
A Generic Operational Metatheory for Algebraic Effects

Patricia Johann
Dep. of Comput. and Inf. Sci.

University of Strathclyde
Glasgow G1 1XH, UK

patricia@cis.strath.ac.uk

Alex Simpson
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK
Alex.Simpson@ed.ac.uk

Janis Voigtländer
Inst. for Comput. Sci.

University of Bonn
53012 Bonn, Germany

jv@iai.uni-bonn.de

Abstract—We provide a syntactic analysis of contextual
preorder and equivalence for a polymorphic programming
language with effects. Our approach applies uniformly across
a range of algebraic effects, and incorporates, as instances:
errors, input/output, global state, nondeterminism, probabilis-
tic choice, and combinations thereof. Our approach is to
extend Plotkin and Power’s structural operational semantics
for algebraic effects (FoSSaCS 2001) with a primitive “basic
preorder” on ground type computation trees. The basic pre-
order is used to derive notions of contextual preorder and
equivalence on program terms. Under mild assumptions on
this relation, we prove fundamental properties of contextual
preorder (hence equivalence) including extensionality proper-
ties and a characterisation via applicative contexts, and we
provide machinery for reasoning about polymorphism using
relational parametricity.

I. INTRODUCTION

The goal of this paper is to give a systematic account
of contextual equivalence for extensions of a functional
language with non-functional effects, including errors, in-
put/output, global state, (finite) nondeterminism, probabilis-
tic choice, and combinations thereof. It thus fits into a
tradition that includes studies by Mason and Talcott [1],
Pitts and Stark [2], and Lassen [3], who respectively consider
functional languages with mutable S-expressions, local state,
and countable nondeterminism. The main novelty here is
that, rather than considering each different kind of effect
individually, we provide a general operational framework
that can cater for a whole range of effects uniformly. Using
this, we obtain generic operational metatheorems stating
properties of contextual equivalence that hold for every
instantiation of our framework to effects of interest.

The programming language we use as a vehicle for this
is an extension of Plotkin’s PCF [4] with polymorphism and
effects. Although, in the present paper, we consider a call-
by-name version only, we believe our methods adapt also to
call-by-value (see Section IX for further discussion).

The first difficulty we need to overcome is that the
operational semantics of effects are not usually presented

This research was carried out during visits of Voigtländer to the Universi-
ties of Strathclyde and Edinburgh, supported by a SICSA Distinguished Vis-
iting Fellowship. Simpson’s and Johann’s research is supported by EPSRC
grants “Linear Observations and Computational Effects” and “Categorical
Foundations for Indexed Programming”, respectively.

in a uniform manner. For example, in structural operational
semantics [5]: pure functional languages are formalised us-
ing deterministic transitions M �M ′; nondeterminism in-
troduces branching; languages with store require transitions
(M, s) � (M ′, s′) between state-carrying configurations;
languages with input/output use labelled transitions, e.g.,

M
!3
� M ′ (“output 3”); etc. To exaggerate only slightly,

every new feature requires its own format.
To address this problem, we build on ideas of Plotkin and

Power. In a major programme of research, see, e.g., [6],
[7], [8], [9], they identify the class of algebraic effects,
which are effects defined via well-behaved effect-triggering
operations, and which include all the examples mentioned
above. Algebraic effects can be given a uniform operational
presentation, based on reducing a program to a computation
tree (as defined in Section III below) that records all the
effects (potentially) encountered during execution [6], [7].
If taken in isolation, the computation-tree presentation treats
effect operations merely as uninterpreted syntax. Indeed, it
is determined by the signature of effect operations alone.
To furnish the effect operations with meaning, Plotkin and
Power [6], [7] require a denotational semantics, with a
suitable computational monad [10]. Their main result is
then a generic computational adequacy theorem, relating the
denotation of a term to that of its computation tree.

Our goal is a systematic study of contextual equivalence
=ctx , which is an operational notion. Accordingly, we
propose a syntactic method of ascribing meaning to effect
operations. We augment computation trees by identifying
the minimum machinery needed to define =ctx : an assumed
equivalence relation =basic on ground type trees. In fact, for
greater generality, we assume a preorder vbasic on ground
type trees, and use it to define contextual preorder vctx .

Our aim is to obtain generic operational metatheorems
for vctx (and =ctx), applying to any signature of effect
operations together with a specified preorder vbasic . In
order to do so, we need to assume that vbasic satisfies
two properties: it must be admissible and compositional,
as defined in Section IV. These properties arise naturally
when, as is frequently the case, the vbasic relation can
be described as an observational preorder determined by a

decomposable family of open observations on ground type
trees, see Section V. The main examples of algebraic effects
all have observational preorders induced in such a way.
Thus our assumptions, and hence our theorems, are indeed
applicable.

We prove our results using the powerful machinery of
>>-closed relations, developed by Pitts and Stark [2], [11],
[12]. This adapts naturally to our setting, by using the basic
relation vbasic to induce the required closure operations. The
definitions are given in Section VI, whose culmination is the
characterisation of contextual preorder as a logical relation
(Theorem VI.6). The proof has the usual structure [2],
[11], [12], but makes essential use of the admissibility and
compositionality of vbasic to deal with effects.

Our main operational metatheorems about contextual pre-
order are presented in Section VII. For example, we prove
extensionality properties, as well as a “context lemma”
(Theorem VII.2) characterising contextual equivalence at
arbitrary type via ground type applicative contexts, cf. Mil-
ner [13]. For call-by-value languages with effects, such re-
sults are known to hold only in restricted form, e.g., the “ciu”
theorem of [1]. In contrast, in our call-by-name setting, the
theorems remain valid in their classic form. We also establish
various results about contextual equivalence between effect
operations. For example, effect operations commute with
evaluation contexts. This again connects with the work of
Plotkin and Power, but whereas for them, the (denotational)
property of commuting with evaluation contexts is taken
as the definition of an algebraic operation, in our setting
the operational analogue holds as a consequence of our
operational semantics.

The inclusion of polymorphism in our language allows
us to exploit one of the strengths of the logical-relation
machinery: it yields principles for reasoning about relational
parametricity [11], [12]. In Section VIII, we present one
consequence of relational parametricity in our call-by-name
effectful setting. The type ∀α.(τ → α)→ α is characterised
as Moggi’s type T (τ) [10], where T is a computational
monad encapsulating the effects present in the language.
This provides an operational vindication of a type identity
that has previously been demonstrated denotationally for
general monadic effects [14].

This paper is intended to be the first in a sequence, which
will further extend the generic approach to wider classes of
effects and languages. Some specific ideas in this direction
and a discussion of other related work appear in Section IX.

For space reasons, all proofs are omitted from this con-
ference version of the paper.

II. THE LANGUAGE

Our language is a polymorphic version of Plotkin’s
PCF [4] with the addition of operations for manipulating
effects. The syntax of types and terms is given in Figure 1,
where α and x range over disjoint countably infinite sets of

type variables and term variables, respectively. The syntax is
standard except for the effect operations. We shall consider
such operations as being specified by a signature Σ that
assigns an arity to each effect operation σ. We allow four
different formats. The simplest case is that of a finite arity
operation σ, specified as σ : αn → α for some n ∈ N.
Infinite arity operations are specified as σ : αNat → α.
The remaining two cases are parameterised versions of the
above. A parameterised finite arity operation is specified as
σ : Nat×αn → α, and a parameterised infinitary operation
is specified as σ : Nat × αNat → α. Computationally
interesting examples of different cases are given below.

Types are assigned to terms according to the axioms and
rules in Figure 2, where Γ ranges over typing environments
of the form ~α, x1 :: τ1, . . . , xm :: τm for a finite list ~α of
distinct type variables, m ∈ N (where N is the set of natural
numbers including 0), a list ~x = x1, . . . , xm of distinct term
variables, and types τ1, . . . , τm whose free variables are in
~α. The typing is relative to the signature Σ. In a typing
judgement of the form Γ ` M :: τ , with Γ as above, we
require that the free variables of the term M are in ~α, ~x
and that the free variables of the type τ are in ~α. We write
Typ for the set of closed types. Given τ ∈ Typ, we write
Term(τ) for the set of terms M for which ∅ ` M :: τ is
derivable, where ∅ is the empty typing environment. Further,
we set Term =

⋃
τ∈Typ Term(τ).

EXAMPLE 1 (ERROR). Let Err be a set of error labels. For
each e ∈ Err, the signature contains a zero-arity operation
(i.e., constant) raisee : α0 → α.

EXAMPLE 2 (NONDETERMINISM). The signature contains
a single binary choice operation or : α2 → α.

EXAMPLE 3 (GLOBAL STATE). Let Loc be a set of loca-
tions. For each l ∈ Loc, we include operations lookupl :
αNat → α and updatel : Nat × α → α. These denote
actions that can be performed on l considered as a storage
cell: lookupl(λn :: Nat.M) assigns the content of location l
to variable n and proceeds as M ; updatel(N ;M) evaluates
N , assigns the result to l, and proceeds as M .

EXAMPLE 4 (INPUT/OUTPUT). The signature contains ef-
fect operations read : αNat → α and write : Nat× α→ α.
Intuitively, read(λn :: Nat.M) reads a number from input,
assigns it to n and proceeds as M ; and write(N ;M)
evaluates N to a number, outputs it, and proceeds as M .

The examples above do not involve any parameterised
infinitary operations, i.e., operations of arity Nat×αNat → α.
Our main reason for including such operations is that they
provide us with a single “hardest case” to consider in
proofs. In addition, the formulation of some of the above
operations may seem cumbersome. For example, in place
of the polymorphic updatel, one might prefer to use an
assignment command l := M of unit type. We adopt the

Types τ ::= α | τ → τ | ∀α.τ | Nat
Terms M ::= x |λx :: τ.M | M M | Λα.M | Mτ | fix(M) | Z | S(M) |

case M of {Z⇒M ; S(x)⇒M} | σ(M, . . . ,M) | σ(M ;M, . . . ,M)

Figure 1. Syntax of the language.

Γ, x :: τ ` x :: τ
Γ, x :: τ `M :: τ ′

Γ ` (λx :: τ.M) :: τ → τ ′
Γ `M :: τ → τ ′ Γ ` N :: τ

Γ ` (M N) :: τ ′

α,Γ `M :: τ

Γ ` Λα.M :: ∀α.τ
Γ ` G :: ∀α.τ

Γ ` Gτ ′ :: τ [τ ′/α]
Γ ` F :: τ → τ
Γ ` fix(F) :: τ

Γ ` Z :: Nat
Γ `M :: Nat

Γ ` S(M) :: Nat

Γ `M :: Nat Γ `M1 :: τ Γ, x :: Nat `M2 :: τ

Γ ` case M of {Z⇒M1; S(x)⇒M2} :: τ

σ : αn → α ∀i. Γ `Mi :: τ

Γ ` σ(M1, . . . ,Mn) :: τ

σ : αNat → α Γ `M1 :: Nat→ τ

Γ ` σ(M1) :: τ

σ : Nat× αn → α Γ `M :: Nat ∀i. Γ `Mi :: τ

Γ ` σ(M ;M1, . . . ,Mn) :: τ

σ : Nat× αNat → α Γ `M :: Nat Γ `M1 :: Nat→ τ

Γ ` σ(M ;M1) :: τ

Figure 2. Type assignment relation.

former because it fits nicely into our polymorphic type
theory, and does not require a unit type. The equivalence of
the two styles is a general property of algebraic effects [9].

III. OPERATIONAL SEMANTICS

The subset of Term whose elements (called values)
respect the following grammar is denoted by Value:

V ::= λx :: τ.M | Λα.M | Z | S(V).

We write Value(τ) for the values of type τ . The elements of
Value(Nat) are the numerals Z, S(Z), S2(Z), . . . , for which
we use the shorthand 0, 1, 2,

The operational semantics of our language needs to
specify both how closed terms evaluate to values and also
any effectful behaviour that may occur during execution.
Following Plotkin and Power [7], we achieve the latter by
abstracting away from the nature of the effects performed.
We use a syntactically defined computation tree to capture
every effect operation that could potentially occur during the
given execution, irrespective of how the effect operations
are themselves interpreted. The operational semantics will
determine a function | · | mapping every closed term M ∈
Term(τ) to a computation tree |M | of type τ . We first define
the notion of computation tree, and then the machinery via
which the computation tree of a term is determined.

DEFINITION III.1. A computation tree of closed type τ is
a labelled tree each node of which is one of the following.
• A leaf node labelled ⊥.
• A leaf node labelled V , where V ∈ Value(τ).
• A node labelled σ with children t1, . . . , tn indexed by
{1, . . . , n}, where σ is an effect operation σ : αn → α.

• A node labelled (σ,m) with children t1, . . . , tn indexed
by {1, . . . , n}, where σ : Nat× αn → α.

• A node labelled σ with children t0, t1, t2, . . . indexed
by N, where σ : αNat → α.

• A node labelled (σ,m) with children t0, t1, t2, . . .
indexed by N, where σ : Nat× αNat → α.

It is immediate that every subtree of a computation tree is
itself a computation tree of the same type. We define a partial
ordering on computation trees (of the same type) by t1 v t2
if t1 can be obtained from t2 by pruning (possibly infinitely
many) subtrees and labelling the pruning points with ⊥. It
is standard that this order endows the set Trees(τ) of trees
of type τ with the structure of an ω-complete partial order
(ωcpo), with least element ⊥.

The mechanism for evaluating a term to its computation
tree uses redex/reduct-pairs and a notion of reduction in
context. We define these appropriately for call-by-name
evaluation. The redex/reduct-pairs are written R; R′ (with
R,R′ ∈ Term) and listed in the following table:

R R′

(λx :: τ.M) A M [A/x]
(Λα.M)τ M [τ/α]

case 0 of {Z⇒M1; S(x)⇒M2} M1

case n+ 1 of {Z⇒M1; S(x)⇒M2} M2[n/x]
fix(F) F fix(F)

To describe reduction in context, we use the notions of eval-
uation frames and evaluation stacks, given by the grammars

E ::= (− M) | −τ | S(−) | σ(−;M, . . . ,M) |
(case − of {Z⇒M ; S(x)⇒M})

S ::= Id | S ◦ E ,

where the evaluation frame σ(−;M, . . . ,M) is only present
for σ ∈ Σ with σ : Nat×αn → α or σ : Nat×αNat → α. If
an evaluation stack comprises a single evaluation frame E,
we denote it by E rather than Id ◦ E. Given an evaluation
frame E and a term M , we write E{M} for the term that
results from replacing “−” by M in E. Similarly, given a
stack S and term M , the application S{M} ∈ Term(τ ′) is
defined by induction on the structure of S via the equations
Id{M} = M and (S′ ◦ E){M} = S′{E{M}}.

A type assignment relation Γ ` S :: τ (τ ′ (where
Γ again ranges over typing environments) assigns argument
and result types to certain evaluation stacks. We define Γ `
S :: τ (τ ′ to hold if Γ, x :: τ ` S{x} :: τ ′, where x is
fresh for Γ. Given τ, τ ′ ∈ Typ, we write Stack(τ, τ ′) for
the set of stacks S for which ∅ ` S :: τ (τ ′ is derivable.
We set, for every τ ∈ Typ, Stack(τ) = Stack(τ,Nat).

Now a transition (S1,M1)� (S2,M2) (with M1,M2∈
Term(τ) and S1, S2 ∈ Stack(τ, τ ′), for some τ and τ ′) is
possible for exactly the following combinations:

(S1,M1) (S2,M2) if
(S,E{N}) (S ◦ E,N) N /∈ Value
(S ◦ E, V) (S,E{V }) V ∈ Value

(S,R) (S,R′) R; R′

To define the computation tree associated with a term M ,
one evaluates the term as the configuration (Id ,M). If this
evaluation terminates with a value, that value is the tree. If
it stops at an effect operation, then that operation is used to
label the current node in the tree, and the procedure con-
tinues with appropriate stack/term configurations for each
of the children nodes. If ever one gets to a nonterminating
configuration, then the current node gets labelled with ⊥.
The definition below implements this rigorously.

DEFINITION III.2. We define a family of functions | · |τ τ ′ ,
indexed by τ, τ ′ ∈ Typ, mapping S ∈ Stack(τ, τ ′),
and M ∈ Term(τ) to a computation tree |S,M |τ τ ′ ∈
Trees(τ ′). These functions are given by the canonical (i.e.,
least in the pointwise order on functions into Trees(τ ′))
solution of the following recursive equation (omitting sub-
scripts).

|S,M | =



M if S = Id and M ∈ Value
|S′,M ′| if (S,M)� (S′,M ′)
σ(|S,M1|, . . . , |S,Mn|)

if M = σ(M1, . . . ,Mn), σ : αn → α
σ(|S,M ′ 0|, |S,M ′ 1|, |S,M ′ 2|, . . .)

if M = σ(M ′), σ : αNat → α
(σ,m)(|S,M1|, . . . , |S,Mn|)

if M = σ(m;M1, . . . ,Mn),
σ : Nat× αn → α

(σ,m)(|S,M ′ 0|, |S,M ′ 1|, |S,M ′ 2|, . . .)
if M = σ(m;M ′), σ : Nat× αNat → α

Finally, for M ∈ Term(τ), we define |M | = |Id ,M |.

Note that the different cases in the above definition of |S,M |
are exhaustive and mutually exclusive. Also, because we
demand the canonical solution, we obtain |S,M | = ⊥ when
(S,M) diverges under�. In particular, |S,Ωτ | = ⊥, where
Ωτ = fix(λx :: τ. x).

EXAMPLE 3 (CONTINUED). In the signature for global
state, define M = fix(λf :: Nat→ Nat.λn :: Nat.B) where
B is

case n of {Z ⇒lookupl(λc ::Nat. c);
S(n′)⇒lookupl(λc ::Nat. updatel(S(c); fn′))}.

Then M ∈Term(Nat→ Nat) and:

|M 1| =

lookupl

(update l, 1)

lookupl

0 1 2 · · ·

(update l, 2)

lookupl

0 1 2 · · ·

(update l, 3)

lookupl

0 1 2 · · ·

· · ·

In this example, the computation tree contains branches
that could not possibly arise according to the intended
interpretation of the operations. For instance, the sub-
tree (updatel, 1)(lookupl(0, 1, 2, . . .)) represents the action:
first, store the value 1 in the location l; next, read the content
of l; if this is 0, return 0; if it is 1, return 1; if it is 2, return
2; etc. In this case, only the second branch from the choice
point is possible, and the value returned will be 1. The reason
for including such redundancy is that computation trees treat
operations as syntax. Without specific interpretation, it is
possible that all branches might be relevant. Indeed, if the
example is transcribed to the signature for input/output then,
in the corresponding subtree (write, 1)(read(0, 1, 2, . . .)),
all branches are relevant.

IV. CONTEXTUAL PREORDER

Our operational semantics treats effect operations merely
as uninterpreted syntax. In this section we show that we can
uniformly account for the properties of specific effects not
by directly defining how they behave, but instead by using
computation trees to define a notion of contextual equiva-
lence (and, more generally, preorder) between programs.

To define contextual preorder on programs, we require,
as given, a basic preorder relation vbasic on ground type
computation trees Trees(Nat). We illustrate some natural
choices for vbasic in the context of our running examples.

EXAMPLE 1 (CONTINUED). The only ground type compu-
tation trees are ⊥, numerals n, and errors raisee. The natural
preorder is the expected flat partial ordering: x verr

basic y iff
x = ⊥ or x = y.

EXAMPLE 2 (CONTINUED). Different choices for vbasic

correspond to different paradigms for nondeterministic com-
putation. We consider just two.

Ordinary nondeterminism.: Define the set results(t) of
possible results of a computation tree t by:

results(t) ={n | t has a leaf labelled with n}∪
{⊥ | t has a leaf labelled with ⊥

or t has an infinite branch}

Define: t vnd
basic t′ iff either (i) ⊥ ∈ results(t) and

results(t)−{⊥} ⊆ results(t′), or (ii) results(t) = results(t′).
This is the well-known Egli-Milner ordering.

Probabilistic choice.: We consider the or operation as
performing a fair probabilistic choice (coin toss) between the
two alternatives. Given t ∈ Trees(Nat) and n ∈ Nat, define
P(t = n) to be the probability, within the tree t (considered
as a Markov chain), of reaching a leaf labelled with n. Define
t vpr

basic t
′ iff, for all n, P(t = n) ≤ P(t′ = n).

EXAMPLE 3 (CONTINUED). Define States = Loc → N.
We define a partial function exec from Trees(Nat)×States
to N×States , where exec(t, s) represents the result of “exe-
cuting” t starting from state s. The idea is that exec(t, s) =
(n, s′) iff the execution returns value n with s′ the state
at termination. Formally, exec is the least-defined partial
function satisfying the recursive equations:

exec(n, s) = (n, s)

exec(lookupl(t0, t1, . . .), s) = exec(ts(l), s)

exec((updatel,m)(t), s) = exec(t, s[l := m]) ,

where s[l := m] is the evident state obtained from s by
modifying l. One sees that the definition of exec is such that
redundant branches of the computation tree, as discussed at
the end of Section III, are ignored. Define t vst

basic t
′ iff:

for every s ∈ States , if exec(t, s) is defined then so is
exec(t′, s) and exec(t, s) = exec(t′, s).

EXAMPLE 4 (CONTINUED). An i/o trace is a finite se-
quence of elements of three kinds: an input ?n, an output !n,
or a return ·n, where, in each case, n ∈ N. The sets io(t) of
(not necessarily completed) i/o traces of computation trees
t are defined as the smallest satisfying:

io(n) = {·n, ε}
io(read(t0, t1, . . .)) = {(?n)α | α ∈ io(tn)} ∪ {ε}

io((write, n)(t)) = {(!n)α | α ∈ io(t)} ∪ {ε} ,

where ε is the empty sequence, and we concatenate by
juxtaposition. Define t vio

basic t
′ iff io(t) ⊆ io(t′).

Note that in Examples 1 and 4, the basic preorders coincide
with the partial order on Trees(Nat) defined in Section III.

The above definitions of the vbasic preorder make use of
the standard devices one meets in the usual presentations
of operational semantics (e.g., the set States of global
states). What we have gained, with respect to the standard
presentations, is that each example now fits into the same

uniform format; its definition consists of two components:
a signature, and a preorder vbasic on Trees(Nat).

We henceforth assume given a signature and vbasic pre-
order, and we use this data to define contextual preorder for
our language. We expect that the contextual preorder should
satisfy natural compatibility (precongruence) conditions, and
it should be the largest such relation consistent with the
relation vbasic at type Nat.

DEFINITION IV.1. A well-typed relation E comprises 4-
tuples of the form (Γ,M,M ′, τ) with Γ ` M :: τ and
Γ ` M ′ :: τ . We write Γ ` M E M ′ :: τ when
the tuple (Γ,M,M ′, τ) is in E , and we abbreviate this to
M E M ′ :: τ if Γ = ∅ (and we often omit τ , which is
uniquely determined). The notions of reflexivity, transitivity
and symmetry apply to well-typed relations in the obvious
way.

DEFINITION IV.2. A well-typed relation E is said to be
compatible if it is closed under the axioms and rules in
Figure 3. It is said to be vbasic-adequate if for every
M,M ′ ∈ Term(Nat), we have that M E M ′ implies
|M |vbasic |M ′|.
Note that every compatible relation is reflexive.

The following result is standard (see, e.g., [3], [11], [12]).

PROPOSITION IV.3. There exists a largest vbasic-adequate
compatible relation. This relation is a preorder. It is an
equivalence relation if vbasic is.

Contextual preorder vctx is defined to be the largest vbasic-
adequate compatible relation, as given by the proposition
above. Contextual equivalence =ctx is then defined as
(vctx)∩ (wctx). In fact, contextual equivalence itself arises
as a special case of a contextual preorder, namely =ctx is
the contextual preorder obtained by taking the equivalence
relation (vbasic) ∩ (wbasic) as the basic preorder.

The main goal of this paper is to establish fundamental
properties of contextual preorder and equivalence in the
general context we have developed thus far: a signature of
effect operations together with a primitive preorder vbasic

on ground type computation trees. However, we will need
to impose two further conditions on the preorder vbasic for
the results to hold. The first exploits the ωcpo structure on
Trees(Nat), discussed in Section III.

DEFINITION IV.4. We say that vbasic is admissible if, for
all ascending chains (tn), (t′n) in Trees(Nat), if tn vbasic

t′n, for all n, then (
⊔
n≥0 tn) vbasic (

⊔
n≥0 t

′
n).

The second condition requires a substitution operation
on ground type computation trees. Given t, t0, t1, · · · ∈
Trees(Nat), define t{tn/n}n to be the computation tree
obtained by replacing, for every n ∈ N, each node labelled
n in t with the tree tn as a subtree rooted at that node.

DEFINITION IV.5. We say that vbasic is compositional if,

Γ, x :: τ ` x E x :: τ Γ ` Z E Z :: Nat

Γ ` F E F ′ :: τ → τ
Γ ` fix(F) E fix(F ′) :: τ

Γ, x :: τ `M E M ′ :: τ ′

Γ ` (λx :: τ.M) E (λx :: τ.M ′) :: τ → τ ′
Γ `M E M ′ :: Nat

Γ ` S(M) E S(M ′) :: Nat

Γ ` F E F ′ :: τ → τ ′ Γ ` A E A′ :: τ
Γ ` (F A) E (F ′ A′) :: τ ′

α,Γ `M E M ′ :: τ

Γ ` Λα.M E Λα.M ′ :: ∀α.τ
Γ ` G E G′ :: ∀α.τ

Γ ` Gτ ′ E G′τ ′ :: τ [τ ′/α]

Γ `M E M ′ :: Nat Γ `M1 E M ′1 :: τ Γ, x :: Nat `M2 E M ′2 :: τ

Γ ` (case M of {Z⇒M1; S(x)⇒M2}) E (case M ′ of {Z⇒M ′1; S(x)⇒M ′2}) :: τ

σ : Nat× αNat → α Γ `M E M ′ :: Nat Γ `M1 E M ′1 :: Nat→ τ

Γ ` σ(M ;M1) E σ(M ′;M ′1) :: τ

. . . the evident similar rules for other arities of σ

Figure 3. Compatibility properties.

whenever t vbasic t′ and tn vbasic t′n, for all n, then it
holds that t{tn/n}n vbasic t

′{t′n/n}n
Admissible and compositional preorders enjoy useful clo-

sure properties. If vbasic is admissible and compositional,
then so is its converse wbasic . Also, the intersection of
any family of admissible and compositional preorders is
again admissible and compositional. Thus, when vbasic is
admissible and compositional, so is =basic .

In the next section we shall see that all the instances of
vbasic relations considered above, for the various running
examples, are indeed admissible and compositional.

V. OBSERVATIONAL PREORDERS

In this section we describe a useful and rather general
method of specifying vbasic relations and establishing their
admissibility and compositionality. This defines vbasic via
a collection of possible “observations” on ground type
computation, and thus implements the contextual preorder
vctx as an “observational preorder”.

DEFINITION V.1. An observation is a subset of Trees(Nat).

The idea is that the chosen subset of Trees(Nat) represents
those computations that we observe to satisfy some property
being tested for.

DEFINITION V.2. Given a family O of observations, the
preorder vObasic is defined by: t vObasic t′ iff, for all O ∈ O,
it holds that t ∈ O implies t′ ∈ O.

The basic preorders defined in the previous section, for our
running examples, all arise from families of observations.

EXAMPLE 1 (CONTINUED). The family of observations is
Oerr = {{n} | n ∈ N} ∪ {{raisee} | e ∈ Err}.
EXAMPLE 2 (CONTINUED).

Ordinary nondeterminism.: The family is Ond = {3n |
n ∈ N} ∪ {2F | F ⊆ N and F finite}, where 3n = {t |
n ∈ results(t)} and 2F = {t | results(t) ⊆ F}.

Probabilistic choice.: The family of observations is
Opr = {Pn,r | n ∈ N, r ∈ [0, 1]} where Pn,r = {t | P(t=
n)>r}.

EXAMPLE 3 (CONTINUED). The family of observations is
Ost = {s 7→ (n, s′) | s, s′ ∈ States, n ∈ N} where s 7→
(n, s′) = {t | exec(t, s) = (n, s′)}.

EXAMPLE 4 (CONTINUED). The family of observations is
Oio = {〈α〉 | α an i/o trace}, where 〈α〉 = {t | α ∈ io(t)}.

In addition to the conceptual appeal of defining contex-
tual preorder through specifying observations, this approach
provides a convenient way of establishing the admissibility
and compositionality of vbasic .

DEFINITION V.3. An observation O is open (in the Scott
topology) if it is upwards closed as a subset of Trees(Nat)
and, for every ascending chain (tn) of trees, (

⊔
n≥0 tn) ∈ O

implies there exists n ∈ N with tn ∈ O.

Openness is an intuitively reasonable requirement to place
on observations. It reflects that, to observe that a tree
tω satisfies a property, we must use only finitely much
information about tω .

PROPOSITION V.4. If O is a family of open observations,
then vObasic is admissible.

The converse does not hold. Indeed, there is a simple char-
acterisation of preorders definable via open observations.

PROPOSITION V.5. A preorder vbasic is definable as
vObasic , for some family of open observations O, if and only
if, for every t ∈ Trees(Nat), the set {t′ | t′ 6vbasic t} is
open.

The following example of an interesting preorder violating
this condition was suggested by Paul Levy.

EXAMPLE 2 (CONTINUED). The inclusion preorder for
nondeterminism is defined by t vinclusion

basic t′ iff results(t) ⊆
results(t′). Then vinclusion

basic is not determined by a family of
open observations since ⊥ 6vinclusion

basic 0. Nevertheless, it is
admissible and compositional.

DEFINITION V.6. A family of observations, O, is called
decomposable if, whenever t{tn/n}n ∈ O ∈ O, there exist
subfamilies O′ and (O′n) of O such that:

(i) t ∈ ⋂O′ and tn ∈
⋂O′n for all n; and

(ii) whenever t′ and (t′n) are such that t′ ∈ ⋂O′ and t′n ∈⋂O′n for all n, then it holds that t′{t′n/n}n ∈ O.

PROPOSITION V.7. The relation vObasic is compositional if
and only if O is a decomposable family of observations.

Propositions V.4 and V.7 provide a uniform means for
specifying admissible and compositional vbasic relations:
such relations are obtained as vObasic whenever O is a
decomposable family of open observations. One gain here is
that openness and decomposability often turn out to be easy
to establish in practice. Indeed, Propositions V.4 and V.7
serve the simplification of reducing properties of binary
relations between trees to properties of sets of trees.

All the families of observations given for the examples
above are easily shown to satisfy the openness and de-
composability conditions. Thus the vbasic relations for our
running examples are all both admissible and compositional.

VI. A LOGICAL RELATION CHARACTERISATION OF vctx

We now take up our main task of establishing properties
of contextual preorder. For the remainder of the paper, we
assume that vbasic is admissible and compositional.

This section develops the main technical tool: a charac-
terisation of vctx via a logical relation. The presence of
recursion and effect operations in our language means we
need to restrict to a well-behaved class of term relations.
For this, we use the closure operator approach of Pitts and
Stark [2], [11], [12]. This treats terms and stacks as comple-
mentary ingredients which combine to reduce relations to a
universal “test” relation. This adapts naturally to our setting,
by using vbasic as the test relation.

Given τ, τ ′ ∈ Typ, we define Rel(τ, τ ′) = P(Term(τ)×
Term(τ ′)) and Rel>(τ, τ ′) = P(Stack(τ) × Stack(τ ′)).
For r ∈ Rel(τ, τ ′) and s ∈ Rel>(τ, τ ′) we define r> ∈
Rel>(τ, τ ′) and s> ∈ Rel(τ, τ ′) by:

(S, S′) ∈ r> iff ∀(M,M ′) ∈ r. |S,M | vbasic |S′,M ′|
(M,M ′) ∈ s> iff ∀(S, S′) ∈ s. |S,M | vbasic |S′,M ′| .

As for any order-preserving Galois connection, we always
have r ⊆ r>>, (r>>)> = r>, and r1 ⊆ r2 ⇒ r>>1 ⊆ r>>2 .

We say that r is >>-closed if r>> = r. An important prop-
erty of >>-closed relations is that they respect contextual
preorder.

LEMMA VI.1. Suppose r ∈ Rel(τ1, τ2) is >>-closed. For
all M1,M

′
1 ∈Term(τ1) and M2,M

′
2 ∈Term(τ2), if M ′1 vctx

M1, (M1,M2) ∈ r and M2vctxM
′
2, then (M ′1,M

′
2) ∈ r.

We now define the logical relation, which maps a type and
a list containing relations as interpretations for the type’s free
variables to a new relation.

DEFINITION VI.2. For every type τ , n ∈ N, list ~α =
α1, . . . , αn of distinct type variables containing the free vari-
ables of τ , lists ~τ = τ1, . . . , τn and ~τ ′ = τ ′1, . . . , τ

′
n of closed

types, and list ~r = r1, . . . , rn with ri ∈ Rel(τi, τ
′
i) for every

1 ≤ i ≤ n, we define ∆τ (~r/~α) ∈ Rel(τ [~τ/~α], τ [~τ ′/~α]) by
induction on the structure of τ by:

∆αi
(~r/~α) = ri

∆τ ′→τ ′′(~r/~α) = {(F, F ′) | ∀(A,A′) ∈ ∆τ ′(~r/~α).

(F A,F ′ A′) ∈ ∆τ ′′(~r/~α) }
∆∀α.τ ′(~r/~α) = {(G,G′) | ∀τ2, τ ′2 ∈ Typ, r ∈ Rel(τ2, τ

′
2).

(Gτ2 , G
′
τ ′
2
) ∈ ∆τ ′(~r, r>>/~α, α) }

∆Nat(~r/~α) = {(Id , Id)}>

LEMMA VI.3. Let τ , ~α, and ~r be as in Definition VI.2. If
every relation in ~r is >>-closed, then so is ∆τ (~r/~α).

To characterise vctx via the logical relation from Defini-
tion VI.2, we first have to lift the latter from closed terms to
a relation on terms possibly containing free variables, that
is, to a well-typed relation in the sense of Definition IV.1.

DEFINITION VI.4. Given Γ = ~α, x1 :: τ1, . . . , xm :: τm
such that Γ ` M :: τ and Γ ` M ′ :: τ , we write
Γ ` M ∆ M ′ :: τ if (M [~σ/~α, ~N/~x],M ′[~σ′/~α, ~N ′/~x]) ∈
∆τ (~r/~α) for every ~σ = σ1, . . . , σn and ~σ′ = σ′1, . . . , σ

′
n

with all types closed, every ~r = r1, . . . , rn where each
ri ∈ Rel(σi, σ

′
i) is >>-closed, and every ~N =N1, . . . , Nm

and ~N ′=N ′1, . . . , N
′
m where each (Nj , N

′
j) ∈ ∆τj (~r/~α).

The main step in proving that ∆ and vctx coincide
is to establish that ∆ enjoys the fundamental property of
logical relations, namely that it is reflexive. As usual, one
proves, by induction on terms, the stronger statement that
∆ is compatible. The new features in our setting are: the
admissibility of vbasic is used in the case of the fixpoint
operator, and the compositionality of vbasic is needed to
prove compatibility for the effect operations.

THEOREM VI.5. The relation ∆ is compatible.

THEOREM VI.6. The relations ∆ and vctx coincide.

VII. PROPERTIES OF CONTEXTUAL PREORDER

We now present our main operational metatheorems about
contextual preorder. Since, by remarks in Sections IV and V,

contextual equivalence arises as the contextual preorder
derived from =basic , which is admissible and compositional
whenever vbasic is, all results apply equally to contextual
equivalence. The first result reduces vctx on open terms and
types to its restriction to closed terms and types.

THEOREM VII.1. α1, ..., αm, x1 :: τ1, ..., xn :: τn `
M vctx M ′ :: τ iff for all σi ∈ Typ (i = 1, ...,m) and
all Nj ∈ Term(τj [~σ/~α]) (j = 1, ..., n), it is the case that
M [~σ/~α, ~N/~x] vctx M

′[~σ/~α, ~N/~x].

The next result is our “context lemma”. Contextual preorder
at closed terms and types can be reduced to the ground type
relation vbasic merely by considering “applicative” stacks.
We say that an evaluation stack is applicative if it is built
from evaluation frames of the form (− M) and −τ only.

THEOREM VII.2. Let M,M ′ ∈ Term(τ). Then M vctx

M ′ iff for every applicative stack S ∈ Stack(τ), it holds
that |S,M | vbasic |S,M ′|.
The proof is in two halves. First, it is shown that the result
holds if S ranges over all stacks, rather than just applicative
ones. This weaker result, which is a “ciu” theorem, in the
sense of [1], follows by a standard application of the logical
relation ∆, cf. [11], [12]. Second, making crucial use of
the compositionality of vbasic , it is shown that applicative
stacks are just as discriminative as arbitrary stacks.

Since the only applicative stack in Stack(Nat) is Id , it is
immediate from Theorem VII.2 that contextual preorder at
ground type coincides with vbasic .

COROLLARY VII.3. Let M,M ′ ∈ Term(Nat). Then
M vctx M

′ iff |M | vbasic |M ′|.
We also have that functions behave extensionally at both
type and term levels.

THEOREM VII.4.

a) For every G,G′ ∈ Term(∀α.τ) we have G vctx G
′ if

and only if for all τ ′∈Typ it holds that Gτ ′vctx G
′
τ ′ .

b) For every F, F ′ ∈ Term(τ1 → τ2) we have F vctx

F ′ if and only if for every A ∈ Term(τ1) it holds that
F A vctx F

′ A.

The reduction-pairs in the table in Section III preserve
contextual equivalence.

THEOREM VII.5. L=ctx R, for any reduction-pair (L,R).

Using the results above, one can show that the usual β- and
η-equalities, for both types and terms, hold up to =ctx .

The next result shows that effect operations commute with
stacks, which is the fundamental property that characterises
effect operations as being algebraic in the work of Plotkin
and Power [7]. We state the commutativity result for just
one of the four possible arities for σ.

THEOREM VII.6. Let σ : Nat × αNat → α, M ∈
Term(Nat), M1 ∈ Term(Nat→ τ), and S ∈ Stack(τ).
Then S{σ(M ;M1)} =ctx σ(M ;λx :: Nat. S{M1 x}).

A further useful result is that inequations between effect
operations hold at all types if and only if they hold at
ground type. For space reasons, we omit this result from this
conference paper, since its formulation requires introducing
a syntax for algebraic terms over infinitary operations, One
consequence of the result is that inequations between effect
operations, such as the equational axioms considered by
Plotkin and Power, see, e.g., [8], can be read off from their
ground type instances, as specified by vbasic .

To end the section, we make a few remarks about the
necessity or otherwise of the assumed conditions on vbasic .
As observed by a reviewer, results that assert specific
contextual equivalences, such as Theorems VII.5 and VII.6,
hold for an arbitrary preorder vbasic , even in the absence of
admissibility and compositionality. This is because, by the
results of this section, they hold if vbasic is taken to be tree
equality, which is obviously admissible and compositional.
Since all other preorders are coarser than equality, so are the
corresponding contextual equivalences.

In contrast, we believe that, under mild assumptions,
the statement of Corollary VII.3 can be shown to be
equivalent to the compositionality of vbasic . In any case,
Corollary VII.3 does require some conditions to be imposed
on vbasic , hence so does Theorem VII.2.

VIII. REASONING ABOUT RELATIONAL PARAMETRICITY

A major application of >>-closed logical relations in
the literature is to reason about parametricity properties of
polymorphism [11], [12], [15], [16], [17]. In this section, we
use the logical relation of Section VI to obtain one example
of a consequence of parametricity for our language. We
show that, in our effectful setting, the type ∀α.(τ → α)→ α
acts like Moggi’s “monadic” type T (τ). This phenomenon
has previously been demonstrated in a denotational setting
in [14]. Operationally, in our call-by-name language, it
means that this type represents effectful computations which
return, as values, suspended terms of type τ .

Define T (τ) as an abbreviation for ∀α.(τ → α)→ α.
Given a term Γ ` M :: τ , we define dMe to be
Λα. λf :: τ → α. (f M). Note that Γ ` dMe :: T (τ).
Intuitively, the term dMe is the “thunk” of type T (τ)
that suspends the evaluation of the term M . Also, given
terms Γ ` M :: T (τ) and Γ, x :: τ ` N :: τ ′,
define let x⇐M in N to be Mτ ′ (λx :: τ.N). Clearly
Γ ` let x⇐M in N :: τ ′. (In the context of our call-
by-name language, it is correct to allow an arbitrary type
τ ′ here rather than restrict to types of the form T (τ ′).)
Operationally, the term dMe, for closed M , is a value. Also,
the context let x⇐− in N is given by the (applicative)
stack Id ◦ (− (λx :: τ.N)) ◦ −τ ′ . Thus, the commutativity

of effect operations with stacks yields the expected eager se-
quencing behaviour of Moggi’s “let” operation; for example,
for σ : αNat → α, we have:

let x⇐σ(M) inN =ctx σ(λn ::Nat. let x⇐(Mn) in N).

The theorem below states the two fundamental contextual
equivalences relating the above derived constructs. Taken to-
gether, these properties assert the correct universal property
for the type operator T (−): it is left adjoint to the forgetful
functor from the category of stacks (between closed types)
to the category of terms (both up to =ctx).

THEOREM VIII.1.
a) Given Γ ` M :: τ and Γ, x :: τ ` N :: τ ′, we have

Γ ` let x⇐dMe in N =ctx N [M/x].
b) Given Γ ` M :: T (τ) and Γ ` S :: T (τ) (τ ′, we

have Γ ` let x⇐M in S{dxe} =ctx S{M}.
The proof, which follows the lines of the denotational

proof in [14], requires a lemma, which we highlight because
it is useful in other applications of relational parametricity:
the graphs, up to vctx , of functions given by stacks are >>-
closed. (The necessity of working up to vctx is explained
by Lemma VI.1.) For every S ∈ Stack(τ, τ ′), define
left-graphS∈Rel(τ, τ ′) and right-graphS∈Rel(τ ′, τ) by:

(M,M ′) ∈ left-graphS iff S{M} vctx M
′

(M ′,M) ∈ right-graphS iff M ′ vctx S{M}.
LEMMA VIII.2. Let τ, τ ′ ∈ Typ and S ∈ Stack(τ, τ ′).
Then left-graphS and right-graphS are >>-closed.

Finally, again following [14], we give a simple description
of the logical relation ∆ at types T (τ). This indicates
how Definition VI.2 can be extended in the case of languages
with a primitive T (−) type constructor.

∆T (τ)(~r/~α) = {(dMe, dM ′e) | (M,M ′) ∈ ∆τ (~r/~α)}>>

IX. RELATED AND FUTURE WORK

The idea of providing a uniform operational metatheory
for a family of language features has been popular in
concurrency theory, where, e.g., general operational rule
formats have been studied (see [18] for a survey), and
principled methods of deriving behavioural equivalence from
reduction rules have been identified [19], [20]. For higher-
order languages, possibly involving concurrency, state, and
polymorphism, the theory of environmental bisimulations,
has emerged as a general tool for analysing contextual
equivalence [21], [22]. However, the empirical robustness of
this theory has not yet been explained via any uniform op-
erational metatheory. Indeed, as far as we know, our work is
the first to attempt a systematic operational metatheory that
applies to the setting of functional languages with effects. To
this end, we have combined two previously distinct research
areas: Plotkin and Power’s theory of algebraic effects [6],

[7], [8], [9], and Pitts and Stark’s logical-relation-based ap-
proach to operational reasoning [2], [11], [12]. By adapting
the latter to a range of effects, we provide further evidence
of its versatility, see also [15], [16], [17]. Our results have
been obtained for a call-by-name language. For call-by-
value, the statements of the metatheorems need adjusting.
For example, the context lemma does not hold as formulated
in Theorem VII.2, since ΩNat→Nat and λx :: Nat.ΩNat are
not call-by-value contextually equivalent. Nevertheless, we
believe our methods will adapt straightforwardly to establish
the correct metatheorems in a call-by-value setting, simply
by adjusting the definition of the logical relation in the
appropriate way, cf. [12].

Plotkin and Power originally considered computation trees
in tandem with a denotational semantics given via a com-
putational monad T on ωcpos [7]. Plotkin [6] uses such
a denotational semantics to define contextual preorder for
a (call-by-value) language with effects. His definition does
not adapt directly to our polymorphic language, because it
is not known how to model the combination of polymor-
phism and effects in ωcpos. Nevertheless, one can instead
use the monad T to give a denotational definition of a
vbasic relation on computation trees, and thereby derive
a contextual preorder as in Section IV. It can be shown
that any such denotationally determined vbasic relation is
automatically admissible and compositional. Thus all our
operational metatheorems apply. Plotkin raises the ques-
tion of whether context-lemma-like results are available for
such denotationally determined contextual preorders over
his (monomorphic) call-by-value language [6]. Our Theo-
rem VII.2 answers the analogous question affirmatively, for
our (polymorphic) call-by-name language.

Our existing theory has certain limitations in its appli-
cability. Indeed, our running examples pretty much cover
the range of effects catered for, except for one aspect: we
can also deal with combinations of effects. A combination
of instances of our framework can itself be considered an
instance by amalgamating the signatures of effect operations,
and then specifying a suitable admissible and compositional
vbasic relation on the resulting trees. While this is easily
done in individual cases, a more compelling story would be
to show that the “sum” and “tensor” operations, in [23], for
combining Lawvere theories have analogues in our setting
for combining vbasic relations, and that these operations
correctly account for the principal examples of combinations
of algebraic effects. A further interesting development would
show that a similar methodological approach to combination
is available via constructions on the families of observa-
tions of Section V. This might be possible by viewing
observations as being generated by modal operators, and by
considering methods of combining modal logics. It is also
plausible that viewing observations as modalities might lead
to a uniform method of deriving logical characterisations of
contextual equivalence.

Our current theory does not cover all effects that have
been described as “algebraic” in the literature. For example,
the admissibility requirement on vbasic rules out countable
nondeterminism [3]. Also, local state [8] is not incorporated
because it requires a type of scopable locations to be used
as a parameter and arity in effect operations. While our
permitted arities could potentially be generalised beyond
finite and Nat, cf. [6], the inclusion of more general arities
would raise tricky issues about how to index the branching
in computation trees, and how to ensure the compatibility of
vbasic with respect to such indices. While such issues should
be solvable in the case of ground-type local store, they
are likely to present significant problems for more complex
effects such as higher-order store.

A promising direction for further research is to extend
our theory to allow effect operations that are blatantly non-
algebraic, such as exception handlers and other control
primitives. These can be added to our operational semantics
by specifying new evaluation frames and reduction rules
for them, but leaving the computation trees and the crucial
vbasic relations unchanged. Thus we envisage a general the-
ory in which effect operations are separated into two groups:
the algebraic operations, which are the building blocks of the
computation tree, and which give rise to the “observables”
of behaviour; and the control primitives, which contribute to
the reduction rules. While the new reduction rules for control
will invalidate our operational metatheorems in their present
form, we believe that the methodology of using a logical
relation to analyse the contextual preorder derived from a
vbasic relation on computation trees will still be applicable
to obtain the correct metatheorems at this generality.

ACKNOWLEDGEMENTS

We thank Paul Levy, Gordon Plotkin, and the anonymous
reviewers for helpful suggestions.

REFERENCES

[1] I. Mason and C. Talcott, “Equivalence in functional languages
with effects,” Journal of Functional Programming, vol. 1, pp.
287–327, 1991.

[2] A. Pitts and I. Stark, “Operational reasoning for functions
with local state,” in Higher Order Operational Techniques in
Semantics, Proceedings, 1998, pp. 227–273.

[3] S. Lassen, “Relational reasoning about functions and nonde-
terminism,” Ph.D. dissertation, University of Aarhus, 1998.

[4] G. Plotkin, “LCF considered as a programming language,”
Theoretical Computer Science, vol. 5, pp. 223–255, 1977.

[5] ——, “A structural approach to operational semantics,” Jour-
nal of Logic and Algebraic Programming, vol. 60–61, pp.
17–139, 2004.

[6] ——, “Adequacy for infinitary algebraic effects,” in Con-
ference on Algebra and Coalgebra in Computer Science,
Proceedings, 2009, pp. 1–2.

[7] G. Plotkin and J. Power, “Adequacy for algebraic effects,” in
Foundations of Software Science and Computation Structures,
Proceedings, 2001, pp. 1–24.

[8] ——, “Notions of computation determine monads,” in Foun-
dations of Software Science and Computation Structures,
Proceedings, 2002, pp. 342–356.

[9] ——, “Algebraic operations and generic effects,” Applied
Categorical Structures, vol. 11, pp. 69–94, 2003.

[10] E. Moggi, “Computational lambda-calculus and monads,” in
Logic in Computer Science, Proceedings, 1989, pp. 14–23.

[11] A. Pitts, “Parametric polymorphism and operational equiva-
lence,” Mathematical Structures in Computer Science, vol. 10,
pp. 321–359, 2000.

[12] ——, “Typed operational reasoning,” in Advanced Topics in
Types and Programming Languages, B. Pierce, Ed. MIT
Press, 2005, pp. 245–289.

[13] R. Milner, “Fully abstract models of typed λ-calculi,” Theo-
retical Computer Science, vol. 4, pp. 1–22, 1977.

[14] R. Møgelberg and A. Simpson, “Relational parametricity
for computational effects,” in Logic in Computer Science,
Proceedings, 2007, pp. 346–355.

[15] P. Johann, “Short cut fusion is correct,” Journal of Functional
Programming, vol. 13, pp. 797–814, 2003.

[16] J. Voigtländer and P. Johann, “Selective strictness and para-
metricity in structural operational semantics, inequationally,”
Theoretical Computer Science, vol. 388, pp. 290–318, 2007.

[17] P. Johann and J. Voigtländer, “A family of syntactic logical
relations for the semantics of Haskell-like languages,” Infor-
mation and Computation, vol. 207, pp. 341–368, 2009.

[18] L. Aceto, W. Fokkink, and C. Verhoef, “Structural operational
semantics,” in Handbook of Process Algebra. Elsevier, 2001,
pp. 197–292.

[19] J. Leifer and R. Milner, “Deriving bisimulation congruences
for reactive systems,” in Conference on Concurrency Theory,
Proceedings, 2000, pp. 243–258.

[20] P. Sewell, “From rewrite rules to bisimulation congruences,”
Theoretical Computer Science, vol. 274, pp. 183–230, 2002.

[21] D. Sangiorgi, N. Kobayashi, and E. Sumii, “Environmental
bisimulations for higher-order languages,” in Logic in Com-
puter Science, Proceedings, 2007, pp. 293–302.

[22] E. Sumii, “A complete characterization of observational
equivalence in polymorphic lambda-calculus with general
references,” in Computer Science Logic, Proceedings, 2009,
pp. 455–469.

[23] M. Hyland, G. Plotkin, and J. Power, “Combining effects:
Sum and tensor,” Theoretical Computer Science, vol. 357,
pp. 70–99, 2006.

