
1

A Generic Local Algorithm for Mining Data

Streams in Large Distributed Systems
Ran Wolff, Kanishka Bhaduri, and Hillol Kargupta Senior Member, IEEE

Abstract— In a large network of computers or wireless sensors,
each of the components (henceforth, peers) has some data about
the global state of the system. Much of the system’s functionality
such as message routing, information retrieval and load sharing
relies on modeling the global state. We refer to the outcome of the
function (e.g., the load experienced by each peer) as the model of
the system. Since the state of the system is constantly changing,
it is necessary to keep the models up-to-date.

Computing global data mining models e.g. decision trees, k-
means clustering in large distributed systems may be very costly
due to the scale of the system and due to communication cost,
which may be high. The cost further increases in a dynamic
scenario when the data changes rapidly. In this paper we describe
a two step approach for dealing with these costs. First, we
describe a highly efficient local algorithm which can be used
to monitor a wide class of data mining models. Then, we
use this algorithm as a feedback loop for the monitoring of
complex functions of the data such as its k-means clustering. The
theoretical claims are corroborated with a thorough experimental
analysis.

I. INTRODUCTION

In sensor networks, peer-to-peer systems, grid systems, and

other large distributed systems there is often the need to

model the data that is distributed over the entire system. In

most cases, centralizing all or some of the data is a costly

approach. When data is streaming and system changes are

frequent, designers face a dilemma: should they update the

model frequently and risk wasting resources on insignificant

changes, or update it infrequently and risk model inaccuracy

and the resulting system degradation.

At least three algorithmic approaches can be followed in

order to address this dilemma: The periodic approach is to

rebuild the model from time to time. The incremental approach

is to update the model with every change of the data. Last,

the reactive approach, what we describe here, is to monitor

the change and rebuild the model only when it no longer

suits the data. The benefit of the periodic approach is its

simplicity and its fixed costs in terms of communication and

computation. However, the costs are fixed independent of the

A preliminary version of this work was published in the Proceedings of
the 2006 SIAM Data Mining Conference (SDM’06).

Manuscript received ...; revised
Ran Wolff is with the Department of Management Information Systems,

Haifa University, Haifa-31905, Israel. Email:rwolff@mis.haifa.il. Kanishka
Bhaduri is with Mission Critical Technologies Inc at NASA Ames Research
Center, Moffett Field CA 94035. Email:kanishka bh@yahoo.com. Hillol Kar-
gupta is with the Department of Computer Science and Electrical Engineer-
ing, University of Maryland Baltimore County, Baltimore, MD 21250. E-
mail:hillol@cs.umbc.edu. Hillol Kargupta is also affiliated to AGNIK LLC,
Columbia, MD 21045. This work was done when Kanishka Bhaduri was at
UMBC.

fact that the data is static or rapidly changing. In the former

case the periodic approach wastes resources, while on the latter

it might be inaccurate. The benefit of the incremental approach

is that its accuracy can be optimal. Unfortunately, coming

up with incremental algorithms which are both accurate and

efficient can be hard and problem specific. On the other hand,

model accuracy is usually judged according to a small number

of rather simple metrics (misclassification error, least square

error, etc.). If monitoring is done efficiently and accurately,

then the reactive approach can be applied to many different

data mining algorithm at low costs.

Local algorithms are one of the most efficient family of

algorithms developed for distributed systems. Local algorithms

are in-network algorithms in which data is never centralized

but rather computation is performed by the peers of the

network. At the heart of a local algorithm there is a data

dependent criteria dictating when nodes can avoid sending

updates to their neighbors. An algorithm is generally called

local if this criteria is independent with respect to the number

of nodes in the network. Therefore, in a local algorithm, it

often happens that the overhead is independent of the size of

the system. Primarily for this reason, local algorithms exhibit

high scalability. The dependence on the criteria for avoiding

to send messages also makes local algorithms inherently

incremental. Specifically, if the data changes in a way that

does not violate the criteria, then the algorithm adjusts to the

change without sending any message.

Local algorithms were developed, in recent years, for a large

selection of data modeling problems. These include association

rule mining [1], facility location [2], outlier detection [3],

L2 norm monitoring [4], classification [5], and multivariate

regression [6]. In all these cases, resource consumption was

shown to converge to a constant when the number of nodes

is increased. Still, the main problem with local algorithms,

thus far, has been the need to develop one for every specific

problem.

In this work we make the following progress. First, we

generalize a common theorem underlying the local algorithms

in [1], [2], [4], [5], [6] extending it from R to R
d. Next, we

describe a generic algorithm, relying on the said generalized

theorem, which can be used to compute arbitrarily complex

functions of the average of the data in a distributed system;

we show how the said algorithm can be extended to other

linear combinations of data, including weighted averages of

selections from the data. Then, we describe a general frame-

work for monitoring, and consequent reactive updating of any

model of horizontally distributed data. Finally, we describe the

application of this framework for the problem of providing a

2

k clustering which is a good approximation of the k-means

clustering of data distributed over a large distributed system.

Our theoretical and algorithmic results are accompanied with

a thorough experimental validation, which demonstrates both

the low cost and the excellent accuracy of our method.

The rest of this paper is organized as follows. The next

section describes our notations, assumptions, and the formal

problem definition. In Section III we describe and prove the

main theorem of this paper. Following, Section IV describes

the generic algorithm and its specification for the L2 thresh-

olding problem. Section V presents the reactive algorithms for

monitoring three typical data mining problems – viz. means

monitoring and k-means monitoring. Experimental evaluation

is presented in Section VI while Section VII describes related

work. Finally, Section VIII concludes the paper and lists some

prospective future work.

II. NOTATIONS, ASSUMPTIONS, AND PROBLEM

DEFINITION

In this section we discuss the notations and assumptions

which will be used throughout the rest of the paper. The main

idea of the algorithm is to have peers accumulate sets of input

vectors (or summaries thereof) from their neighbors. We show

that under certain conditions on the accumulated vectors a

peer can stop sending vectors to its neighbors long before it

collects all input vectors. Under these conditions one of two

things happens: Either all peers can compute the result from

the input vectors they have already accumulated or at least

one peer will continue to update its neighbors – and through

them the entire network – until all peers compute the correct

result.

A. Notations

Let V = {p1, . . . , pn} be a set of peers (we use the term

peers to describe the peers of a peer-to-peer system, motes of

a wireless sensor network, etc.) connected to one another via

an underlying communication infrastructure. The set of peers

with which pi can directly communicate, Ni, is known to pi.

Assuming connectedness, Ni always contains pi and at least

one more peer. Additionally, pi is given a time varying set of

input vectors in Rd.

Peers communicate with one another by sending sets of

input vectors (below, we show that for our purposes statistics

on sets are sufficient). We denote by Xi,j the latest set of

vectors sent by peer pi to pj . For ease of notation, we

denote the input of pi (mentioned above) Xi,i. Thus,
⋃

pj∈Ni

Xj,i

becomes the latest set of input vectors known to pi.

Assuming reliable messaging, once a message is delivered

both pi and pj know both Xi,j and Xj,i. We further define

four sets of vectors that are central to our algorithm.

Definition 2.1: The knowledge of pi, is Ki =
⋃

pj∈Ni

Xj,i.

Definition 2.2: The agreement of pi and any neighbor pj ∈
Ni is Ai,j = Xi,j ∪Xj,i.

Definition 2.3: The withheld knowledge of pi with respect

to a neighbor pj is the subtraction of the agreement from the

knowledge Wi,j = Ki \ Ai,j .

Definition 2.4: The global input is the set of all inputs G =
⋃

pi∈V

Xi,i.

We are interested in inducing functions defined on G. Since

G is not available at any peer, we derive conditions on K, A
and W which will allow us to learn the function on G. Our

next set of definitions deal with convex regions which are a

central point of our main theorem to be discussed in the next

section.

A region R ⊆ Rd is convex, if for every two points x, y ∈ R
and every α ∈ [0, 1], the weighted average α ·x+(1− α) ·y ∈
R. Let F be a function from Rd to an arbitrary domain

O. F is constant on R if ∀x, y ∈ R : F (x) = F (y).
Any set or regions {R1, R2, . . . } induces a cover of Rd,

R = {R1, R2, . . . , T} in which the tie region T includes any

point of Rd which is not included by one of the other regions.

We denote a given cover RF respective of F if for all regions

except the tie region F is constant. Finally, for any x ∈ Rd

we denote RF (x) the first region of RF which includes x.

B. Assumptions

Throughout this paper, we make the following assumptions:

Assumption 2.1: Communication is reliable.

Assumption 2.2: Communication takes place over a span-

ning communication tree.

Assumption 2.3: Peers are notified on changes in their own

data xi, and in the set of their neighbors Ni.

Assumption 2.4: Input vectors are unique.

Assumption 2.5: A respective cover RF can be precom-

puted for F .

Note that assumption 2.1 can easily be enforced in all ar-

chitectures as the algorithm poses no requirement for ordering

or timeliness of messages. Simple approaches, such as piggy-

backing message acknowledgement can thus be implemented

in even the most demanding scenarios – those of wireless

sensor networks. Assumption 2.3 can be enforced using a

heartbeat mechanism. Assumption 2.2 is the strongest of the

three. Although solutions that enforce it exist (see for example

[7]), it seems a better solution would be to remove it altogether

using a method as described by Liss et al. [8]. However,

describing such a method in this generic setting is beyond the

scope of this paper. Assumption 2.4 can be enforced by adding

the place and time of origin to each point and then ignoring

it in the calculation of F . Assumption 2.5 does not hold for

any function. However, it does hold for many interesting ones.

The algorithm described here can be sensitive to an inefficient

choice of respective cover.

Note that, the correctness of the algorithm cannot be guar-

anteed in case the assumptions above do not hold. Specifically,

duplicate counting of input vectors can occur if Assumption

2.2 does not hold — leading to any kind of result. If messages

are lost then not even consensus can be guaranteed. The only

positive result which can be proved quite easily is that if at

any time the communication infrastructure becomes a forest,

any tree will converge to the value of the function on the input

of the peers belonging to that tree.

3

C. Sufficient statistics

The algorithm we describe in this paper deals with com-

puting functions of linear combinations of vectors in G. For

clarity, we will focus on one such combination – the average.

Linear combinations, and the average among them, can be

computed from statistics. If each peer learns any input vector

(other than its own) through just one of its neighbors, then

for the purpose of computing Ki, Ai,j , and Wi,j , the various

Xi,j can be replaced with their average, Xi,j , and their size,

|Xi,j |. To make sure that happens, all that is required from

the algorithm is that the content of every message sent by pi

to its neighbor pj would not be dependent on messages pj

previously sent to pi. In this way, we can rewrite:

• |Ki| =
∑

pj∈Ni

|Xj,i|

• |Ai,j | = |Xi,j |+ |Xj,i|
• |Wi,j | = |Ki| − |Ai,j |

• Ki =
∑

pj∈Ni

|Xj,i|

|Ki|
Xj,i

• Ai,j =
|Xi,j |
|Ai,j |

Xi,j +
|Xj,i|
|Ai,j |

Xj,i

• Wi,j = |Ki|
|Wi,j |

Ki −
|Ai,j |
|Wi,j |

Ai,j or nil in case |Wi,j | = 0 .

D. Problem Definition

We now formally define the kind of computation provided

by our generic algorithm and our notion of correct and of

accurate computation.

Problem definition: Given a function F , a spanning network

tree G(V, E) which might change with time, and a set of time

varying input vectors Xi,i at every pi ∈ V , the problem is to

compute the value of F over the average of the input vectors

G.

While the problem definition is limited to averages of data

it can be extended to weighted averages by simulation. If a

certain input vector needs to be given an integer weight ω
then ω peers can be simulated inside the peer that has that

vector and each be given that input vector. Likewise, if it is

desired that the average be taken only over those inputs which

comply with some selection criteria then each peer can apply

that criteria to Xi,i apriori and then start off with the filtered

data. Thus, the definition is quite conclusive.

Because the problem is defined for data which may change

with time, a proper definition of algorithmic correctness must

also be provided. We define the accuracy of an algorithm as

the number of peers which compute the correct result at any

given time, and denote an algorithm as robust if it presents

constant accuracy when faced with stationarily changing data.

We denote an algorithm as eventually correct if, once the

data stops changing, and regardless of previous changes, the

algorithm is guaranteed to converge to a hundred percent

accuracy.

Finally, the focus of this paper is on local algorithms. As

defined in [1], a local algorithm is one whose performance

is not inherently dependent on the system size, i.e., in which

|V | is not a factor in any lower bound on performance. Notice

locality of an algorithm can be conditioned on the data. For

instance, in [1] a majority voting algorithm is described which

may perform as badly as O
(

|V |2
)

in case the vote is tied.

Nevertheless when the vote is significant and the distribution

of votes is random the algorithm will only consume constant

resources, regardless of |V |. Alternative definitions exist for

local algorithms and are thoroughly discussed in [9] and [10].

III. MAIN THEOREMS

The main theorem of this paper lay the background for

a local algorithm which guarantees eventual correctness in

the computation of a wide range of ordinal functions. The

theorem generalizes the local stopping rule described in [1]

by describing a condition which bounds the whereabouts of

the global average vector in Rd depending on the Ki Ai,j and

Wi,j of each peer pi.

Theorem 3.1: [Main Theorem] Let G(V, E) be a spanning

tree in which V is a set of peers and let Xi,i be the input of

pi, Ki be its knowledge, and Ai,j and Wi,j be its agreement

and withheld knowledge with respect to a neighbor pj ∈ Ni

as defined in the previous section. Let R ⊆ Rd be any convex

region. If at a given time no messages traverse the network

and for all pi and pj ∈ Ni Ki,Ai,j ∈ R and either Wi,j = ∅
or Wi,j ∈ R as well, then G ∈ R.

Proof: Consider a communication graph G(V, E) in

which for some convex R and every pi and pj such that pj ∈
Ni it holds that Ki,Ai,j ∈ R and eitherWi,j = ∅ orWi,j ∈ R
as well. Assume an arbitrary leaf pi is eliminated and all of

the vectors in Wi,j are added to its sole neighbor pj . The

new knowledge of pj is K′
j = Kj ∪Wi,j . Since by definition

Kj ∩ Wi,j = ∅, the average vector of the new knowledge of

pj , K′
j , can be rewritten as Kj ∪Wi,j = α·Kj +(1−α)·Wi,j

for some α ∈ [0, 1]. Since R is convex, it follows from

Kj ,Wi,j ∈ R that K′
j ∈ R too.

Now, consider the change in the withheld knowledge of

pj with respect to any other neighbor pk ∈ Nj resulting from

sending such a message. The newW ′
j,k =Wi,j∪Wj,k. Again,

since Wi,j ∩Wj,k = ∅ and since R is convex it follows from

Wi,j ,Wj,k ∈ R that W ′
j,k ∈ R as well. Finally, notice the

agreements of pj with any neighbor pk except pi do not change

as a result of such message.

Hence, following elimination of pi we have a communica-

tion tree with one less peer in which the same conditions still

apply to every remaining peer and its neighbors. Proceeding

with elimination we can reach a tree with just one peer p1,

still assured that K1 ∈ R. Moreover, since no input vector was

lost at any step of the elimination K1 = G. Thus, we have that

under the said conditions G ∈ R.

Theorem 3.1 is exemplified in Figure 1. Three peers are

shown, each with a drawing of its knowledge, it agreement

with its neighbor or neighbors, and the withheld knowledge.

Notice the agreement A1,2 drawn for p1 is identical to A2,1 at

p2. For graphical simplicity we assume all of the vectors have

the same weight – and avoid expressing it. We also depict

the withheld knowledge vectors twice – once as a subtraction

of the agreement from the knowledge – using a dotted line –

and once – shifted to the root – as measured in practice. If

the position of the three peers’ data is considered vis-a-vis the

circular region then the conditions of Theorem 3.1 hold.

4

Now, assume what would happen when peer p1 is elimi-

nated. This would mean that all of the knowledge it withholds

from p2 is added to K2 and to W2,3. Since we assumed

|W1,2| = |K2| = 1 the result is simply the averaging of the

previous K2 and W1,2. Notice both these vectors remain in

the circular region.

Lastly, as p2 is eliminated as well, W2,3 – which now also

includesW1,2 – is blended into the knowledge of p3. Thus, K3

becomes equal to G. However, the same argument, as applied

in the elimination of p1, assures the new K3 is in the circular

region as well.

(a) Three peers p1, p2 and p3 where p2 is connected to both other peers.

(b) After elimination of p1.

(c) After elimination of p2.

Fig. 1. At Figure 1(a) the data at all three peers concur with the conditions
of Theorem 3.1 with respect to the circle – which is a convex region. If
subsequently peer p1 is eliminated and W1,2 sent to p2 then A2,3 is not
affected and K2 and W2,3 do change but still remain in the same region.
When subsequently, in Figure 1(c), p2 is eliminated again K3 = G which
demonstrates G is in the circular region.

To see the relation of Theorem 3.1 to the previous the

Majority-Rule algorithm [1], one can restate the majority

voting problem as deciding whether the average of zero-one

votes is in the segment [0, λ) or the segment [λ, 1]. Both

segments are convex, and the algorithm only stops if for all

peers the knowledge is further away from λ than the agreement

– which is another way to say the knowledge, the agreement,

and the withheld data are all in the same convex region.

Therefore, Theorem 3.1 generalizes the basic stopping rule

of Majority-Rule to any convex region in Rd.

Two more issues arise from this comparison: one is that in

Majority-Rule the regions used by the stopping rule coincide

with the regions in which F is constant. The other is that in

the Majority-Rule, every peer decides according to which of

the two regions it should try to stop by choosing the region

which includes the agreement. Since there are just two non-

overlapping region, peers reach consensus on the choice of

region and, hence, on the output.

These two issues become more complex for a general F
over Rd. First, for many interesting F , the regions in which

the function is constant are not all convex. Also, there could

be many more than two such regions, and the selection of the

region in which the stopping rule needs be evaluated becomes

non-trivial.

We therefore provide two lemmas which provide a way to

deal with the selection problem and an answer to the case

where in which a function cannot be neatly described as a

partitioning of Rd to convex regions in which it is constant.

Lemma 3.2: [Consensus] Let G(V, E) be a spanning tree

in which V is a set of peers and let Xi,i be the input of pi,

Ki be its knowledge, and Ai,j and Wi,j be its agreement and

withheld knowledge with respect to a neighbor pj ∈ Ni as

defined in the previous section. Let RF = {R1, R2, . . . , T}
be a F -respective cover, and let RF (x) be the first region in

RF which contains x. If for every peer pi and every pj ∈ Ni

RF

(

Ki

)

= RF

(

Ai,j

)

then for every two peers pi and pℓ,

RF

(

Ki

)

= RF

(

Kℓ

)

.

Proof: We prove this by contradiction. Assume that

the result is not true. Then there are two peers pi and

pℓ with RF

(

Ki

)

6= RF

(

Kℓ

)

. Since the communication

graph is a spanning tree, there is a path from pi to pℓ and

somewhere along that path there are two neighbor peers, pu

and pv such that RF

(

Ku

)

6= RF

(

Kv

)

. Notice, however, that

Au,v = Av,u. Therefore, either RF

(

Ku

)

6= RF

(

Au,v

)

or

RF

(

Kv

)

6= RF

(

Av,u

)

— a contradiction.

Building on Lemma 3.2 above, a variant of Theorem 3.1 can

be proved which makes use of a respective cover to compute

the value of F .

Theorem 3.3: Let G(V, E) be a spanning tree in which V
is a set of peers and let Xi,i be the input of pi, Ki be its

knowledge, and Ai,j and Wi,j be its agreement and withheld

knowledge with respect to a neighbor pj ∈ Ni as defined

in the previous section. Let RF = {R1, R2, . . . , T} be a

respective cover, and let RF (x) be the first region in RF

which contains x. If for every peer pi and every pj ∈ Ni

RF

(

Ki

)

= RF

(

Ai,j

)

6= T and if furthermore either Wi,j =
∅ or Wi,j ∈ RF

(

Ki

)

then for every pi, F(Ki) = F(G).
Proof: From Lemma 3.2 it follows that all peers compute

the same RF

(

Ki

)

. Thus, since this region is not T , it must be

convex. It therefore follows from Theorem 3.1 that G is, too,

in RF

(

Ki

)

. Lastly, since RF is a respective cover F must

be constant on all regions except T . Thus, the value of F(G)
is equal to that of F(Ki), for any pi.

IV. A GENERIC ALGORITHM AND ITS INSTANTIATION

This section describes a generic algorithm which relies

on the results presented in the previous section to compute

the value of a given function of the average of the input

vectors. This generic algorithm is both local and eventually

correct. The section proceeds to exemplify how this generic

algorithm can be used by instantiating it to compute whether

the average vector has length above a given threshold F (x) =

5

{

0 ‖x‖ ≤ ǫ

1 ‖x‖ > ǫ
. L2 thresholding is both an important problem

in its own right and can also serve as the basis for data mining

algorithms as will be described in the next section.

A. Generic Algorithm

The generic algorithm, depicted in Algorithm 1, receives as

input the function F , a respective cover RF , and a constant,

L, whose function is explained below. Each peer pi outputs,

at every given time, the value of F based on its knowledge

Ki.

The algorithm is event driven. Events could be one of the

following: a message from a neighbor peer, a change in the

set of neighbors (e.g., due to failure or recovery), a change in

the local data, or the expiry of a timer which is always set to

no more than L. On any such event pi calls the OnChange

method. When the event is a message X, |X | received from

a neighbor pj , pi would update Xi,j to X and |Xi,j | to |X |
before it calls OnChange.

The objective of the OnChange method is to make certain

that the conditions of Lemma 3.3 are maintained for the peer

that runs it. These conditions require Ki, Ai,j , and Wi,j (in

case it is not null) to all be in RF

(

Ki

)

, which is not the tie

region T . Of the three, Ki cannot be manipulated by the peer.

The peer thus manipulates both Ai,j , and Wi,j by sending a

message to pj , and subsequently updating Xi,j .

In case RF

(

Ki

)

6= T one way to adjust Ai,j and Wi,j so

that the conditions of Lemma 3.3 are maintained is to send

the entire Wi,j to pj . This would make Ai,j equal to Ki, and

therefore make Ai,j equal to Ki and inRF

(

Ki

)

. Additionally,

Wi,j becomes empty. However, this solution is one of the

many possible changes to Ai,j and Wi,j , and not necessarily

the optimal one. We leave the method of finding a value for

the next message Xi,j which should be sent by pi unspecified

at this stage, as it may depend on characteristics of the specific

RF .

The other possible case is that RF

(

Ki

)

= T . Since T is

always the last region of RF , this means Ki is outside any

other region R ∈ RF . Since T is not necessarily convex, the

only option which will guarantee eventual correctness in this

case is if pi sends the entire withheld knowledge to every

neighbor it has.

Lastly, we need to address the possibility that although

|Wi,j | = 0 we will have Ai,j which is different from Ki.

This can happen, e.g., when the withheld knowledge is sent

in its entirety and subsequently the local data changes. Notice

this possibility results only from our choice to use sufficient

statistics rather than sets of vectors: Had we used sets of

vectors,Wi,j would not have been empty, and would fall into

one of the two cases above. As it stands, we interpret the case

of non-empty Wi,j with zero |Wi,j | as if Wi,j is in T .

It should be stressed here that if the conditions of Lemma

3.3 hold the peer does not need to do anything even if its

knowledge changes. The peer can rely on the correctness of

the general results from the previous section which assure that

if F
(

Ki

)

is not the correct answer then eventually one of its

neighbors will send it new data and change Ki. If, one the

other hand, one of the aforementioned cases do occur, then

pi sends a message. This is performed by the SendMessage

method. If Ki is in T then pi simply sends all of the withheld

data. Otherwise, a message is computed which will assure Ai,j

and Wi,j are in RF

(

Ki

)

.

One last mechanism employed in the algorithm is a “leaky

bucket” mechanism. This mechanism makes certain no two

messages are sent in a period shorter than a constant L. Leaky

bucket is often used in asynchronous, event-based systems to

prevent event inflation. Every time a message needs to be sent,

the algorithm checks how long has it been since the last one

was sent. If that time is less than L, the algorithm sets a timer

for the reminder of the period and calls OnChange again when

the timer expires. Note that this mechanism does not enforce

any kind of synchronization on the system. It also does not

affect correctness: at most it can delay convergence because

information would propagate more slowly.

Algorithm 1 Generic Local Algorithm

Input of peer pi: F , RF = {R1, R2, . . . , T}, L, Xi,i, and

Ni

Ad hoc output of peer pi: F
(

Ki

)

Data structure for pi: For each pj ∈ Ni Xi,j , |Xi,j |, Xj,i,

|Xi,j |, last message
Initialization: last message← −∞
On receiving a message X, |X | from pj:

– Xj,i ← X , |Xj,i| ← |X |
On change in Xi,i, Ni, Ki or |Ki|: call OnChange()

OnChange()
For each pj ∈ Ni:

– If one of the following conditions occur:

– 1. RF

(

Ki

)

= T and either Ai,j 6= Ki or |Ai,j | 6= |Ki|
– 2. |Wi,j | = 0 and Ai,j 6= Ki

– 3. Ai,j 6∈ RF

(

Ki

)

or Wi,j 6∈ RF

(

Ki

)

– then

– – call SendMessage(pj)
SendMessage(pj):
If time ()− last message ≥ L
– If RF

(

Ki

)

= T then the new Xi,j and |Xi,j | are Wi,j

and |Wi,j |, respectively

– Otherwise compute new Xi,j and |Xi,j | such that

Ai,j ∈ RF

(

Ki

)

and either Wi,j ∈ RF

(

Ki

)

or |Wi,j | = 0
– last message← time ()
– Send Xi,j , |Xi,j | to pj

Else

– Wait L− (time ()− last message) time units and then

call OnChange()

B. Eventual correctness

Proving eventual correctness requires showing that if both

the underlying communication graph and the data at every peer

cease to change then after some length of time every peer

would output the correct result F
(

G
)

; and that this would

happen for any static communication tree G(V, E), any static

data Xi,i at the peers, and any possible state of the peers.

6

Proof: [Eventual Correctness] Regardless of the state of

Ki, Ai,j , Wi,j , the algorithm will continue to send messages,

and accumulate more and more of G in each Ki until one of

two things happens: One is that for every peer Ki = G and

thus Ai,j = Ki for all pj ∈ Ni. Alternatively, for every pi Ai,j

is in RF

(

Ki

)

, which is different than T , andWi,j is either in

RF

(

Ki

)

as well or is empty. In the former case, Ki = G, so

every peer obviously computes F
(

Ki

)

= F
(

G
)

. In the latter

case, Theorem 3.1 dictates that G ∈ Rℓ, so F
(

Ki

)

= F
(

G
)

too. Finally, provided that every message sent in the algorithm

carries the information of at least one input vector to a peer

that still does not have it, the number of messages sent between

the time the data stops changing and the time in which every

peer has the data of all other peers is bounded by O
(

|V |2
)

.

C. Local L2 Norm Thresholding

Following the description of a generic algorithm, specific

algorithms can be implemented for various functions F . One

of the most interesting functions (also dealt with in our

previous paper [4]) is that of thresholding the L2 norm of

the average vector, i.e., deciding if
∥

∥G
∥

∥ ≤ ǫ.

To produce a specific algorithm from the generic one, the

following two steps need to be taken:

1) A respective cover RF , needs to be found

2) A method for finding Xi,j and |Xi,j | which assures that

both Ai,j and Wi,j are in R needs to be formulated

In the case of L2 thresholding, the area for which F outputs

true – the inside of an ǫ circle – is convex. This area is denoted

Rin. The area outside the ǫ-circle can be divided by randomly

selecting unit vectors û1, . . . , ûℓ and then drawing the half-

spaces Hj = {~x : ~x · ûj ≥ ǫ}. Each half-space is convex.

Also, they are entirely outside the ǫ circle, so F is constant on

every Hj . {Rin, H1, . . . , Hℓ, T } is, thus, a respective cover.

Furthermore, by increasing ℓ, the area between the halfspaces

and the circle or the tie area can be minimized to any desired

degree.

It is left to describe how the SendMessage method com-

putes a message that forces Ai,j and Wi,j into the region

which contains Ki if they are not in it. A related algorithm,

Majority-Rule [1], suggests sending all of the withheld knowl-

edge in any case. However, experiments with dynamic data

hint this method may be unfavorable. If all or most of the

knowledge is sent and the data later changes the withheld

knowledge becomes the difference between the old and the

new data. This difference tends to be far more noisy than the

original data. Thus, while the algorithm makes certainAi,j and

Wi,j are brought into the same region as Ki, it still makes an

effort to maintain some withheld knowledge.

Although it may be possible to optimize the size of |Wi,j |
we take the simple and effective approach of testing an

exponentially decreasing sequence of |Wi,j | values, and then

choosing the first such value satisfying the requirements for

Ai,j andWi,j . When a peer pi needs to send a message, it first

sets the new Xi,j to
|Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|
. Then, it tests a sequence

of values for |Xi,j |. Clearly, |Xi,j | = |Ki| − |Xj,i| translates

to an empty withheld knowledge and must concur with the

conditions of Lemma 3.3. However, the algorithm begins with

|Xi,j | =
|Ki|−|Xj,i|

2
and only gradually increases the weight,

trying to satisfy the conditions without sending all data.

Algorithm 2 Local L2 Thresholding

Input of peer pi: ǫ, L, Xi,i, Ni, ℓ
Global constants: A random seed s
Data structure for pi: For each pj ∈ Ni Xi,j , |Xi,j |, Xj,i,

|Xi,j |, last message
Output of peer pi: 0 if

∥

∥Ki

∥

∥ ≤ ǫ, 1 otherwise

Computation of RF :

Let Rin = {~x : ‖~x‖ ≤ ǫ}
Let û1, . . . , ûℓ be pseudo-random unit vectors and let

Hj = {~x : ~x · ûj ≥ ǫ}
RF = {Rin, H1, . . . , Hℓ, T }.
Computation of |Xi,j | and Xi,j:

Xi,j ←
|Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|

w ← |X | ← |Ki| − |Xj,i|
Do

– w ← ⌊w
2
⌋

– |Xi,j | ← |Ki| − |Xj,i| − w
While (Ai,j 6∈ RF

(

Ki

)

or Wi,j 6∈ RF

(

Ki

)

and |Wi,j | 6= 0)

Initialization: last message← −∞, compute RF

On receiving a message X, |X | from pj:

– Xj,i ← X , |Xj,i| ← |X |
On change in Xi,i, Ni, Ki or |Ki|: call OnChange()

OnChange()
For each pj ∈ Ni:

– If one of the following conditions occur:

– 1. RF

(

Ki

)

= T and either Ai,j 6= Ki or |Ai,j | 6= |Ki|
– 2. |Wi,j | = 0 and Ai,j 6= Ki

– 3. Ai,j 6∈ RF

(

Ki

)

or Wi,j 6∈ RF

(

Ki

)

– then

– – call SendMessage(pj)
SendMessage(pj):
If time ()− last message ≥ L
– If RF

(

Ki

)

= T then the new Xi,j and |Xi,j | are Wi,j

and |Wi,j |, respectively

– Otherwise compute new Xi,j and |Xi,j |
– last message← time ()
– Send Xi,j , |Xi,j | to pj

Else

– Wait L− (time ()− last message) time units and then

call OnChange()

V. REACTIVE ALGORITHMS

The previous section described an efficient generic local

algorithm, capable of computing any function even when the

data and system are constantly changing. In this section, we

leverage this powerful tool to create a framework for producing

and maintaining various data mining models. This framework

is simpler than the current methodology of inventing a specific

distributed algorithm for each problem and may be as efficient

as its counterparts.

7

The basic idea of the framework is to employ a sim-

ple, costly, and possibly inaccurate convergecast algorithm

in which a single peer samples data from the network and

then computes, based on this “best-effort” sample, a data

mining model. Then, this model is broadcast to the entire

network; again, a technique which might be costly. Once, every

peer is informed with the current model, a local algorithm,

which is an instantiation of the generic algorithm is used

in order to monitor the quality of the model. If the model

is not sufficiently accurate or the data has changed to the

degree that the model no longer describes it, the monitoring

algorithm alerts and triggers another cycle of data collection. It

is also possible to tune the algorithm by increasing the sample

size if the alerts are frequent and decreasing it when they

are infrequent. Since the monitoring algorithm is eventually

correct, eventual convergence to a sufficiently accurate model

is very likely. Furthermore, when the data only goes through

stationary changes, the monitoring algorithm triggers false

alerts infrequently and hence can be extremely efficient. Thus,

the overall cost of the framework is low.

We describe two instantiations of this basic framework, each

highlighting a different aspect. First we discuss the problem

of computing the mean input vector, to a desired degree of

accuracy. Then, we present an algorithm for computing a

variant of the k-means clusters suitable for dynamic data.

A. Mean Monitoring

The problem of monitoring the mean of the input vectors has

direct applications to many data analysis tasks. The objective

in this problem is to compute a vector µ which is a good

approximation for G. Formally, we require that
∥

∥G − µ
∥

∥ ≤ ǫ
for a desired value of ǫ.

For any given estimate µ, monitoring whether
∥

∥G − µ
∥

∥ ≤
ǫ is possible via direct application of the L2 thresholding

algorithm from Section IV-C. Every peer pi subtracts µ from

every input vector in Xi,i. Then, the peers jointly execute L2

Norm Thresholding over the modified data. If the resulting

average is inside the ǫ-circle then µ is a sufficiently accurate

approximation of G; otherwise, it is not.

The basic idea of the mean monitoring algorithm is to

employ a convergecast-broadcast process in which the con-

vergecast part computes the average of the input vectors and

the broadcast part delivers the new average to all the peers.

The trick is that, before a peer sends the data it collected up the

convergecast tree, it waits for an indication that the current µ is

not a good approximation of the current data. Thus, when the

current µ is a good approximation, convergecast is slow and

only progresses as a result of false alerts. During this time,

the cost of the convergecast process is negligible compared

to that of the L2 thresholding algorithm. When, on the other

hand, the data does change, all peers alert almost immediately.

Thus, convergecast progresses very fast, reaches the root, and

initiates the broadcast phase. Hence, a new µ is delivered to

every peer, which is a more updated estimate of G.

The details of the mean monitoring algorithm are given in

Algorithm 3. One detail is that of an alert mitigation constant,

τ , selected by the user. The idea here is that an alert should

persist for a given period of time before the convergecast

advances. Experimental evidence suggests that setting τ to

even a fraction of the average edge delay greatly reduces the

number of convergecasts without incurring a significant delay

in the updating of µ.

A second detail is the separation of the data used for alerting

– the input of the L2 thresholding algorithm – from that which

is used for computing the new average. If the two are the

same then the new average may be biased. This is because an

alert, and consequently an advancement in the convergecast,

is bound to be more frequent when the local data is extreme.

Thus, the initial data, and later every new data, is randomly

associated with one of two buffers: Ri, which is used by the

L2 Thresholding algorithm, and Ti, on whom the average is

computed when convergecast advances.

A third detail is the implementation of the convergecast

process. First, every peer tracks changes in the knowledge of

the underlying L2 thresholding algorithm. When it moves from

inside the ǫ-circle to outside the ǫ-circle the peer takes note of

the time, and sets a timer to τ time units. When a timer expires

or when a data message is received from one of its neighbors

pi checks if currently there is an alert and if it was recorded

τ or more time units ago. If so, it counts the number of its

neighbors from whom it received a data message. If it received

data messages from all of its neighbors, the peer moves to the

broadcast phase, computes the average of its own data and

of the received data and sends it to itself. If it has received

data messages from all but one of the neighbors then this

one neighbor becomes the peer’s parent in the convergecast

tree; the peer computes the average of its own and its other

neighbors’ data, and sends the average with its cumulative

weight to the parent. Then, it moves to the broadcast phase. If

two or more of its neighbors have not yet sent a data messages

pi keeps waiting.

Lastly, the broadcast phase is fairly straightforward. Every

peer which receives the new µ vector, updates its data by

subtracting it from every vector in Ri and transfers those

vectors to the underlying L2 thresholding algorithm. Then,

it re-initializes the buffers for the data messages and sends the

new µ vector to its other neighbors and changes the status to

convergecast. There could be one situation in which a peer

receives a new µ vector even though it is already in the

convergecast phase. This happens when two neighbor peers

concurrently become roots of the convergecast tree (i.e., when

each of them concurrently sends the last convergecast message

to the other). To break the tie, a root peer pi which receives

µ from a neighbor pj while in the convergecast phase ignores

the message if i > j it ignores the message. Otherwise if i < j
pi treats the message just as it would in the broadcast phase.

B. k-Means Monitoring

We now turn to a more complex problem, that of computing

the k-means of distributed data. The classic formulation of

the k-means algorithm is a two step recursive process in

which every data point is first associated with the nearest of

k centroids, and then every centroid is moved to the average

of the points associated with it – until the average is the same

8

Algorithm 3 Mean Monitoring

Input of peer pi: ǫ, L, Xi,i, the set of neighbors Ni, an

initial vector µ0, an alert mitigation constant τ .

Output available to every peer pi: An approximated means

vector µ
Data structure of peer pi: Two sets of vectors Ri and Ti, a

timestamp last change, flags: alert, root, and phase, for

each pj ∈ Ni, a vector vj and a counter cj

Initialization:

Set µ← µ0, alert← false, phase← convergecast
Split Xi,i evenly between Ri and Ti

Initialize an L2 thresholding algorithm with the input ǫ, L,

{x− µ : x ∈ Ri}, Ni

Set vi, ci to Ti, |Ti|, respectively, and vj , cj to 0, 0 for all

other pj ∈ Ni

On addition of a new vector x to Xi,i:

Randomly add x to either Ri or Ti

If x was added to Ri, update the input of the L2

thresholding algorithm to {x− µ : x ∈ Ri}
Otherwise, update vi and ci.

On change in F
(

Ki

)

of the L2 thresholding algorithm:

If
∥

∥Ki

∥

∥ ≥ ǫ and alert = false then

– set last change← time()
– set alert← true
– set a timer to τ time units

If
∥

∥Ki

∥

∥ < ǫ then

– Set alert← false
On receiving a data message v, c from pj ∈ Ni:

Set vj ← v, cj ← c
Call Convergecast

On timer expiry or call to Convergecast:

If alert = false return

If time()− last change < τ set timer to

time() + τ − last change and return

If for all pk ∈ Ni except for one ck 6= 0
– Let s =

∑

pj∈Ni
cj , s =

∑

pj∈Ni

cj

s
vj

– Send s, s to pl

– Set phase← Broadcast
If for all pk ∈ Ni ck 6= 0
– Let s =

∑

pj∈Ni
cj , s =

∑

pj∈Ni

cj

s
vj

– Set phase← Convergecast
– Send µ to all pk ∈ Ni

On receiving µ′ from pj ∈ Ni:

If phase = convergecast and i > j then return

Set µ← µ′

Replace the input of the L2 thresholding algorithm with

{x− µ : x ∈ Ri}
Set phase← convergecast and set all cj to 0

Send µ to all pk 6= pj ∈ Ni

Other than that follow the L2 thresholding algorithm

as the centroid. To make the algorithm suitable for a dynamic

data setup, we relax the stopping criteria. In our formulation,

a solution is considered admissible when the average of point

is within an ǫ-distance of the centroid with whom they are

associated.

Similar to the mean monitoring, the k-means monitoring al-

gorithm (Algorithm. 4) is performed in a cycle of convergecast

and broadcast. The algorithm, however, is different in some

important respects. First, instead of taking part of just one

execution of L2 thresholding, each peer takes part in k such

executions – one per centroid. The input of the ℓth execution

are those points in the local data set Xi,i for which the ℓth

centroid, cℓ, is the closest. Thus, each execution monitors

whether one of the centroids needs to be updated. If even one

execution discovers that the norm of the respective knowledge
∥

∥

∥
Kℓ

i

∥

∥

∥
is greater than ǫ, the peer alerts, and if the alert persists

for τ time units the peer advances the convergecast process.

Another difference between k-means monitoring and mean

monitoring is the statistics collected during convergecast. In k-

means monitoring, that statistics is a sample of size b (dictated

by the user) from the data. Each peer samples with returns

from the samples it received from its neighbors, and from

its own data, such that the probability of sampling a point is

proportional to a weight. The result of this procedure is that

every input point stands an equal chance to be included in

the sample that arrives to the root. The root then computes

the k-means on the sample, and sends the new centroids in a

broadcast message.

VI. EXPERIMENTAL VALIDATION

To validate the performance of our algorithms we conducted

experiments on a simulated network of thousands of peers. In

this section we discuss the experimental setup and analyze the

performance of the algorithms.

A. Experimental Setup

Our implementation makes use of the Distributed Data

Mining Toolkit (DDMT)1– a distributed data mining devel-

opment environment from DIADIC research lab at UMBC.

DDMT uses topological information which can be generate

by BRITE2, a universal topology generator from Boston

University. In our simulations we used topologies generated

according to the Barabasi Albert (BA) model, which is often

considered a reasonable model for the Internet. BA also defines

delays for network edges, which are the basis for our time

measurement3. On top of the network generated by BRITE,

we overlayed a spanning tree.

The data used in the simulations was generated using a

mixture of Gaussians in Rd. Every time a simulated peer

needed an additional data point, it sampled d Gaussians and

multiplied the resulting vector with a d× d covariance matrix

in which the diagonal elements were all 1.0’s while the off-

diagonal elements were chosen uniformly between 1.0 and

1http://www.umbc.edu/ddm/wiki/software/DDMT
2http://www.cs.bu.edu/brite/
3Wall time is meaningless when simulating thousands of computers on a

single PC.

9

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30
Distribution 1
Distribution 2
White Noise

(a) Typical data set

0 0.5 1 1.5 2

x 10
6

0

50

100

Time

%
 p

e
e

rs
 r

e
p

o
rt

in
g

 |
|G

||
<

ε

(b) Typical changes in the percent of peers with
∥

∥Ki

∥

∥ ≤ ǫ

0 0.5 1 1.5 2

x 10
6

0

0.1

0.2

0.3

0.4

Time

N
o

rm
a

liz
e

d
 m

e
s
s
a

g
e

s

(c) Typical messaging throughout an experi-
ment

Fig. 2. A typical experiment is run for 10 equal length epochs. The epochs have very similar means, and very large variance. Quality and overall cost are
measured across the entire experiment – including transitional phases.

2.0. Alternatively, 10% of the points were chosen uniformly

at random in the range of µ ± 3σ. At controlled intervals,

the means of the Gaussians were changed, thereby creating an

epoch change. A typical data in two dimensions can be seen in

Figure 2(a). We preferred synthetic data because of the large

number of factors (twelve, in our analysis) which influence the

behavior of an algorithm, and the desire to perform a tightly

controlled experiment in order to understand the behavior of

a complex algorithm which operates in an equally as complex

environment.

The two most important qualities measured in our experi-

ments are the quality of the result and the cost of the algo-

rithm. Quality is defined differently for the L2 thresholding

algorithm, the mean monitoring algorithm, and the k-means

algorithm.

For the L2 thresholding algorithm, quality is measured in

terms of the number of peers correctly computing an alert

i.e. the percentage of peers for whom
∥

∥Ki

∥

∥ < ǫ when
∥

∥G
∥

∥ < ǫ, and the percentage of peers for whom
∥

∥Ki

∥

∥ ≥ ǫ
when

∥

∥G
∥

∥ ≥ ǫ. We measure the maximal, average and

minimal quality over all the peers (averaged over a number

of different experiments). Quality is reported in three different

scenarios: overall quality, averaged over the entire experiment;

and quality on stationary data, measured separately for periods

in which the mean of the data is inside the ǫ-circle
(
∥

∥G
∥

∥ < ǫ
)

and for periods in which the means of the data is outside the

circle
(
∥

∥G
∥

∥ ≥ ǫ
)

.

For the mean monitoring algorithm, quality is the average

distance between G and the computed mean vector µ. We plot,

separately, the overall quality (during the entire experiment)

and the quality after the broadcast phase ended.

Lastly, for the k-means algorithm, quality is defined as

the distance between the solution of our algorithm and that

computed by a centralized algorithm, given all the data of all

of the peers.

We have measured the cost of the algorithm according

to the frequency in which messages are sent by each peer.

Because of the leaky bucket mechanism which is part of the

algorithm, the rate of messages per average peer is bounded

by two for every L time units (one to each neighbor, for

an average of two neighbors per peer). The trivial algorithm

that floods every change in the data would send messages

at this rate. The communication cost of our algorithms is

thus defined in terms of normalized messages - the portion

of this maximal rate which the algorithm uses. Thus, 0.1

normalized messages means that nine times out of ten the

algorithm manages to avoid sending a message. We report

both overall cost, which includes the stationary and transitional

phases of the experiment (and thus is necessarily higher), and

the monitoring cost, which only refers to stationary periods.

The monitoring cost is the cost paid by the algorithm even

if the data remains stationary; hence, it measures the “wasted

effort” of the algorithm. We also separate, where appropriate,

messages pertaining to the computation of the L2 thresholding

algorithm from those used for convergecast and broadcast of

statistics.

There are many factors which may influence the perfor-

mance of the algorithms. First, are those pertaining to the

data: the number of dimensions d, the covariance σ, and the

distance between the means of the Gaussians of the different

epochs (the algorithm is oblivious to the actual values of the

means), and the length of the epochs T . Second, there are

factors pertaining to the system: the topology, the number of

peers, and the size of the local data. Last, there are control

arguments of the algorithm: most importantly ǫ – the desired

alert threshold, and then also L – the maximal frequency of

messages. In all the experiments that we report in this section,

one parameter of the system was changed and the others were

kept at their default values. The default values were : number

of peers = 1000, |Xi,i| = 800, ǫ = 2, d = 5, L = 500
(where the average edge delay is about 1100 time units), and

the Frobenius norm of the covariance of the data ‖σ‖F at

5.0. We selected the distance between the means so that the

rates of false negatives and false positives are about equal.

More specifically, the means for one of the epochs was +2

along each dimension and for the other it was -2 along each

dimension. For each selection of the parameters, we ran the

experiment for a long period of simulated time, allowing 10

epochs to occur.

A typical experiment is described in Figure 2(b) and 2(c).

In the experiment, after every 2 × 105 simulator ticks, the data

distribution is changed, thereby creating an epoch change. To

start with, every peer is given the same mean as the mean of

the Gaussian. Thus a very high percentage (∼ 100 %) of the

peers states that
∥

∥G
∥

∥ < ǫ. After the aforesaid number (2×105)

of simulator ticks, we change the Gaussian without changing

10

Algorithm 4 k-Means Monitoring

Input of peer pi: ǫ, L, Xi,i, the set of immediate neighbors

Ni, an initial guess for the centroids C0, a mitigation

constant τ , the sample size b.

Output of peer pi: k centroids such that the average of the

points assigned to every centroid is within ǫ of that centroid.

Data structure of peer pi: A partitioning of Xi,i into k sets

X1

i,i . . . Xk
i,i, a set of centroids C = {c1, . . . , ck}, for each

centroid j = 1, . . . , k, a flag alertj , a times tamp

last changej , a buffer Bj and a counter bj , a flag root and

a flag phase.

Initialization:

Set C ← C0. Let

Xj
i,i =

{

x ∈ Xi,i : cj = argmin
c∈C

‖x− c‖

}

. Initialize k

instances of the L2 thresholding algorithm, such that the jth

instance has input ǫ, α, L,
{

x− cj : x ∈ Xj
i,i

}

, Ni. For all

pj ∈ Ni, set bj ← 0, for all j = 1, . . . , k set alertj ← false,

last changej ← −∞, and phase← convergecast
On addition of a new vector x to Xi,i:

Find the cj closest to x and add x− cj to the jth L2

thresholding instance.

On removal of a vector x from Xi,i:

Find the cj closest to x and remove x− cj from the jth L2

thresholding instance.

On change in F
(

Ki

)

of the jth instance of the L2

thresholding algorithm:

If
∥

∥Ki

∥

∥ ≥ ǫ and alertj = false then set

last changej ← time(), alertj ← true, and set a timer to

τ time units

If
∥

∥Ki

∥

∥ < ǫ then set alertj ← false
On receiving B, b from pj ∈ Ni:

Set Bj ← B, bj ← b and call Convergecast

On timer expiry or call to Convergecast:

If for all ℓ ∈ [1, . . . , k] alertℓ = false then return

Let t←Minℓ=1...k {last messageℓ : alertℓ = true}
Let A be a set of b samples returned by Sample

If time() < t + τ then set a timer to t + τ − time() and

return

If for all pk ∈ Ni except for one bk 6= 0
– Set root← false, phase← Broadcast
– Send A, |Xi,i|+

∑

m=1... bm to pℓ and return

If for all pk ∈ Ni bk 6= 0
– Let C′ be the centroids resulting from computing the

k-means clustering of A
– Set root← true
– Send C′ to self and return

On receiving C′ from pj ∈ Ni or from self:

If phase = convergecast and i > j then return

Set C ← C′

For j = 1 . . . k set

Xj
i,i =

{

x ∈ Xi,i : cj = argmin
c∈C

‖x− c‖

}

For j = 1 . . . |Ni| set bj ← 0
Send C to all pk 6= pj ∈ Ni

Set phase← Convergecast
On call to Sample:

Return a random sample from Xi,i with probability

1/
(

1 +
∑

m=1...|Ni|
bm

)

or from a buffer Bj with

probability bj/
(

|Xi,i|+
∑

m=1...|Ni|
bm

)

the mean given to each peer. Thus, for the next epoch, we

see that a very low percentage of the peers (∼ 0 %) output

that
∥

∥G
∥

∥ < ǫ. For the cost of the algorithm in Figure 2(c),

we see that messages exchanged during the stationary phase

is low. Many messages are, however, exchanged as soon as

the epoch changes. This is expected since all the peers need

to communicate in order to get convinced that the distribution

has indeed changed. The number of messages decreases once

the distribution becomes stable again.

B. Experiments with Local L2 Thresholding Algorithm

The L2 thresholding algorithm is the simplest one we

present here. In our experiments, we use the L2 thresholding

to establish the scalability of the algorithms with respect to

both the number of peers and the dimensionality of the data,

and the dependency of the algorithm on the main parameters

– the norm of the covariance σ, the size of the local data set,

the tolerance ǫ, and the bucket size L.

200 500 1000 2000 3000
80

85

90

95

100

Number of Peers

%
 c

o
rr

e
c
t

p
e

e
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. number of peers

200 500 1000 2000 3000

0.02

0.04

0.05

Number of Peers

N
o

rm
a

liz
e

d
 M

e
s
s
a

g
e

s

Overall
Stationary period

(b) Cost vs. number of peers

Fig. 3. Scalability of Local L2 algorithm with respect to the number of
peers.

2 3 4 5 6 7 8 9 10
85

90

95

100

Dimension

%
 c

o
rr

e
c
t

p
e

e
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. dimension

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Dimension

N
o

rm
a

liz
e

d
 M

e
s
s
a

g
e

s
Overall
Stationary period

(b) Cost vs. dimension

Fig. 4. Scalability of Local L2 algorithm with respect to the dimension of
the domain.

In Figures 3 and 4, we analyze the scalability of the local L2

algorithm. As Figure 3(a) and Figure 3(b) show, the average

quality and cost of the algorithm converge to a constant as

the number of peers increase. This typifies local algorithms –

because the computation is local, the total number of peers do

not affect performance. Hence, there could be no deterioration

in quality or cost. Similarly, the number of messages per

peer become a constant – typical to local algorithms. Figure

4(a) and Figure 4(b) show the scalability with respect to the

dimension of the problem. As shown in the figures, quality

does not deteriorate when the dimension of the problem is

increased. Also note that the cost increases approximately

linearly with the dimension. This independence of the quality

can be explained if one thinks of what the algorithm does

in terms of domain linearization. We hypothesis that when

11

the mean of the data is outside the circle, most peers tend

to select the same half-space. If this is true then the problem

is projected along the vector defining that half-space – i.e.,

becomes uni-dimensional. Inside the circle, the problem is

again uni-dimensional: If thought about in terms of the polar

coordinate system (rooted at the center of the circle), then the

only dimension on which the algorithm depends is the radius.

The dependency of the cost on the dimension stems from the

linear dependence of the variance of the data on the number of

Gaussians, the variance of whom is constant. This was proved

in experiments not included here.

In Figures 5, 6, 7 and 8 we explore the dependency of the L2

algorithm on different parameters viz. Frobenius norm of the

covariance of the data σ (‖σ‖F =
∑

i=1...m

∑

j=1...n |σi,j |
2
),

the size of the local data buffer |Xi,i|, the alert threshold ǫ,

and the size of the leaky bucket L. As noted earlier, in each

experiment one parameter was varied and the rest were kept

at their default values.

0 5 10

x 10
4

70

80

90

100

||σ||
F

%
 c

o
rr

e
c
t

p
e

e
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. ‖σ‖F

0 5 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

||σ||
F

N
o

rm
a

liz
e

d
 M

e
s
s
a

g
e

s

Overall
Stationary period

(b) Cost vs. ‖σ‖F

Fig. 5. Dependency of cost and quality of L2 thresholding on ‖σ‖F . Quality
is defined by the percentage of peers correctly computing an alert (separated
for epochs with

∥

∥G
∥

∥ less and more than ǫ). Cost is defined as the portion of
the leaky buckets intervals that are used. Both overall cost and cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

The first pair of figures, Figure 5(a) and Figure 5(b), outline

the dependency of the quality and the cost on the covariance

of the data (σ = AE) where A is the covariance matrix and

E is the variance of the gaussians. Matrix A is as defined

in Section VI-A while E is the column vector representing

the variance of the gaussians and takes the values 5, 10, 15

or 25. For epochs with
∥

∥G
∥

∥ < ǫ, the maximal, the average,

and the minimal quality in every experiment decrease linearly

with the variance (from around 99% on average to around

96%). Epochs with
∥

∥G
∥

∥ > ǫ, on the other hand, retained

very high quality, regardless of the level of variance. The

overall quality also decreases linearly from around 97% to

84%, apparently resulting from slower convergence on every

epoch change. As for the cost of the algorithm, this increases

as the square root of ‖σ‖F (i.e., linear to the variance), both

for the stationary and overall period. Nevertheless, even with

the highest variance, the cost stayed far from the theoretical

maximum of two messages per peer per leaky bucket period.

The second pair of figures, Figure 6(a) and Figure 6(b),

shows that the variance can be controlled by increasing the

local data. As |Xi,i| increases, the quality increases, and cost

decreases, proportional to
√

|Xi,i|. The cause of that is clearly

the relation of the variance of an i.i.d. sample to the sample

size which is inverse of the square root.

200 800 1600 3200
85

90

95

100

|S
i
|

%
 c

o
rr

e
c
t

p
e

e
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. |Xi,i|

200 800 1600 3200
0

0.05

0.1

0.15

0.2

0.25

|S
i
|

N
o

rm
a

liz
e

d
 M

e
s
s
a

g
e

s

Overall
Stationary period

(b) Cost vs. |Xi,i|

Fig. 6. Dependency of cost and quality of L2 thresholding on |Xi,i|. Quality
is defined by the percentage of peers correctly computing an alert (separated
for epochs with

∥

∥G
∥

∥ less and more than ǫ). Cost is defined as the portion of
the leaky buckets intervals that are used. Both overall cost and cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

The third pair of figures, Figure 7(a) and Figure 7(b), present

the effect of changing ǫ on both the cost and quality of

the algorithm. As can be seen, below a certain point, the

number of false positives grows drastically. The number of

false negatives, on the other hand, remains constant regardless

of ǫ. When ǫ is about two, the distances of the two means

of the data (for the two epochs) from the boundary of the

circle are approximately the same and hence the rates of false

positives and false negatives are approximately the same too.

As ǫ decreases, it becomes increasingly difficult to judge if the

mean of the data is inside the smaller circle and increasingly

easier to judge that the mean is outside the circle. Thus, the

number of false positives increase. The cost of the algorithm

decreases linearly as ǫ grows from 0.5 to 2.0, and reaches

nearly zero for ǫ = 3. Note that even for a fairly low ǫ = 0.5,

the number of messages per peer per leaky bucket period is

around 0.75, which is far less than the theoretical maximum

of 2.

0.5 1 2 3
40

60

80

100

ε

%
 c

o
rr

e
c
t

p
e

e
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. ǫ

0.5 1 2 3
0

0.25

0.5

0.75

1

ε

N
o

rm
a

liz
e

d
 M

e
s
s
a

g
e

s

Overall
Stationary period

(b) Cost vs. ǫ

Fig. 7. Dependency of cost and quality of L2 thresholding on ǫ. Quality is
defined by the percentage of peers correctly computing an alert (separated for
epochs with

∥

∥G
∥

∥ less and more than ǫ). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall cost and cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

Figure 8(a) and Figure 8(b) explore the dependency of

the quality and the cost on the size of the leaky bucket L.

Interestingly, the reduction in cost here is far faster than the

reduction in quality, with the optimal point (assuming 1:1

relation between cost and quality) somewhere between 100

time units and 500 time units. It should be noted that the

average delay BRITE assigned to an edge is around 1100

time units. This shows that even a very permissive leaky

bucket mechanism is sufficient to greatly limit the number

12

of messages.

100 250 500 1000
70

80

90

100

L

%
 c

o
rr

e
c
t

p
e

e
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. L

100 250 500 1000

0.02

0.04

0.06

0.08

L

N
o

rm
a

liz
e

d
 M

e
s
s
a

g
e

s

Overall
Stationary period

(b) Cost vs. L

Fig. 8. Dependency of cost and quality of L2 thresholding on L. Quality is
defined by the percentage of peers correctly computing an alert (separated for
epochs with

∥

∥G
∥

∥ less and more than ǫ). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall cost and cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

We conclude that the L2 thresholding provides a moderate

rate of false positives even for noisy data and an excellent rate

of false negatives regardless of the noise. It requires little com-

munication overhead during stationary periods. Furthermore,

the algorithm is highly scalable – both with respect to the

number of peers and dimensionality – because performance

is independent of the number of peers and dimension of the

problem.

C. Experiments with Means-Monitoring

Having explored the effects of the different parameters of

the L2 thresholding algorithm, we now shift our focus on the

experiments with the mean monitoring algorithm. We have

explored the three most important parameters that affect the

behavior of the mean monitoring algorithm: τ – the alert

mitigation period, T – the length of an epoch, and ǫ – the

alert threshold.

100 500 1000 1500 2000
0

0.025

0.05

0.075

0.1

0.125

A
v
g

 |
|
G

 −
 µ

 |
|

Alert mitigation period (τ)

Overall
After Data Collection

(a) Quality vs. τ

100 500 1000 1500 2000

2

2.5

3

A
v
e

ra
g

e
 D

a
ta

 C
o

lle
c
ti
o

n

Alert mitigation period (τ)
100 500 1000 1500 2000

0

0.05

0.1

0.15

0.2

N
o

rm
a

liz
e

d
 L

2
 M

e
s
s
a

g
e

s

(b) Cost vs. τ

Fig. 9. Dependency of cost and quality of mean monitoring on the alert
mitigation period τ .

Figure 9, 10 and 11 summarize the results of these experi-

ments. As can be seen, the quality, measured by the distance

of the actual means vector G from the computed one µ is

excellent in all three graphs. Also shown are the cost graphs

with separate plots for the L2 messages (on the right axis) and

the number of convergecast rounds – each costs two messages

per peer on average – (on the left axis) per epoch.

In Figure 9(a), the average distance between G and µ
decreases as the alert mitigation period (τ) is decreased for

the entire length of the experiment. This is as expected, since,

with a smaller τ , the peers can rebuild the model more

frequently, resulting in more accurate models. On the other

hand, the quality after the data collection is extremely good

and is independent of τ . With increasing τ , the number of

convergecast rounds per epoch decreases (from three to two

on average) as shown in Figure 9(b). In our analysis, this

results from a decrease in the number of false alerts.

1K2K 5K 10K
0

0.08

0.16

0.24

A
v
g

 |
|
G

 −
 µ

 |
|

Epoch Length(T)

Overall
After Data Collection

(a) Quality vs. epoch length

1K2K 5K 10K

2.5

3

3.5

A
v
e

ra
g

e
 D

a
ta

 C
o

lle
c
ti
o

n

1K2K 5K 10K

0.1

0.2

0.3

0.4

N
o

rm
a

liz
e

d
 L

2
 M

e
s
s
a

g
e

s

Epoch Length (T)

(b) Cost vs. epoch length

Fig. 10. Dependency of cost and quality of mean monitoring on the length
of epoch T .

Figure 10(a) depicts the relation of the quality (both overall

and stationary periods) to T . The average distance between

the estimated mean vector and the actual one decreases as

the epoch length T increases. The reason is the following: at

each epoch, several convergecast rounds usually occur. The

later the round is, the less polluted is the data by remnants

of the previous epoch – and thus the more accurate is µ.

Thus, when the epoch length increases, the proportion of these

later µ’s, which are highly accurate, increases in the overall

quality leading to a more accurate average. Figure 10(b) shows

a similar trend for the cost incurred. One can see that the

number of L2 messages decrease as T increases. Clearly, the

more accurate µ is, the less monitoring messages are sent.

Therefore with increasing T , the quality increases and cost

decreases in the later rounds and these effects are reflected in

the figures.

Finally, the average distance between G and µ decreases

as ǫ decreases. This is as expected, since with decreasing ǫ,

the L2 algorithm ensures that these two quantities be brought

closer to each other and thus the average distance between

them decreases. The cost of the algorithm, however, shows

the reverse trend. This result is intuitive – with increasing ǫ,

the algorithm has a larger region in which to bound the global

average and thus the problem becomes easier, and hence less

costly, to solve.

0.5 1 2 3
0

0.02

0.04

0.06

A
v
g

 |
|
G

 −
 µ

 |
|

ε

Overall
After Data Collection

(a) Quality vs. ǫ

0.5 1 2 3

3

3.5

A
v
e

ra
g

e
 D

a
ta

 C
o

lle
c
ti
o

n

ε
0.5 1 2 3

0

0.25

0.5

0.75

1

N
o

rm
a

liz
e

d
 L

2
 M

e
s
s
a

g
e

s

(b) Cost vs. ǫ

Fig. 11. Dependency of cost and quality of mean monitoring on the alert
threshold ǫ.

On the whole, quality of the mean monitoring algorithm

outcome behaves well with respect to all the three parameters

influencing it. The monitoring cost i.e. L2 messages is also

low. Furthermore, on an average, the number of convergecast

13

rounds per epoch is around three – which can easily be reduced

further by using a longer τ as the default value.

D. Experiments with k-Means Monitoring

500 2000 4000 8000

0.25

0.5

0.75

1

1.25

1.5

Sample Size

D
is

ta
n
c
e
 t
o
 o

p
ti
m

a
l
c
e
n
tr

o
id

Centralized Experiment
Distributed Experiment

(a) Average quality vs. sample size

500 2000 4000 8000

1.5

2

2.5

A
v
e
ra

g
e
 D

a
ta

 C
o
lle

c
ti
o
n

500 2000 4000 8000
0.1

0.15

0.2

0.25

0.3

N
o
rm

a
liz

e
d
 L

2
 M

e
s
s
a
g
e
s

Sample Size

(b) Average monitoring cost vs. sam-
ple size

Fig. 12. Dependency of quality and cost of k-means monitoring on the
sample size

In this set of experiments our goal is to investigate the

effect of the sample size on the k-means monitoring algorithm.

To do that we compare the results of our algorithm to those

of a centralized algorithm that processed the entire data. We

compute the distance between each centroid computed by the

peer-to-peer algorithm and the closest centroid computed by

the centralized one. Since our algorithm is not only distributed

but also sample-based, we include for comparison the results

of centralized algorithm which takes a sample from the entire

data as its input. The most outstanding result, seen in Figure

12(a), is that most of the error of the distributed algorithm is

due to sampling and not due to decentralization. The error,

both average, best case, and worst case, is very similar to that

of the centralized sample-based algorithm. This is significant

in two ways. First, the decentralized algorithm is obviously

an alternative to centralization; especially considering the

far lower communication cost. Secondly, the error of the

decentralized algorithm can be easily controlled by increasing

the sample size.

The costs of k-means monitoring have to be separated to

those related to monitoring the current centroids and those

related to the collection of the sample. Figure 12(b) presents

the costs of monitoring a single centroid and the number of

times data was collected per epoch. These could be multiplied

by k to bound the total costs (note that messages relating

to different centroids can be piggybacked on each other).

The cost of monitoring decreases drastically with increasing

sample size – resulting from the better accuracy provided by

the larger sample. Also there is a decrease in the number of

convergecast rounds as the sample size increases. The default

value of the alert mitigation factor τ in this experimental setup

was 500. For any sample size greater than 2000, the number

of convergecast rounds is about two per epoch – in the first

round, it seems, the data is so much polluted by data from

the previous epoch that a new round is immediately triggered.

As noted earlier, this can be further decreased using a larger

value of τ .

VII. RELATED WORK

Algorithms for large distributed systems have been devel-

oped over the last half decade. These can be roughly classified

into three categories: convergecast based or centralized algo-

rithms, gossip based algorithms, and local algorithms. Some

best-effort heuristics [11], [12], [13] were suggested as well.

The first category, convergecast based algorithms, is perhaps

the simplest. Algorithms such as [14] provide generic solutions

– suitable for the computation of multiple functions. They

are also extremely communication efficient: computing the

average, for instance, only requires one message from each

peer. Some of these algorithms can be extremely synchronized

– every round of computation taking a lot of time. This

becomes very problematic when the data is dynamic and

computation has to be iterated frequently. Other, such as

STAR [15] can dynamically tune accuracy and timeliness vs.

communication overhead. The most thorough implementation

of this approach is possibly the Astrolabe system [16] which

implement a general purpose infrastructure for distributed

system monitoring.

The second category, gossip based algorithms, relies on the

properties of random walks on graphs to provide probabilistic

estimates for various statistics of data stored in the graph.

Gossip based computation was first introduced by Kempe et

al. [17], and have, since then, been expanded to general graphs

by Boyd et al. [18]. The first gossip based algorithms required

that the algorithm be executed from scratch if the data changes

in order to maintain those guarantees. This problem was later

addressed by Jelasity et al. [19]. The main benefit of our

algorithm with respect to gossiping is that it is data driven.

Thus, it is far more efficient than gossiping when the changes

are stationary.

Local algorithms were first discussed by Afek et al. [20],

Linial [21], and Naor and Stockmeyer [22], in the context of

graph theory. Kutten and Peleg introduced local algorithms in

which the input is data which is stored at the graph vertices,

rather than the graph itself [23]. The first application of

local algorithms to peer-to-peer data mining is the Majority-

Rule algorithm by Wolff and Schuster [1]. Since then, local

algorithms were developed for other data mining tasks e.g.,

decision tree induction [24], multivariate regression [6], outlier

detection [3], L2 norm monitoring [4], approximated sum [25],

and more. The algorithm for L2 thresholding, and an initial

application of that algorithm for k-means monitoring were first

presented in a previous publication by the authors of this paper

[4].

VIII. CONCLUSIONS AND OPEN QUESTIONS

In this paper we present a generic algorithm which can

compute any ordinal function of the average data in large

distributed system. We present a number of interesting appli-

cations for this generic algorithm. Besides direct contributions

to the calculation of L2 norm, the mean, and k-means in peer-

to-peer networks, we also suggest a new reactive approach in

which data mining models are computed by an approximate or

heuristic method and are then efficiently judged by an efficient

local algorithm.

This work leaves several interesting open questions. The

first is the question of describing the “hardness” of locally

computing a certain function F – its “locallability”. For

14

instance, it is simple to show that majority voting lends itself

better for local computation than the parity function. However,

there is lack of an orderly method by which the hardness

of these and other functions can be discussed. The second

interesting question is the question of robustness of a generic

local algorithm for general topologies. Last, in view of our

generic algorithm it would be interesting to revisit Naor’s and

Stockmeyer’s question [22] regarding the limitations of local

computation.

ACKNOWLEDGMENTS

This research is supported by the United States National

Science Foundation CAREER award IIS-0093353 and NASA

Grant NNX07AV70G.

REFERENCES

[1] R. Wolff and A. Schuster, “Association Rule Mining in Peer-to-Peer
Systems,” in Proceedings of ICDM’03, Melbourne, Florida, 2003, pp.
363–370.

[2] D. Krivitski, A. Schuster, and R. Wolff, “A Local Facility Location
Algorithm for Sensor Networks,” in Proceedings of DCOSS’05, Marina
del Rey, California, 2005, pp. 368–375.

[3] J. Branch, B. Szymanski, R. Wolff, C. Gianella, and H. Kargupta, “In-
Network Outlier Detection in Wireless Sensor Networks,” in Proceed-

ings of ICDS’06, Lisboa, Portugal, 2006, pp. 51–58.
[4] R. Wolff, K. Bhaduri, and H. Kargupta, “Local L2 Thresholding based

Data Mining in Peer-to-Peer Systems,” in Proceedings of SDM’06,
Bethesda, Maryland, 2006, pp. 428–439.

[5] P. Luo, H. Xionga, K. Lu, and Z. Shi, “Distributed classification in peer-
to-peer networks,” in Proceedings of SIGKDD’07, San Jose, California,
2007, pp. 968–976.

[6] K. Bhaduri and H. Kargupta, “An Efficient Local Algorithm for Dis-
tributed Multivariate Regression in Peer-to-Peer Networks,” in Proceed-

ings of SDM’08, Atlanta, Georgia, 2008, pp. 153 – 164.

[7] N. Li, J. C. Hou, and L. Sha, “Design and Analysis of an MST-
based Topology Control Algorithm,” IEEE Transactions on Wireless

Communications, vol. 4, no. 3, pp. 1195–1206, 2005.

[8] Y. Birk, L. Liss, A. Schuster, and R. Wolff, “A Local Algorithm for Ad
Hoc Majority Voting Via Charge Fusion,” in Proceedings of DISC’04,
Amsterdam, Netherlands, 2004, pp. 275–289.

[9] K. Bhaduri, “Efficient Local Algorithms for Distributed Data Mining in
Large Scale Peer to Peer Environments: A Deterministic Approach,”
Ph.D. dissertation, University of Maryland, Baltimore County, Balti-
more, Maryland, USA, May 2008.

[10] K. Das, K. Bhaduri, K. Liu, and H. Kargupta, “Distributed Identification
of Top-l Inner Product Elements and its Application in a Peer-to-Peer
Network,” IEEE Transactions on Knowledge and Data Engineering

(TKDE), vol. 20, no. 4, pp. 475–488, 2008.

[11] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu,
and S. Datta, “Clustering Distributed Data Streams in Peer-to-Peer
Environments,” Information Science, vol. 176, no. 14, pp. 1952–1985,
2006.

[12] W. Kowalczyk, M. Jelasity, and A. E. Eiben, “Towards Data Mining
in Large and Fully Distributed Peer-to-Peer Overlay Networks,” in
Proceedings of BNAIC’03, Nijmegen, Netherlands, 2003, pp. 203–210.

[13] S. Datta, C. Giannella, and H. Kargupta, “K-Means Clustering over
Large, Dynamic Networks,” in Proceedings of SDM’06, Maryland, 2006,
pp. 153–164.

[14] M. Rabbat and R. Nowak, “Distributed Optimization in Sensor Net-
works,” in Proceedings of IPSN’04, California, 2004, pp. 20–27.

[15] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and Y. Zhang,
“STAR: Self-tuning aggregation for scalable monitoring,” in Proceedings

of VLDB’07, Sept. 2007, pp. 962–973.
[16] R. van Renesse, K. P. Birman, and W. Vogels, “Astrolabe: A robust and

scalable technology for distributed system monitoring, management, and
data mining,” ACM Transactions on Computer Systems (TOCS), vol. 21,
no. 2, pp. 164–206, 2003.

[17] D. Kempe, A. Dobra, and J. Gehrke, “Computing Aggregate Information
using Gossip,” in Proceedings of FOCS’03, Cambridge, Massachusetts,
2003, pp. 482–491.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “ Gossip Algorithms:
Design, Analysis and Applications,” in Proceedings of INFOCOM’05,
Miami, Florida, 2005, pp. 1653–1664.

[19] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based Aggregation
in Large Dynamic Networks,” ACM Transactions on Computer Systems,
vol. 23, no. 3, pp. 219 – 252, 2005.

[20] Y. Afek, S. Kutten, and M. Yung, “Local Detection for Global Self
Stabilization,” Theoretical Computer Science, vol. 186, no. 1-2, pp. 199–
230, 1997.

[21] N. Linial, “Locality in Distributed Graph Algorithms,” SIAM Journal of

Computing, vol. 21, no. 1, pp. 193–2010, 1992.
[22] M. Naor and L. Stockmeyer, “What can be Computed Locally?” in

Proceedings of STOC’93, 1993, pp. 184–193.
[23] S. Kutten and D. Peleg, “Fault-Local Distributed Mending,” in Proceed-

ings of PODC’95, Ottawa, Canada, 1995, pp. 20–27.
[24] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta, “Distributed

Decision Tree Induction in Peer-to-Peer Systems,” Statistical Analysis

and Data Mining Journal, vol. 1, no. 2, pp. 85–103, 2008.
[25] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani, “The Price of

Validity in Dynamic Networks,” in Proceedings of SIGMOD’04, Paris,
France, 2004, pp. 515–526.

Ran Wolff is faculty of the Management Infor-
mation Systems department at University of Haifa,
Israel. A graduate of the Technion – Israel, he previ-
ously held a post doctoral position at the University
of Maryland in Baltimore County. His main fields of
expertise are data mining in large-scale distributed
environments: peer-to-peer networks, grid systems,
and wireless sensor networks, and privacy preserving
data mining. Ran regularly serves as PC in ICDM,
SDM and SIGKDD, and as a reviewer for the
DMKD and TKDE journals, among other. More

information about him can be found at http://mis.haifa.ac.il/˜rwolff.

Kanishka Bhaduri received his B.E. in Computer
Science and Engineering from Jadavpur Univer-
sity, India in 2003 and PhD degree in Computer
Science from University of Maryland Baltimore
County in 2008. Currently he is a research sci-
entist with Mission Critical Technologies Inc at
NASA Ames Research Center. His research inter-
ests include distributed and P2P data mining, data
stream mining, and statistical data analysis. Kan-
ishka serves as a reviewer for many conferences and
journals such as ICDM, SDM, PKDD, SIGKDD,

TKDE, TMC and more. More information about him can be found at
http://www.csee.umbc.edu/˜kanishk1.

Hillol Kargupta is an Associate Professor at the De-
partment of Computer Science and Electrical Engi-
neering, University of Maryland Baltimore County.
He received his Ph.D. in Computer Science from
University of Illinois at Urbana-Champaign in 1996.
He is also a co-founder of AGNIK LLC, a ubiquitous
data intelligence company. His research interests
include distributed data mining, data mining in
ubiquitous environment, and privacy-preserving data
mining. Dr. Kargupta won a US National Science
Foundation CAREER award in 2001 for his research

on ubiquitous and distributed data mining. He has published more than 90
peer-reviewed articles in journals, conferences, and books. He is an associate
editor of the IEEE Transactions on Knowledge and Data Engineering, the
IEEE Transactions on Systems, Man, and Cybernetics, Part B, and the
Statistical Analysis and Data Mining Journal. He regularly serves on the
organizing and program committees of many data mining conferences. More
information about him can be found at http://www.csee.umbc.edu/˜hillol.

