edge is the
moving distance from the overloaded grid to the underloaded
grid. After a perfect matching of the bipartite graph is found,
the optimal movement plan can be obtained. Note that in [14]
and [15], all sensors are assumed to be mobile and have the
capability to move to any grid in the area (i.e., with unlimited
mobility capability).

Redeployment with limited mobility capability is studied in
[16] and [17]. The work in [16] targets at minimum movement
cost to deal with the coverage holes and to achieve 1-coverage.
The work in [17] is more general, since it studies the k-
coverage problem, and its objectives are the minimum variance
of the numbers of sensors in the grids and the minimum
movement cost. The problem is modeled by a virtual graph.
In particular, each grid is modeled by three basic vertices (a
base vertex that represents the source of sensors in the grid, and
output and input vertices responsible for sending and receiving
mobile sensors, respectively) and k sink vertices denoting the
coverage requirement of the grid. The objective of minimizing
the variance of the numbers of sensors in the grids, which is
a nonlinear objective, is converted into a linear objective by
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assigning different weights for the k sinks. A minimum-cost
maximum weighted flow can be found on the virtual graph,
and the optimal movement strategy of mobile sensors can be
obtained accordingly.

Although we also use the network flow technique, there
are several key differences between our work and the work
in [17].

• We use a bipartite graph to describe the mobile sensor
redeployment problem. Compared with a virtual graph,
our model is more general. For instance, since the virtual
graph is based on the grids, it implicitly assumes that all
mobile sensors in one grid have the same mobility capa-
bilities. However, in our model, mobile sensors in one grid
can have different mobility capabilities. The advantage of
using a virtual graph model over a bipartite graph model
is that the virtual graph may have fewer edges, which
helps decrease the computation complexity. To be specific,
assume that there are m mobile sensors and n grids, and
the maximum mobility capability of a mobile sensor is H
hops. The virtual graph has O(kn) vertices and O(nH)
edges, whereas the bipartite graph has O(m + n) vertices
and O(mH) edges. Since both methods use the minimum-
cost flow algorithm (e.g., the capacity scaling algorithm) to
compute the movement schemes, they have the same order
of computation complexity when m = O(n). However,
when m is far greater than n [e.g., m = O(n log n) or
m = O(n2), etc.], the virtual graph method will have
lower computation complexity than that of the bipartite
graph method. However, as pointed out before, the virtual
graph method can only deal with cases when 1) the sensor
network is a flip-based network; 2) the movement cost is
measured by hops; and 3) the mobile sensors in one grid
have the same mobility capabilities.

• In this paper, we use a family of optimization objectives
(p = 1, p = 2, and p = ∞), whereas the work in [17]
considers only one objective, which is the p = 2 case in
this paper.

• The method to solve the problems with different optimiza-
tion objectives is also generic in this paper. Based on the
bipartite graph, the movement plans with different objec-
tives can be computed by using corresponding convex cost
functions.

Therefore, it can be concluded that this paper provides a more
generic framework, which is complementary to existing work
efforts in the literature.

VII. CONCLUSION

In this paper, we have provided a generic framework for
the mobile sensor redeployment in WSNs. The framework
consists of a generic system model, a generic objective function
definition, and a generic method based on bipartite matching to
solve the problems with different design objectives. The effec-
tiveness of the BMrD algorithms has been validated through
theoretical proofs and extensive simulations. This paper should
provide helpful insights to the redeployment of mobile sensors
in WSNs.

APPENDIX

PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1

Without loss of generality, we consider the case when 1 <
p < ∞. The proof for p = 1 is similar. The proof consists of
three parts: to prove that the BMrDk,p algorithm minimizes the
sum of gaps (i.e., optimizes step 1 of the three-step optimiza-
tion problem), minimizes the Lp-norm of the gap vector (i.e.,
optimizes step 2 of the three-step optimization problem), and
minimizes the total movement cost (i.e., optimizes step 3 of the
three-step optimization problem).

To prove that the BMrDk,p algorithm minimizes the sum
of gaps:

From the procedure of the BMrDk,p algorithm, it can be seen
that a flow from s to t means that a mobile sensor moves to
a grid that has less than k static sensors. Thus, a flow means
that the sum of grid gaps decreases by one. Therefore, for each
feasible set of flows, the sum of grid gaps after the associated
movement plan is implemented is given by

n∑
i=1

ri =
∑
gi∈G

u(gi, t) −
∑

mj∈M

f(s,mj). (12)

On the right-hand side of (12), the first term (i.e., the sum of
mobile sensor demands of all the grids) is a fixed value depend-
ing on the initial deployment of the static sensors. Since the
BMrDk,p algorithm maximizes

∑
mj∈M

f(s,mj), apparently,
it also minimizes

∑n
i=1 ri, which is the sum of the gaps of all

grids after the mobile sensor redeployment.
To prove that the BMrDk,p algorithm minimizes the Lp-

norm of the gap vector:
We use proof by contradiction. Assume that the BMrDk,p

algorithm determines a set of flows or, equivalently, a move-
ment plan denoted P , that has the maximum amount of
flows and minimum cost given in (6). In movement plan P ,
the flow amount on an edge (a, b) is denoted f(a, b). After
the movement plan is implemented, the gap vector is r =
{r1, r2, . . . , rn}. Suppose that there exists a set of flows or,
equivalently, a movement plan P′ with a resulted gap vector
being r′ = {r′1, r′2, . . . , r′n}, such that

∑n
i=1 r′i =

∑n
i=1 ri, and

‖r′‖p < ‖r‖p. In the movement plan P′, the flow amount on
an edge (a, b) is denoted f ′(a, b). Then, we will show that the
cost of movement plan P′ is less than that of movement plan P ,
which contradicts the fact that P has the minimum cost.

It follows from ‖r′‖p < ‖r‖p that
∑n

i=1 rp
i >

∑n
i=1(r

′
i)

p.
As ri, r′i, and p are all nonnegative integers, we have

n∑
i=1

rp
i ≥

n∑
i=1

(r′i)
p + 1. (13)

By multiplying both sides of (13) by the constant D defined in

(4), we have

n∑
i=1

D · rp
i ≥

n∑
i=1

D · (r′i)p + D. (14)
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Among the n grids (i.e., grids from g1 to gn), if a grid is not
included in G, it means that the grid has k or more static sensors
(or, equivalently, the gap of the grid is zero). Thus, from (14),
we have

∑
gi∈G

D · rp
i ≥

∑
gi∈G

D · (r′i)p + D. (15)

Recall that the cost of flows corresponding to a movement
plan consists of two parts: movement cost and gap cost. There-
fore, from (6), the cost of movement plan P is

C(P) =
∑

mj∈M,gi∈G

f(mj , gi) · cm(mj , gi) +
∑
gi∈G

cg(gi, t)

≥
∑
gi∈G

cg(gi, t) =
∑
gi∈G

D · [u(gi, t) − f(gi, t)]
p

(a)
=

∑
gi∈G

D · rp
i

(b)

≥
∑
gi∈G

D · (r′i)p + D (16)

where (a) follows from (5), and (b) follows from (15).
For movement plan P′, we have

C(P′) =
∑

mj∈M,gi∈G

f ′(mj , gi) · cm(mj , gi) +
∑
gi∈G

cg(gi, t)

(c)
=

∑
mj∈M,gi∈G

f ′(mj , gi) · cm(mj , gi)

+
∑
gi∈G

D · [u(gi, t) − f ′(gi, t)]
p

(d)
=

∑
mj∈M,gi∈G

f ′(mj , gi) · cm(mj , gi) +
∑
gi∈G

D · (r′i)p

≤

⎡
⎣ ∑

mj∈M,gi∈G

f ′(mj , gi)

⎤
⎦

· max
mj∈M

gi∈G

cm(mj , gi) +
∑
gi∈G

D · (r′i)p

=

⎡
⎣ ∑

mj∈M

∑
gi∈G

f ′(mj , gi)

⎤
⎦

· max
mj∈M

gi∈G

cm(mj , gi) +
∑
gi∈G

D · (r′i)p

(e)

≤

⎡
⎣ ∑

mj∈M

1

⎤
⎦ · max

mj∈M

gi∈G

cm(mj , gi) +
∑
gi∈G

D · (r′i)p

= |M| · max
mj∈M

gi∈G

cm(mj , gi) +
∑
gi∈G

D · (r′i)p

(f)
< D +

∑
gi∈G

D · (r′i)p (17)

where (c) follows from the definition of the gap cost, (d)
follows from (5), (e) follows from the fact that the total flow

amount out of mj should not exceed its incoming capacity,
which is a unit, and (f) follows from (4).

From (16) and (17), we have C(P) > C(P′), which contra-
dicts the fact that the movement plan P has the minimum cost.

To prove that the total movement cost is minimized by the
BMrDk,p algorithm:

We need to consider only the feasible sets of flows that result
in the minimum sum of gaps and the minimum Lp-norm of
the gap vector (i.e., satisfying steps 1 and 2 in the three-step
optimization problem). We repeat (6) for such a feasible flow
set P , i.e.,

C(P) =
∑

mj∈M,gi∈G

f(mj , gi) · cm(mj , gi) +
∑
gi∈G

cg(gi, t).

(18)

On the right-hand side of (18), the second summation is equal
to D · (rp

1 + rp
2 + · · · + rp

n), which corresponds to the objective
of step 2 and, thus, is minimized. Recall that the BMrDk,p

algorithm minimizes the cost C(P). Thus, it also minimizes the
first summation on the right-hand side of (18), which is exactly
the movement cost of a movement plan.

This completes the proof. �

Proof of Theorem 2

The proof consists of three parts: to prove that the BMrDk,∞
algorithm minimizes the sum of gaps of all grids (i.e., optimizes
step 1 of the three-step optimization problem), minimizes the
L∞-norm of the gap vector (i.e., optimizes step 2 of the three-
step optimization problem), and minimizes the total move-
ment cost (i.e., optimizes step 3 of the three-step optimization
problem).

To prove that the BMrDk,∞ algorithm minimizes the sum of
gaps of all grids:

This is obvious because with any gap cost function, an
optimal matching of the flow network always achieves the
property of “maximum amount of flows” and, thus, always
minimizes the sum of gaps of all the grids.

To prove that the BMrDk,∞ algorithm minimizes the L∞-
norm of the gap vector:

This is equivalent to proving that the BMrDk,∞ algorithm
minimizes the maximum gap or, equivalently, maximizes the
minimum number of sensors in a grid. We use proof by
contradiction.

Let the movement plan determined by the BMrDk,∞ algo-
rithm be denoted P∗. From the procedure of the BMrDk,∞
algorithm, P∗ makes any grid have at least α∗ sensors. Suppose
that there exists a movement plan P′ such that the amount of
flows in the flow network is maximized, and each grid has
at least α†(> α∗) sensors. Then, in the binary search of the
BMrDk,∞ algorithm, an α value in (α∗, α†] should have been
checked, but the resulted movement plan fails to make each
grid at least α-covered. For presentation simplicity, the checked
value in the BMrDk,∞ algorithm is assumed to be α†, and
the resulted movement plan (i.e., the optimal movement plan
when hα†(x) is used as the gap cost function) is denoted P†. It
follows that movement plan P† fails to make each grid at least
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α†-covered. In movement plans P′ and P†, the amount of flows
on an edge (a, b) in the flow network is denoted f ′(a, b) and
f †(a, b), respectively.

Recall that P† is the minimum-cost flow at the round when
α = α†, and hα†(x) is used as the gap cost function. Since P′

is also a feasible set of flows at this round, we have

C(P†) ≤ C(P′). (19)

Since movement plan P† fails to make each grid at least α†-
covered, we use Ĝ to denote the subset of G in which each grid
is less than α†-covered after movement plan P† is implemented.
Therefore, Ĝ is not a null set. Furthermore, in G\Ĝ, each grid
is at least α†-covered after movement plan P† is implemented.
Then, for the cost function of movement plan P† at round α =
α†, we have

C(P†) =
∑

mj∈M,gi∈G

f †(mj , gi) · cm(mj , gi)

+
∑
gi∈G

D · hα†
(
u(gi, t) − f †(gi, t)

)

≥
∑
gi∈G

D · hα†
(
u(gi, t) − f †(gi, t)

)

(g)

≥
∑

gi∈G\Ĝ

D · A ·
[
u(gi, t) − f †(gi, t)

]

+
∑
gi∈Ĝ

D ·
{
A ·

[
u(gi, t) − f †(gi, t)

]
+ 1

}

=
∑
gi∈G

D · A ·
[
u(gi, t) − f †(gi, t)

]
+

∑
gi∈Ĝ

D

(h)

≥ D · A
∑
gi∈G

u(gi, t) − D · A
∑
gi∈G

f †(gi, t) + D

(20)

where (g) follows from (7), and (h) follows from the fact that
Ĝ is not a null set.

On the other hand, the cost of movement plan P′ at round
α = α† is

C(P′) =
∑

mj∈M,gi∈G

f ′(mj , gi) · cm(mj , gi)

+
∑
gi∈G

D · hα† (u(gi, t) − f ′(gi, t))

(i)
< D +

∑
gi∈G

D · hα† (u(gi, t) − f ′(gi, t))

(j)
= D +

∑
gi∈G

D · A · [u(gi, t) − f ′(gi, t)]

=D + D · A
∑
gi∈G

u(gi, t) − D · A
∑
gi∈G

f ′(gi, t) (21)

where (i) is similar to the proof of (17), and (j) follows from
the assumption that movement plan P′ makes each grid at least
α†-covered [and, therefore, u(gi, t) − f ′(gi, t) ≤ k − α†].

Since both movement plans P′ and P† maximize the amount
of flows in the flow network, we have

∑
gi∈G

f †(gi, t) =
∑
gi∈G

f ′(gi, t). (22)

From (20)–(22), we have C(P†) > C(P′), which contradicts
(19). Therefore, it can be concluded that the BMrDk,∞ algo-
rithm minimizes the L∞-norm of the gap vector, i.e., minimizes
the maximum grid gap, and the maximum grid gap is k − α∗.

To prove that the BMrDk,∞ algorithm minimizes the total
movement cost:

We use P∗ to denote the movement plan determined by
the BMrDk,∞ algorithm. From the procedure of the BMrDk,∞
algorithm, P∗ makes any grid have at least α∗ sensors. Recall
that F2 is the set of all optimal movement plans in step 2 of
the three-step optimization problem, as shown in Section II.
Then, we need to prove that P∗ minimizes the movement cost,
among all the movement plans in F2. From the above proof, it
can be concluded that each movement plan in F2 makes each
grid at least α∗-covered. Recall that among all those feasible
movement plans in F2, P∗ is an optimal matching of the flow
network. This means P∗ minimizes the cost function given by

∑
mj∈M,gi∈G

f(mj , gi) · cm(mj , gi)

+
∑
gi∈G

D · hα∗ (u(gi, t) − f(ui, t)) . (23)

Among all the movement plans in F2, the second term
in (23) is∑

gi∈G

D · hα∗ (u(gi, t) − f(ui, t))

=
∑
gi∈G

D · A · [u(gi, t) − f(ui, t)]

= D · A
∑
gi∈G

u(gi, t) − D · A
∑
gi∈G

f(ui, t) (24)

which has a fixed value since all the movement plans in F2

maximize the amount of flows in the flow network. Therefore,
P∗ minimizes the first term in (23), which is exactly the
movement cost of a movement plan.

This completes the proof. �
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