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Abstract— Randomized planners, search-based planners,
potential-field approaches and trajectory optimization based
motion planners are just some of the types of approaches
that have been developed for motion planning. Given a motion
planning problem, choosing the appropriate algorithm to use
is a daunting task even for experts since there has been
relatively little effort in comparing the plans generated by the
different approaches, for different problems. In this paper, we
present a set of benchmarks and the associated infrastructure
for comparing different types of motion planning approaches
and algorithms. The benchmarks are specifically designed for
robotics and include typical indoor human environments. We
present example motion planning problems for single arm tasks.
Our infrastructure is designed to be easily extensible to allow
for the addition of new planning approaches, new robots, new
environments and new metrics. We present results comparing
the performance of several motion planning algorithms to
validate the use of these benchmarks.

I. INTRODUCTION

Motion planning is a search problem that requires finding

a continuous path between given start and goal states, for a

particular system, subject to a variety of constraints. Under

this broad definition, solving the motion planning problem

has applications in robotics, protein folding, games, model

checking, among others [1], [2]. In this paper however we

focus on robotics applications. The variety of problems,

even within robotics alone, is large. For example, computing

motion plans for the legs of a biped is done very differently

than computing plans for an omni-directional wheeled base.

At the same time, planning motions for a car moving at high

velocity is done differently than computing motion plans

for a robot arm moving at low velocities. The variety of

problems in robotics naturally stems from the large number

of different types of robots and the various constraints that

arise in the tasks for these robots. A wide range of motion

planners have been developed and used to address these

problems in robotics [1], [2].

There are multiple approaches to solving various instances

of the motion planning problem. We enumerate just a few

of the more prominent ones:

1) Sampling-based motion planners use a randomized

approach that iteratively constructs an approximation

of the robot’s state space (or configuration space)

[3], [4]. This class of algorithms usually includes

probabilistically complete algorithms (i.e., a solution

will eventually be found, if one exists, but the lack of

a solution cannot be decided).
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Fig. 1. An example scenario where the PR2 robot is manipulating objects
in a kitchen environment.

2) Search-based planners operate on a discretized rep-

resentation of the continuous space [5]. These ap-

proaches can provide optimality guarantees with re-

spect to the discretization of the actions and the state

space, and they are resolution complete (i.e., if a

solution exists, it will be found given that the resolution

is sufficiently refined).

3) Potential fields techniques use attractive and repulsive

components to draw a robot to its goal while keeping

it away from obstacles (e.g., [6], [7]).

4) Trajectory optimization techniques (e.g., [8], [9]) start

with an initial guess for a path and try to refine it to

get a collision-free optimal solution.

The list above is of course not exhaustive. For example,

work has been done on complete algorithms that solve the

motion planning problem [10]. However, the complexity of

such algorithms is usually prohibitively high.

Each of the motion planning approaches mentioned above

encompasses several algorithms. Sampling-based motion

planning, for instance, includes many tens of related but

different approaches. A problem that arises at this point

is choosing the appropriate algorithm for a given problem.

Given the large number of existing algorithms, this is a

daunting task even for an expert. In this paper, we propose

a benchmarking system that allows the dissemination of

benchmark results for a variety of problems using a variety

of algorithms. This system is open source, is part of the

MoveIt! [11] framework (built using the ROS [12] mid-

dleware), and is intended to receive contributions from the

community in the form of both implementations of planning

algorithms and problem scenarios to include in benchmarks.

Our intention is not to identify the best algorithm, as such



a notion is difficult to define and in fact may not make sense,

given the variety of motion planning problems. We intend to

present relevant information for each of the methods we have

an implementation for, and to allow the user to choose the

planner that best suits their particular needs. We believe that

avoiding the use of carefully chosen benchmark problems

for particular planning algorithms and simply running all

implemented algorithms on all problems from a database of

problems that everyone can contribute to, will allow more

meaningful results to stand out.

II. RELATED WORK

The study and development of most new motion planning

algorithms is usually accompanied by tests against a variety

of benchmarks. A widely cited benchmark is the alpha

puzzle, which was used to test the performance of motion

planners for narrow passage problems. A number of well-

known benchmarks for motion planning, including the alpha

puzzle, can be found in [13]. An early attempt at defining

benchmarks can be found in [14]. Iossifidis et. al. [15]

presented a methodology for building benchmarks for pick

and place tasks. Geraerts et. al. [16] benchmarked a set

of probabilistic planners and their components, including

multiple uniform and non-uniform samplers in six different

environments. A set of humanoid benchmark problems for

randomized planners was presented in [17]. A series of

benchmarks for testing GPU based planners were also devel-

oped in [18]. Comparisons of collision detectors, which are

a significant component of any motion planning framework,

were done in [19].

Several open source software implementations of motion

planning algorithms (e.g., OMPL [20] and OpenRAVE [21])

have also included a form of internal benchmarking capa-

bilities. However, there is still a lack of easily available

benchmarking infrastructure to which new problems, new

motion planning techniques and new environments can be

easily added. In particular, as pointed out in [22], a lot of

the benchmarking efforts have been discontinued and are

no longer well-supported. Furthermore, even with the large

number of motion planning algorithms developed over the

last two decades, there is very little insight available to new

or expert users on the suitability of different motion planning

algorithms for different types of problems.

Our work differs from previous work and addresses the

issues mentioned above in multiple ways. We present an

open source benchmarking framework explicitly designed for

comparing motion planning algorithms in robotics. We are

not restricted to one category of motion planners (e.g., only

sampling-based or only search-based). Our framework builds

on a widely available and easily accessible infrastructure

(ROS) allowing for the easy addition of new environments,

new motion planning problems and new motion planning

algorithms, thus encouraging contributions from the com-

munity. Our benchmarking framework runs all the available

motion planners against all the motion planning problems (as

much as possible), and presents informative statistics. Note

that we do not try to find the best motion planning algorithm,
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Fig. 2. A schematic representation of the benchmark server. All interfaces
are implemented using ROS.

but intend to highlight the relative strengths and drawbacks

of the different approaches in different situations and let the

user choose the approach best suited to the problems they

need to solve.

The rest of this paper is organized as follows. In Section III

we present the infrastructure for computing benchmarks.

This includes a discussion of the types of metrics that will

be computed for the benchmark problems. In Section IV we

present a set of example benchmark problems. In Section V

we present detailed results and analysis for these benchmarks

computed across multiple randomized and search-based plan-

ning algorithms. We conclude in Section VI.

III. BENCHMARKING INFRASTRUCTURE

The infrastructure for our approach is currently built on

top of the ROS middleware [12], as part of the MoveIt!

project [11]. Our infrastructure is designed to be easy to

use, allowing new motion planning algorithm designers to

quickly test new approaches over a wide range of scenarios.

We will now describe in detail the different components of

our infrastructure.

A. Benchmarking Server

Fig. 2 shows a schematic representation of the bench-

marking server. Each benchmark test consists of two inputs

to the benchmark server, an environment representation and

a motion plan request. The motion plan request includes

the start state for the motion plan, the goal region and

possible constraints that may be applied during execution

(e.g., orientation constraints that ensure a grasped object

remains upright during motion) and the type of planner to

be used for planning.

B. Motion Planning Interface

Fig. 3 shows how the benchmark server views the planning

algorithm it evaluates. The planning algorithm must offer a

C++ interface that provides a “solve” function. The bench-

mark server will pass relevant information to the motion

planner: the environment in which motion planning will be

carried out, the robot’s starting state, its goal region, and

any constraints to be maintained along the planned path. The

motion planner may include multiple post-processing steps,

e.g., a shortcutting step and/or a smoothing step to improve

the quality of plans. The number and types of operations

performed by these additional post-processing steps are not

restricted. The explicit representation of these intermediate

steps is used to record the behaviour of the planner along

its processing pipeline, so that more informative benchmark

results can be presented. This reporting of information at
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Fig. 3. A schematic representation of the motion planning plugin. The
plugin is implemented as a C++ interface and allows easy configuration of
different types of planners.

intermediate steps is the only additional functionality that a

motion planning library will (optionally) need to implement

for use with the benchmarking server.

C. Collected Data

The main result from the planning interface is a set of

trajectories (or plans) that each satisfy the given motion plan-

ning problem. The planning interface allows the inspection

of intermediate steps in the planning process. It can thus

measure the quality of raw motion plans as well as post-

processed plans and trajectories. Post-processing is a signif-

icant step for most motion planning approaches and could

often take more time to perform than the planning process

itself [23]. Each plan or trajectory returned by the planner

has an identifier associated to it which indicates the type

of post-processing performed. Shortcutting and smoothing

are examples of possible such processing. Shortcutting is

a process typically employed by randomized planners for

reducing the length of raw planned paths, and smoothing

refers to an operation where sharp edges in a trajectory are

rounded off [23].

D. Computed Metrics

A series of metrics are used to measure the performance,

reliability and quality of paths generated by all the motion

planners. The metrics currently implemented include the

following:

• Plan computation times - Separate computation times

are computed for each stage of the planning process.

This includes the time for computing raw plans and

any path simplification that may be performed by the

planner (τr) and the time for other processing (includ-

ing any pre-processing of the environment) τo. Post-

processing can typically involve shortcutting, interpo-

lation, smoothing or other operations and a separate

metric that could be measured is the time for post-

processing.

• Path length - The length lp of the path is measured

as the total distance in the space in which the motion

planner is operating.

• Smoothness of plans - This metric κ
′ measures how

smooth the paths generated by the planners are. Let αi

represent the angle between two consecutive segments

TABLE I

THE METRICS COMPUTED FOR EACH TRAJECTORY IN OUR BENCHMARKS

Metric Description

τt Total computation time (in s)

τr Time taken (in s) to compute raw plans and any path simplification

τo Time taken (in s) for “other” processing, e.g., setting the environment

dn The average minimum clearance (in m) from the environment

lp Path length (in radians)

κ′ Path smoothness

sr Success rate (in fixed amount of time)

of a plan with n segments. Then, κ
′
=

1

n

∑n

i=2
α
2

i .

Note that there are other measures of smoothness that

could be reported for other types of robotic systems

and problems. Our system can be easily extended to

incorporate them.

• Clearance - This metric dn measures the average

minimum distance from the waypoints along computed

plans to environment obstacles.

• Success Rate - The success rate sr represents the

percentage of trials for which the motion planning

computation was successful within the specified time.

Table I summarizes the set of metrics we use. Our

benchmarking approach is not limited to the set of metrics

described above. Including additional metrics is easy and our

system allows the inclusion of metrics specific to individual

planning algorithms. We will now describe the environments

and motion planning problems that we have implemented as

sample benchmarking problems in our system.

IV. BENCHMARK PROBLEMS

The benchmark problems we define here require the

specification of four components:

1) Environment Model - The environment to be used

for motion planning. This is specified as a collection

of mesh and primitive objects representing the actual

structure of the environment, e.g., rooms, shelves, etc.

and the objects in the environment. The environment

representation can also include a voxel grid represen-

tation of the occupied parts of the environment (which

can optionally be represented as an octree [24]). The

environment could also be generated artificially (e.g.,

using graphics and CAD tools) or could represent data

obtained directly from the sensors on a robot.

2) Robot Model - The particular robot used for the

benchmark experiments is specified using the ROS

robot description formats. In addition, objects from the

environment can be attached to the robot model (e.g.,

robot is carrying an object).

3) Goals - Associated with the environment is a set of

goals for motion planning (e.g., goals may be specified

in areas of the environment where objects may be

typically found). In our framework goals are specified

as sets of constraints. Different types of constraints

are supported, and more can be added, but for the

purposes of this paper we only used position and

orientation constraints. A position constraint specifies

the bounding volume where a reference point on a

robot link needs to arrive. An orientation constraint



Fig. 4. The INDUSTRIAL benchmark environment: The pink spheres
indicate desired goal locations for the right end-effector of the PR2 robot.
The arrows indicate the desired orientation of the end-effector.

specifies the bounds in orientation (roll, pitch, yaw) for

a particular robot link. Often, position and orientation

constraints are used in conjunction to specify goal

regions for robot links such as end-effectors.

4) Robot Start State - The robot start state is specific to

each robot and provides complete information on the

state of the robot at the start of a motion plan.

The benchmark problems are designed to exercise the

planners through a wide-range of scenarios. Some of the

environments were chosen with the express intention of

testing the performance of planners in difficult situations,

e.g., the narrow passage problem. Note that we do not intend

for this set of benchmarks to be the final set of benchmarks

that all planners will be run against. Instead, we hope that

with the help of the community we will build upon this set

and include environments and problems that exercise other

capabilities of planners, e.g., dealing with dynamic obstacles

or uncertainty. We will now describe the set of example

benchmark experiments that we have currently designed and

evaluated.

A. Testing Environments

Fig. 4, Fig. 5, Fig. 6 and Fig. 7 illustrate the sample

environments that we use in all our experiments. The robot

used in all experiments is the simulated PR2 robot. The PR2

is a state-of-the-art mobile manipulation robot with an omni-

directional base, two 7 DOF arms and parallel jaw grippers.

The robot also has multiple sensors including a RGB-D

sensor, two laser scanners, an IMU, tactile sensors and stereo

cameras.

The environments represent just a sample of the types

of scenarios that mobile manipulation robots can expect to

find in typical human environments. The first environment

(Fig. 4) represents a factory scenario where the robot needs

to pickup objects from a shelf containing multiple parts

(e.g., kitting applications). The second environment (Fig. 5)

represents a typical kitchen scenario where the robot may

be expected to pickup objects from multiple places on the

countertop or in the shelves. The third environment (Fig. 6)

Fig. 5. The KITCHEN benchmark environment (human-scale).

Fig. 6. The NARROW PASSAGE benchmark environment.

represents a scenario where the robot is expected to move its

arm through a narrow passage, a problem that is typically dif-

ficult for sampling-based planners. The position of the wall

restricts the workspace available for the arm considerably.

The fourth environment (Fig. 7) again represents a typical

kitchen environment where the robot may be expected to

move an object above and below a table.

The motion planning problems we chose to use for this

paper are derived from typical pick and place tasks in

human environments. Our problems specify desired goal

configurations for the PR2’s right arm end-effector in typical

positions from where objects may be picked up or where

objects may be placed down. Fig. 4, Fig. 5 and Fig. 7

show some of the end-effector poses at the desired goal

configurations, indicated by the red numbered markers. The

goals in Fig. 6 are designed to force the right arm of

the robot to move through the narrow constrained space

between the robot and the wall. Additional constraints may

be separately specified in the motion planning problem, e.g.,



Fig. 7. A set of goals for manipulation tasks on a table in the TABLETOP

environment.

a dual-arm motion of the robot may require the two arms to

move in a constrained manner. Note that the desired goals

do not constrain the redundant degrees of freedom of the

PR2 robot arm in any manner. Each planner is thus free to

choose the joint configuration that satisfies the desired goal

configuration, e.g., by using inverse kinematics.

B. Planners

To validate our benchmarking approach, we tested it with

two types of motion planners: randomized planners from the

OMPL library [20] and search-based planners from the SBPL

library [25].

The randomized planning approaches tested here are

KPIECE [26], LBKPIECE [26], SBL [27], RRT* [28], RRT

and RRT-Connect [29]. The cost function for RRT* is the

distance traveled in joint space. RRT* was configured to

return the first solution that was found. All these planners

are implemented in the OMPL library and use the FCL col-

lision checking library [30]. Sampling-based planners usually

depend on problem-specific parameters that can significantly

influence performance. In this work we did not set any of

these parameters and only the default settings provided by

OMPL were used.

The underlying search-based planner used here is the

ARA* planner [31]. A set of discretized motion primitives

in joint space are used with the planner to generate motion

plans for the arms of a robot [32], [33]. An inflated heuristic

derived from a 3D breadth first search in the space of

the end-effector is used to accelerate this planning process.

The ARA* planner provides bounds on sub-optimality with

respect to the graph that represents the planning problem.

We configured the search-based planners to return the first

solution they find and we set ǫ, the sub-optimality bound

parameter, to 100. The ARA* planner is an anytime planner

capable of improving the solutions that it finds over time but

we chose not to use these capabilities of the planner. The

Fig. 8. The collision checking models used by the two planning libraries
- SBPL (left) and OMPL (right)

cost function for the search-based planner incorporated the

distance traveled in joint space.

It should be noted here that collision checking is a critical

component of motion planning and often the most expensive.

The two motion planning libraries we benchmark use differ-

ent collision representations for the robot (Figure 8) and also

employ different approaches to the collision representation

for the environment. The collision representation used by

the search-based planners for representing the robot is more

conservative but an order of magnitude faster than the mesh-

based representation used for the randomized planners. How-

ever, the representation of the environment for the search-

based planners uses a distance field [34], and generating

that distance field requires additional time (included in the

metric τo), thus slowing down the overall time taken to

generate plans. Integrating both collision representations to

offer planners a common representation to work from is a

subject of ongoing work.

C. Experiments

The experiments were run with the simulated environ-

ments presented in this paper. A set of goals were specified

for each environment and the planners were instructed to plan

motions for the right arm of the robot between successive

goal positions (starting from a pre-defined start position

for the first goal). As noted earlier, the goals were not

specified as individual poses, but instead as goal regions.

The translational tolerance for the goal was specified using

a 2 cm cube within which the end-effector was supposed to

end up. An orientation tolerance of 0.05 radians was also

specified for each goal, i.e., the goal was considered to have

been achieved if the final orientation of the end-effector of

the robot was within a roll, pitch and yaw of 0.05 radians

of the desired orientation. This goal representation allows

planners to optionally sample individual goal poses inside

the goal region, thus increasing the chances of finding valid

joint configurations that reach the goal region. The number

of goal regions used for the different environments is: 5 for

INDUSTRIAL, 10 for KITCHEN, 5 for NARROW PASSAGE

and 10 for TABLETOP.

Each planner execution, between a start and goal position,

was carried out 30 times for each sampling-based planner and



TABLE II

MEAN AND STANDARD DEVIATIONS FOR METRICS FOR DIFFERENT

PLANNERS RUNNING IN THE KITCHEN ENVIRONMENT.

Metric ARA* RRTC LBKP SBL RRT KP RRT*

τt (Mean,s) 0.46 0.14 0.26 0.42 1.33 0.52 2.67

τt (σ,s) 0.00 0.04 0.08 0.16 2.15 0.47 4.40

τr (Mean,s) 0.28 0.13 0.25 0.42 1.32 0.51 2.66

τr (σ,s) 0.00 0.04 0.08 0.16 2.15 0.47 4.40

τo (Mean,s) 0.18 0.01 0.01 0.01 0.01 0.01 0.01

τo (σ,s) 0.00 0.00 0.00 0.00 0.01 0.00 0.00

dn (Mean,m) 0.03 0.03 0.03 0.03 0.03 0.03 0.03

dn (σ,m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

lp (Mean,radians) 10.75 12.69 10.52 9.54 12.10 10.31 10.72

lp (σ,radians) 0.00 2.27 1.50 1.31 2.14 1.70 1.60

le (Mean,m) 1.21 1.19 1.21 1.15 1.21 1.19 1.17

le (σ,m) 0.00 0.19 0.20 0.12 0.19 0.17 0.18

κ′ (Mean,radians) 1.54 0.36 0.45 0.43 0.31 0.40 0.31

κ′ (σ,radians) 0.00 0.57 0.56 0.44 0.46 0.56 0.46

sr 100% 100% 100% 100% 96% 100% 93%

TABLE III

MEAN AND STANDARD DEVIATIONS FOR METRICS FOR DIFFERENT

PLANNERS RUNNING IN THE INDUSTRIAL ENVIRONMENT.

Metric ARA* RRTC LBKP SBL RRT KP RRT*

τt (Mean,s) 0.17 0.10 0.19 0.25 0.49 0.22 1.62

τt (σ,s) 0.00 0.03 0.07 0.10 0.97 0.15 3.98

τr (Mean,s) 0.08 0.10 0.18 0.24 0.48 0.21 1.61

τr (σ,s) 0.00 0.03 0.07 0.10 0.97 0.15 3.98

τo (Mean,s) 0.09 0.00 0.01 0.01 0.01 0.01 0.01

τo (σ,s) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dn (Mean,m) 0.07 0.06 0.05 0.05 0.06 0.05 0.06

dn (σ,m) 0.00 0.02 0.01 0.01 0.02 0.01 0.01

lp (Mean,radians) 6.60 10.10 9.20 7.38 9.99 8.82 8.30

lp (σ,radians) 0.00 2.49 2.95 1.26 2.91 2.72 1.37

le (Mean,m) 0.98 1.08 1.31 0.99 1.13 1.29 1.05

le (σ,m) 0.00 0.20 0.59 0.20 0.29 0.60 0.18

κ′ (Mean,radians) 1.49 0.36 0.38 0.38 0.37 0.40 0.29

κ′ (σ,radians) 0.00 0.51 0.53 0.52 0.58 0.65 0.41

sr 100% 100% 100% 100% 100% 100% 100%

once for ARA*. The results are averaged for the sampling-

based motion planners, to account for the randomness of

the methods. Each planner execution was given a maximum

of 60 seconds to complete. All resulting trajectories were

logged and metrics were computed on them. The averaged

metrics are presented in the next section. All experiments

were carried out on a quad-core Intel i7-2600 CPU (3.40

GHz) with 8 GB of RAM running the Ubuntu Precise

distribution of Linux and ROS Fuerte.

V. RESULTS

Tables II, III, IV, V show results from all the benchmark

tests1. We remind the reader that these results are based on

implementations that use different environment representa-

tions between ARA* and the randomized algorithms, which

make collision checks one order of magnitude faster for

ARA*. The data for these tables was compiled from the

individual planner runs on each environment. In addition to

the metrics described in Table I, we include the metric le,

which is particular to our set of experiments and corresponds

to the distance traveled by the end-effector. Smoothness

information was computed on plans resulting after post-

processing. All reported means are over the complete set

1In the tables, RRTC indicates the RRTConnect algorithm, LBKP indi-
cates the LBKPiece algorithm, and KP indicates the KPiece algorithm.

TABLE IV

MEAN AND STANDARD DEVIATIONS FOR METRICS FOR DIFFERENT

PLANNERS RUNNING IN THE TABLETOP ENVIRONMENT.

Metric ARA* RRTC LBKP SBL RRT KP RRT*

τt (Mean,s) 0.77 0.07 0.11 0.18 0.18 0.11 0.35

τt (σ,s) 0.00 0.02 0.02 0.04 0.13 0.04 0.30

τr (Mean,s) 0.72 0.07 0.11 0.17 0.17 0.11 0.34

τr (σ,s) 0.00 0.02 0.02 0.04 0.13 0.04 0.30

τo (Mean,s) 0.05 0.01 0.01 0.01 0.01 0.01 0.01

τo (σ,s) 0.00 0.00 0.00 0.00 0.00 0.01 0.00

dn (Mean,m) 0.06 0.07 0.07 0.06 0.08 0.08 0.08

dn (σ,m) 0.00 0.03 0.03 0.02 0.03 0.03 0.03

lp (Mean,radians) 10.33 12.85 10.06 9.31 11.95 10.03 10.14

lp (σ,radians) 0.00 2.43 1.65 1.29 2.44 1.64 1.52

le (Mean,m) 1.55 1.66 1.67 1.60 1.68 1.69 1.71

le (σ,m) 0.00 0.18 0.19 0.13 0.18 0.19 0.20

κ′ (Mean,radians) 1.28 0.37 0.32 0.31 0.23 0.30 0.35

κ′ (σ,radians) 0.00 0.65 0.48 0.45 0.30 0.45 0.70

sr 100% 100% 100% 100% 100% 100% 100%

TABLE V

MEAN AND STANDARD DEVIATIONS FOR METRICS FOR DIFFERENT

PLANNERS RUNNING IN THE NARROW PASSAGE ENVIRONMENT.

Metric ARA* RRTC LBKP SBL RRT KP RRT*

τt (Mean,s) 0.48 1.88 0.83 1.01 17.19 1.62 22.03

τt (σ,s) 0.00 1.23 0.35 0.24 8.22 0.81 8.86

τr (Mean,s) 0.41 1.87 0.82 1.00 17.15 1.58 22.01

τr (σ,s) 0.00 1.23 0.35 0.24 8.22 0.83 8.86

τo (Mean,s) 0.07 0.01 0.01 0.01 0.03 0.04 0.02

τo (σ,s) 0.00 0.00 0.01 0.00 0.02 0.10 0.01

dn (Mean,m) 0.02 0.01 0.01 0.01 0.01 0.01 0.01

dn (σ,m) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

lp (Mean,radians) 15.21 18.95 18.20 17.34 18.40 17.96 16.00

lp (σ,radians) 0.00 2.89 1.63 1.81 2.36 1.93 1.46

le (Mean,m) 1.41 1.76 1.65 1.59 1.77 1.59 1.66

le (σ,m) 0.00 0.27 0.16 0.19 0.26 0.17 0.17

κ′ (Mean,radians) 0.94 0.37 0.36 0.39 0.37 0.33 0.27

κ′ (σ,radians) 0.00 0.43 0.28 0.24 0.39 0.25 0.30

sr 100% 100% 100% 100% 89% 40% 52%

of successful motion plans for a particular environment.

Because there are different goals for each environment, the

standard deviation was instead computed for each goal (for

successful motion plans), and the average standard deviation

for the goals of a particular experiment is reported.

The tables show that all the planners are able to deal

reasonably well with the environments they are benchmarked

against. In the KITCHEN environment, the randomized plan-

ners are very fast in planning between the different goals.

The search-based planner is slower but delivers better path

lengths and also displays less variance in its path lengths (lp,

le). Note that both the search-based planner and RRT* are

only run until a first solution is obtained, giving them less

time to improve the quality of the solution. The sampling-

based planners also spend lower amounts of time for other

processing (τo) while the search-based planning approach

needs to spend this extra time creating and processing the

distance field for the environment. Note that this difference

in processing times for the environment could be reduced by

having each planner use a common collision representation.

The results in the INDUSTRIAL environment and the

TABLETOP environment are also similar to those for the

KITCHEN environments. Again, the search-based planners

generate, on average, the shortest paths on the first try but

take longer than the sampling based planners. The NARROW



PASSAGE results are different than those for the other 3

environments. In this case, the randomized planners are

generally slower than the search based planner which also

generates significantly shorter paths.

VI. CONCLUSIONS

We presented a benchmarking system for comparing mo-

tion planners. Our primary motivation is to create a set of

benchmarks that are easily accessible, easy to contribute to,

and can be downloaded and run for new motion planning

algorithms. We have shown sample results for motion plan-

ning for a mobile manipulator arm using a wide variety

of planners. We hope that the informative statistics we

have presented in this paper, coupled with knowledge about

the environments that the robot will be operating in, will

allow users of motion planning algorithms to make informed

decisions when choosing an approach.

With the help of the community, we hope to add new

environments, new motion planning problems and new robots

to this benchmarking system. We also intend to add more

informative metrics that attempt to quantify and capture other

properties of motion planning that might be important. In

particular, we would like to add benchmarks that test how

motion planners can deal with information from real sensors

and uncertainty due to noise in sensor data. We would also

like to include dynamic obstacles such as humans moving

through the environment and noisy data from real sensors.

Future work will also include the ability to specify cost

functions for use by the planners that can handle them, e.g.,

the search-based planners or RRT*. We will also incorporate

more true mobile manipulation tasks, i.e., tasks where a

mobile base may have to move around in a cluttered envi-

ronment while carrying an object and possibly manipulating

it with its arms. Finally, we will also allow for easier

specification of more types of constraints on the robot, e.g.,

visibility constraints or torque constraints.
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[11] S. Chitta, I. A. Şucan, and S. Cousins, “MoveIt! [ROS Topics],”
IEEE Robotics and Automation Magazine, vol. 19, no. 1, pp. 18–19,
March 2012. [Online]. Available: http://moveit.ros.org

[12] “Robot Operating System,” http://www.ros.org.
[13] T. P. Lab, “Algorithms and Applications Group Motion Plan-

ning Puzzles,” http://parasol-www.cs.tamu.edu/groups/amatogroup/
benchmarks/mp/.

[14] J. Baltes, “A Benchmark Suite for Mobile Robots,” in IEEE/RSJ Intl.

Conference on Intelligent Robots and Systems, 2000.
[15] I. Iossifidis, G. Lawitzky, S. Knoop, and R. Zllner, “Towards Bench-

marking of Domestic Robotic Assistants,” vol. 14. Springer Press,
2004, pp. 403–414.

[16] R. Geraerts, “Sampling-based motion planning: Analysis and path
quality,” Ph.D. dissertation, Utrecht University, 2006.

[17] J. Kuffner, S. Kagami, M. Inaba, and H. Inoue, “Performance bench-
marks for path planning in high dimensions,” in JSM Conference on

Robotics and Mechatronics, June 2001.
[18] J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-time Motion

Planning and Global Navigation using GPUs,” in AAAI Conference on

Artificial Intelligence, 2010.
[19] M. Reggiani, M. Mazzoli, and S. Caselli, “An Experimental Evaluation

of Collision Detection Packages for Robot Motion Planning,” in
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, 2002.
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