
A Generic Scheme for Progressive Point Cloud

Coding
Yan Huang, Jingliang Peng, C.-C. Jay Kuo and M. Gopi

Abstract— In this paper, we propose a generic point cloud
encoder that provides a unified framework for compressing
different attributes of point samples corresponding to 3D objects
with arbitrary topology. In the proposed scheme, the coding
process is led by an iterative octree cell subdivision of the
object space. At each level of subdivision, positions of point
samples are approximated by the geometry centers of all tree-
front cells while normals and colors are approximated by their
statistical average within each of tree-front cells. With this
framework, we employ attribute-dependent encoding techniques
to exploit different characteristics of various attributes. All of
these have led to significant improvement in the rate-distortion
(R-D) performance and a computational advantage over the
state of the art. Furthermore, given sufficient levels of octree
expansion, normal space partitioning and resolution of color
quantization, the proposed point cloud encoder can be potentially
used for lossless coding of 3D point clouds.

Index Terms— Progressive coding, LOD, compression, octree,
3D point cloud.

I. INTRODUCTION

3D models find applications in many fields such as gaming,

animation and scientific visualization. With the increasing

capability of 3D data acquisition devices and computing

machines, it is relatively easy to produce digitized 3D models

with millions of points. The increase in both availability and

complexity of 3D digital models makes it critical to efficiently

compress the data so that they can be stored, transmitted,

processed and rendered efficiently.

Traditional polygonal mesh representation of 3D objects

require both geometry and topology to be specified. In con-

trast, in point-based 3D model representation the triangulation

overhead is saved, processing and rendering are facilitated

without the connectivity constraint, and objects of complex

topology can be more easily represented. They make the point-

based representation an ideal choice in many applications

that use high quality 3D models consisting of millions of

points. With such a huge amount of data, efficient compression

becomes very important.

The technique of 3D model coding has been studied for

more than a decade. When various coding schemes are

compared, the compression ratio is the most widely used

performance metric. However, in the algorithmic design space

Yan Huang and M. Gopi are with Department of Computer Science,
University of California, Irvine, CA 92697, USA. E-mails: yanh@ics.uci.edu
and gopi@ics.uci.edu

Jingliang Peng is with Department of Computer Science, Sun Yat-sen
University, Guangzhou 510275, P. R. China. E-mail: jingliap@gmail.com

C.-C. Jay Kuo is with Ming Hsieh Department of Electrical Engineering
and Signal and Image Processing Institute, University of Southern California,
Los Angeles, CA 90089-2564, USA. E-mail: cckuo@sipi.usc.edu

of 3D model coding, besides the compression ratio, other

parameters such as the following are also important.

One main objective of 3D model compression is to com-

press models of all different types with various geometry

and topological features and various point attributes. Thus,

whether a coding scheme can be applied to a large class of

models provides a metric for generality measure. Furthermore,

end users evaluate a coding scheme based on the decoding

efficiency in order to assure timely reconstruction of the

compressed models. This also requires that the decoders are

simple to implement. Finally, compression becomes imminent

for models with millions of points, while memory usage

also increases proportionally with such large models. Thus

efficiency in memory usage of the codec becomes another

important parameter based on which the compression scheme

has to be evaluated. With these requirements in mind, we

propose a 3D point cloud coding scheme that is generic, time

and memory efficient, and achieves a high compression ratio.

A. Main Contributions

In this work, we propose a novel scheme for progressive

coding of positions, normals and colors of point samples from

3D objects with arbitrary topology. The major contributions

include the following.

• Generic Coder. It can compress point data for objects

with arbitrary topology.

• Full-range Progressive Coder. At the decoder side, a

model is progressively reconstructed from a single point

to the complete complexity of the original model.

• Time and Space Efficiency. The decoder only needs

to maintain partial octree layers and is able to recon-

struct/update a model in a time-efficient manner.

• Efficient attribute coders. The simple and effective

prediction technique in position coding, the progressive

quantization and local data reorganization in normal

coding, and the adaptive and nonuniform quantization

in color coding lead to the superior performance of the

proposed scheme.

• Suitability for lossless coding.1 Since no re-sampling of

the input model is done, lossless coding can be potentially

achieved.

1In the field of model compression, ”lossless coding” refers to the coding
process that, for a specific quantization of (a floating point) data, represents
and recovers the quantized data in a lossless manner. In essence, the recon-
structed data is within a tolerance range from the original input, and there
is no resampling of the input data. Specifically, it does not mean that the
decoded data is exactly the same as the floating point input.

B. Related Work

Mesh Compression: The problem of 3D mesh compression

has been extensively studied for more than a decade. For

a comprehensive survey of 3D mesh coding techniques, we

refer to Peng et al.’s work [1]. The existing 3D mesh coders

can be classified into two general categories: single-rate mesh

coders [2]–[7] and progressive mesh coders [8]–[18]. As

compared to single-rate mesh coders, progressive coders allow

a mesh to be transmitted and reconstructed in multiple levels

of detail (LODs), which is suitable for streaming in networked

applications. Most of 3D mesh coders handle manifold meshes

only, with exceptions of [13]–[15] which process meshes of

arbitrary topology.

Point-based Model Compression: Similar to mesh coding

techniques, most point-based model coders can be classified

into single-rate coders [19] and progressive coders [20]–[28].

In Krüger et al.’s work [29], although the input model is

encoded into multiple LODs, the bitstream of a coarser LOD is

not embedded in that of a finer one. Hence we do not classify it

as a progressive coder. Furthermore, some point-based model

coders are good for samples from manifold objects only (

[21], [22]) while others can handle samples from arbitrary 3D

objects ([19], [20], [23]–[29]).

In Gumhold et al.’s work [19] a prediction tree is built up for

each input model to facilitate prediction and entropy coding;

however it is not suitable for progressive coding. A bounding-

sphere hierarchy is used by the QSplat rendering system

developed by Rusinkiewicz and Levoy [20] for interactive

rendering of large point-based models. Although not strictly a

compression algorithm, QSplat offers a compact representation

of the hierarchy structure where 48 bits are used to quantize the

position, normal and color attributes of each node. A multilevel

point-based representation is adopted by Fleishman et al. [21]

where the coefficient dimension is reduced from 3D to 1D for

higher coding efficiency. Techniques of 3D model partitioning

and height field conversion are introduced by Ochotta and

Saupe [22] so that the 2D wavelet technique can be used

to encode the 3D data. Multiple Hexagonal Close Packing

(HCP) grids with decreasing resolutions are constructed by

Krüger et al. [29] where sequences of filled cells are extracted

and encoded for each HCP grid. An extended edge collapse

operator merges two end-points of a virtual edge into one

point in Wu et al.’s work [23]. The cluster-based hierarchical

Principal Component Analysis (PCA) is used by Kalaiah

and Varshney [24] to derive an efficient statistical geometry

representation. Since research in [20], [23], [29] and [24] focus

on efficient rendering, no rate-distortion (R-D) data of point

cloud compression are reported therein.

Among the previous works on point-based model cod-

ing, [25]–[28] are the most related to our current work.

Waschbüsch et al. [25] used iterative point pair contraction

for LOD construction and the reverse process is encoded.

It encodes all point attributes under a common framework.

Although this technique is applicable to samples from non-

manifold objects in principle, no such results were presented.

Besides, there is a limit on the number of LODs that should be

encoded, beyond which the method might show a significant

degradation in coding efficiency.

All the coders in [26]–[28] are based on octree-based

partitioning of the object space. With a major focus on efficient

rendering, Botsch et al. [26] encode only the position data

through the coding of byte codes associated with octree cell

subdivisions. Similar to that in Peng and Kuo’s work [15],

the coder by Schnabel and Klein [27] encodes the number of

nonempty child cells and the index of child cell configuration

for each octree cell subdivision. If color attributes are to be

coded, it first encodes a color octree and then encodes a color

index for each nonempty cell in the position octree. Despite

its good R-D performance, Schnabel and Klein’s [27] coder

may not be generally applicable to real-time decoding due to

its computational complexity.

The rest of this paper is organized as follows. Sec. II

provides an overview of the proposed coding scheme. The

position, the normal and the color coders are detailed in

Secs. III, IV and V, respectively. Evaluation of the algorithm

on computational and memory efficiency is made in Sec. VI.

A bit allocation strategy is proposed in Sec. VII. Experimental

results are presented in Sec. VIII, and concluding remarks are

drawn in Sec. IX.

II. OVERVIEW OF PROPOSED CODING SCHEME

Constructing LODs of the Model: The proposed encoder

recursively and uniformly subdivides the smallest axis-aligned

bounding box of a given model into eight children in a

octree data structure. Only the nonempty child cells will

be subdivided further. The part of the model within each

cell is represented by its cell’s attributes – the position of

each cell is represented by the geometric center of the cell,

and the normal/color of each cell is set to the average of

normals/colors of contained points. The attributes of nonempty

cells in each level in the octree structure yield an LOD of

the original 3D model. We call each point in an LOD as a

representative.

Coding of LODs: The efficiency of the proposed coding

scheme lies in effective coding of LODs of the model repre-

sented by the octree data structure. In association with each

octree cell subdivision, we encode position, normal and color

attributes of each nonempty child cell.

The position of each cell is implicit as the subdivision of a

cell is uniform and the center of the cell can be computed from

the position of the parent cell. Nevertheless, the sequence of

nonempty child cells has to be coded efficiently. The position

coder is described in Sec. III.

The normal attribute is first quantized based on uniform

subdivision of the unit sphere. When the normal information

needs to be refined for an octree cell subdivision, normals of

children are predicted by the normal of their parent, and their

residuals are coded. On the unit sphere, quantized normals

around the predicted normal are locally sorted and indexed,

resulting in a reduced entropy of normal residual indices. The

normal coder is discussed in Sec. IV.

Before color coding, PCA is first performed on the color

data of the model to determine a new color frame where an

oriented bounding box of color samples is calculated. Then,

the generalized Lloyd algorithm (GLA) is used to calculate

the quantization ranges/representatives along each dimension

of the oriented bounding box. This adaptive quantization

reduces the number of quantization bins (thus, the number of

representational bits) for a given quantization error threshold.

When the color information needs to be refined for an octree

cell subdivision, each child color is predicted to be the same as

its parent color, and the residual is encoded. The color coder

is detailed in Sec. V.

III. POSITION CODER

For each octree cell subdivision, the point representing

the parent cell is replaced by points representing nonempty

child cells. The decoder needs to know which child cells

are nonempty so that a representative can be placed at the

geometry center of each nonempty child cell, leading to a

finer approximation to the original point cloud model. Our

main contribution in position coding is to propose a technique

to lower the entropy of codes representing nonempty children

using a neighborhood-based predictor.

Occupancy Code: In the proposed position coder, a 1-

bit flag is used to signify whether a child cell is nonempty,

with ‘1’ indicating a nonempty child cell and ‘0’ an empty

child cell. For each octree cell subdivision, if we traverse all

child cells according to a fixed order, and collect the flag

bits of all child cells, we will obtain an 8-bit code called

the occupancy code, which has to be coded. For the ease of

illustration, we consider a 2-D example and show the quadtree

subdivision and its occupancy code in Fig. 1. If we traverse

child cells according to the fixed order, we will obtain two

occupancy codes, 1010 and 0101, for the two cell subdivisions

in Figs. 1(a) and (b), respectively.

0 1

2 3

0 1

2 3

0 3

1 2

2 1

3 0

1010 0101 1100 1100

cell 1 cell 2 cell 1 cell 2

(a) before estimation (b) after estimation

Fig. 1. Examples of occupancy code formation (a) before and (b) after
estimation of each child cell’s relative probability of being nonempty, where
nonempty and empty child cells are colored green and white, respectively.
The traversal orders are denoted by the blue arrows.

To reduce the entropy of occupancy codes, we “push” ‘1’-

bits toward an end by reordering the bits in each occupancy

code as shown in Fig. 1. It is worthwhile to point out that

the technique of octree cell subdivision was also used by

Peng and Kuo [14] and [15] for mesh compression. Peng

and Kuo [15] encode the index of each nonempty-child-cell

tuple instead of the occupancy code. Despite its high coding

efficiency, the process of pseudo-probability estimation and

tuple sorting is computationally intensive. As compared to

the bit reordering technique used by Peng and Kuo [14] for

entropy reduction in coding triangular meshes, the occupancy

code reordering method described below differs extensively in

local neighborhood identification and probability assignment.

Occupancy Code Reordering: For each cell subdivi-

sion, we first estimate each child cell’s probability of being

nonempty based on the parent cell’s local neighborhood. Then,

we determine the new traversal order of child cells and

reorder bits in the corresponding occupancy code according

to the relative magnitude of the estimated probability. The

key in occupancy code reordering is probability estimation,

which consists of two steps: neighborhood identification and

probability assignment.

Neighborhood Identification: In a 3D mesh, an edge indi-

cates the neighbor relationship between two vertices, which

was utilized by Peng and Kuo [14] for bit reordering. Since

we do not have edges in a point-based 3D model, we call

two representatives c1 and c2 in the current LOD (and the

corresponding octree cells, C1 and C2) neighbors if and only

if the following conditions are satisfied.

• The difference of level numbers of C1 and C2 is less than

a predetermined threshold α.

• The distance between c1 and c2 is less than δ ×
min(diag(C1), diag(C2)), where δ is a constant and

diag(Ci) is the diagonal length of cell Ci.

The first condition requires at most α continuous octree

levels, instead of the whole octree, to be maintained during

the process of compression. This allows a memory-efficient

implementation of the encoder and the decoder. The second

condition guarantees that only nearby representatives (i.e.,

cells) could be neighbors, and the range of local neighborhood

is controlled by parameter δ. Interestingly, a similar condition

was used by Gopi et al. [30] for neighborhood identification

of points for surface reconstruction. We set α = 3 and

δ = 1.5 in our experiments. Note that there are data structures

and computational geometry algorithms [31] to determine

immediate neighbors of a cell in both complete and incomplete

octrees. However, these algorithms are not directly applicable

to the current case since we would like to control the extent

of the neighborhood using the spatial relationship.

Neighborhood identification can be performed efficiently

with the help of the octree structure. To determine the neigh-

bors of a cell after subdivision, we first construct a list

of candidate neighbors of the target cell by inheriting the

neighborhood relationship from its parent and including all

children of parent’s siblings that have been compressed until

now. We then prune cells from this list that do not satisfy the

above two distance criteria.

Probability Assignment: In general, the local surface around

a point in a model lies on one side of its local tangent

plane except for saddle and other complex surfaces, and point

samples contained in a cell tend to locate closely to the local

tangent plane. Based on these observations, we estimate the

probability of child cells’ being nonempty with the following

steps.

• At the center of the parent cell, the normal, whose coding

will be detailed in Sec. IV, gives an approximate local

tangent plane denoted by p.

• On either side of p, we sum up distances of neighbor

representatives to p, and assign higher probability values

to child cells whose centers are on the side of p with a

higher sum of distances.

• For child cells with centers on the same side of p, higher

probability values are assigned to those whose centers are

closer to p.

For computational efficiency, we use a plane instead of a

higher order surface patch to approximate the local surface.

Being different from the probability assignment in Peng and

Kuo’s work [14] which orders child cells purely based on

their distances to a local approximating surface, our algorithm

prioritizes all points on one side of plane p over those on the

other. In general, the plane-side-based priority assignment has

led to an additional coding gain in our experiments.

Bit Reordering: It is not the exact probability values but

their relative magnitudes that matter in the proposed occu-

pancy code reordering algorithm. They guide the child cell

traversal and the order of corresponding bits in the occupancy

code. Consider the example of a quadtree cell subdivision

shown in Fig. 2. The parent representative is shown as o and

its neighbors are given by nbi. The distances of nbi to the

tangent plane at o given by the normal vector n at o are

represented by di. The children of o are represented by Ci.

The child cells C2 and C3 are assigned higher probability

values than C0 and C1 since d1 + d2 > d3. Child cell C3 is

assigned a higher probability value than C2 since C3 is closer

to the tangent plane than C2. For the same reason, C0 has

higher probability assignment than C1. Based on this proba-

bility assignment, the order of child cell traversal is changed

from C0→C1→C2→C3 to C3→C2→C0→C1 as illustrated

by red arrows. Accordingly, the associated occupancy code

is changed from 0011 to 1100, with 1’s being shifted to the

left side. Note that this probability estimation algorithm takes

into account the local geometry of point-based 3D models

implicitly, and it works well for different local curvatures

including regions of maxima and minima.

p

o

n

nb1

nb2

d1

d2

c0

nb3

d3

c1

c2 c3

Fig. 2. Determination of the new child cell traversal order based on
estimated relative probabilities, where C0. . .C3 are child cells, with C2 and
C3 nonempty (filled). The approximate tangent plane p is determined by the
normal n at the parent representative o and nbi is a neighbor representative
whose distance to p is di(i = 1, 2, 3). The final order of child cell traversal
is shown by red arrows.

Effect of Bit Reordering: The effectiveness of the probability

estimation and the occupancy code reordering techniques in

entropy reduction of occupancy codes is shown in Figures

3(a) and (b). These figures show the histograms of occu-

pancy codes before and after the reordering based on the

accumulative statistics for the Octopus model with eight-level

octree subdivision. High peaks show up at a few values after

the reordering, leading to a greatly reduced entropy value of

4.58 from the entropy of 6.95 before reordering. This method

achieves similar entropy reductions in other models also.

0 100 200
0

5

10

15

bytecode

p
e

rc
e

n
ta

g
e

 (
%

)

(a)

0 100 200
0

5

10

15

bytecode

p
e

rc
e

n
ta

g
e

 (
%

)

(b)

Fig. 3. The distribution of occupancy codes (a) before and (b) after bit
reordering.

IV. NORMAL CODER

The main contribution in normal coding is to rearrange

the normal data using a novel local normal indexing scheme

that significantly reduces the entropy. The normal of a rep-

resentative is the normalized average of normals of all data

points contained in the corresponding octree cell. For each

cell subdivision, all nonempty child cells are predicted to have

the same normal as their parent, and prediction residuals are

coded using a local normal indexing scheme that organizes

similar normals around the predicted one on the unit sphere

(Gauss sphere) into a 1D list.

Normal Quantization: Before compression, normals need

to be quantized. This is achieved by iterative subdivision of the

normal space (i.e. the unit Gauss sphere) to a pre-determined

resolution as done by Taubin et al. [32] and Botsch et al. [26].

Each representative normal can then be identified by an index

into a table of quantized unit normals determined by the

above subdivision. We use the same subdivision and indexing

approaches of Botsch et al. [26]. The iterative process of

normal space subdivision and indexing is illustrated in Fig. 4.

T0:j

T1:4j

T1:4j+1

T1:4j+2

T1:4j+3

(a) (b)

Fig. 4. Normal quantization: (a) an octahedron is inscribed into the unit
sphere and its eight facets, T0:j (j = 0, 1, . . . , 7) form the first level of
subdivision; and (b) triangle T0:j (j ∈ {0, 1, . . . , 7}) is subdivided into four
sub-triangles, T1:4j . . . T1:4j+3 with index (1 : 4j) assigned to the central
sub-triangle whose normal is equal to that of T0:j .

In terms of R-D performance, it is not meaningful to encode

the normal value in high resolution when the positional resolu-

tion is still low. Hence we build up multiple normal tables, one

for each level of normal space subdivision, and associate an

appropriate resolution-level normal table with each level of the

octree in the position coder. In our experiments, a maximum

of 13 bits (that is, 6 levels of sphere subdivision) are used

for normal quantization. When an octree cell is subdivided

with increased resolution of normal quantization, we need to

encode the normal of each child representative. Since in most

cases, the normal of a child representative is close to that of

the parent, we predict the normal of a child representative to

be the same as that of the parent and encode the residual.

Local Normal Indexing: The proposed normal coder is

based on a local normal indexing scheme with an objective

to reduce the entropy of normal residuals. For each triangular

facet Ti:4j at the i-th level of normal space subdivision, we

re-index the same-level facets in its local neighborhood on

the sphere based on the differences in their normal from Ti:4j .

We maintain an array, Ai,4j , of pointers to these facets in the

neighborhood as shown in Fig. 5. Although we can further

expand the local neighborhood we have already seen very

good performance with just three rings in our experiments

and the advantage of having more rings with additional coding

bit complexity is negligible. Note that at lower quantization

resolutions, the neighborhood may not have enough triangles

to have three rings and hence will have fewer rings. The nor-

mal space subdivision scheme and the local normal indexing

scheme are computed only once and stored as a table for use

by both encoder or decoder.

Initially, the normal of the root octree cell is represented

with a 3-bit global normal index. When an octree cell is

subdivided and the associated normal data need to be refined,

the indexed local neighborhood facet of the Gauss sphere

around the facet of the parent normal in which the normal

of the child representative falls is searched. A 1-bit flag is

arithmetic encoded to indicate whether this local search is

successful. If it is, the local index of the matching normal

is arithmetic coded; otherwise, a global search is conducted

and the global normal index is arithmetic coded.

In essence, the proposed local normal indexing scheme

increases the occurrence frequencies of local normal indices

(0 . . . 51), resulting in a reduced entropy of the normal data.

Fig. 6 demonstrates the effectiveness of the local normal

indexing scheme. By comparing Figs. 6(a) and 6(b), we see

a much more concentrated distribution around a small number

of local normal indices in Fig. 6(b).

V. COLOR CODER

Our approach to color data coding is adaptive quantization

followed by delta coding. To reduce the resultant data entropy

at the same distortion tolerance, the proposed quantization

scheme utilizes the probabilistic distribution of color sam-

ples specific to an input model. As a result, the proposed

adaptive color quantization scheme leads to optimized R-D

performance when compared with the uniform quantization

scheme and the well-known octree-based color quantization

scheme by Gervautz and Purgathofer [33]. Finally, the delta

35

23
36

24
37

38
25

39 2826
40

34

22

41
27

42
44

43

29
45

46
30

47
31

48
32

49
50

33
51

(c) 3
rd
 neighbor ring

(b) 2
nd

 neighbor ring

4

5

6 7

8

9
10

11

12
13 14 15

16

17

18

19
20

21

(a) 1
st
 neighbor ring

0

1

2 3

Ti:j

Fig. 5. Local normal indexing: (a) Ti:4j . . . Ti:4j+3 are assigned the smallest
four indices since they have the smallest difference in normal from Ti:4j .
Ti:4j+1 . . . Ti:4j+3 form the 1st neighbor ring of Ti:4j ; (b) the 1st neighbor

ring of Ti:4j is expanded and the 2nd neighbor ring (in purple and pink)
is formed by the triangular facets around the 1st neighbor ring. Note that
the purple facets are assigned smaller indices than the pink ones since their
normals are closer to that of Ti:4j than those of the pink facets; (c) the local

neighborhood is expanded to the 3rd neighbor ring similarly.

0 200 400
0

500

1000

1500

2000

2500

n
u

m
b

e
r

o
f

c
e

ll
s

(a)

0 200 400
0

500

1000

1500

2000

2500

n
u

m
b

e
r

o
f

c
e

ll
s

(b)

Fig. 6. The distribution of normal indices: (a) global indices at 9-bit
quantization for the Igea model and (b) the corresponding local normal
indexing, where the local normal indices are offset by 512 for the purpose of
plotting.

coding is employed to further reduce the entropy of color data.

The proposed adaptive quantization scheme consists of two

major components: adaptive color frame determination and

adaptive quantization representative/range computation.

Adaptive Color Frame Determination: A high degree of

color correlation exists in a wide range of 3D models and color

samples of a model tend to cluster in only a small portion of

the color space. This often leads to high redundancy in color

representation when the uniform RGB space quantization is

used. For example, there is a high degree of color sample

clustering in the RGB color space for the Face model as

shown in Figs. 7(a)–(c). This observation generally holds in

most models. To exploit this color coherency, we derive a new

Cartesian color frame based on the probabilistic distribution

of input color data so as to achieve higher representational

efficiency. Specifically, PCA is applied to the set of input color

samples in the RGB color space. The three orthogonal eigen

vectors V1, V2 and V3 identified by PCA and the centroid,

C, of the input color samples determine a new Cartesian color

frame and is denoted by F ′. The oriented bounding box that

tightly encloses the color samples in the frame F ′ is denoted

by B′, and that which is defined in F is denoted by B.

Typically, the volume of B′ is significantly smaller than that

of B. For the Face model whose color data distribution is

illustrated in Fig. 7, the volume of B′ is only around 15%

that of B. In general, such a compact bounding box leads to

reduction of redundancy in the representation.

After the new color frame F ′ is determined, the coordinates

of each color sample in the old RGB color frame, F , are

transformed to the new color frame, F ′. These transformed

coordinates are used to compute B′.

0 100 200
0

50

100

150

200

250

G

B

0 100 200
0

50

100

150

200

250

R

B

0 100 200
0

50

100

150

200

250

R

G

(a) (b) (c)

Fig. 7. The distribution of color samples for the Face model viewed from
(a) the R-axis (b) the G-axis, and (c) the B-axis.

Adaptive Quantization Range and Representative Calcu-

lation: In the new color frame F ′, we subdivide each dimen-

sion of B′ into quantization ranges and select a representative

for each range. To utilize the probabilistic distribution of

color samples, instead of equally subdividing B′ along each

dimension, we adaptively determine the extent of individual

ranges along each dimension of B′ such that the average

quantization error can be minimized for a given number of

quantization ranges. This is done using the generalized Lloyd

algorithm (GLA), which is a clustering algorithm widely

used in the context of vector quantization [34] and pattern

recognition [35]. (See Appendix for more information.) After

the application of GLA, a sequence of optimal representatives

is obtained along each dimension of B′, and the set of mid-

points between adjacent pairs of representatives delimits the

individual quantization ranges.

The number of required ranges in each dimension is de-

termined by the tolerance to the quantization error. In each

dimension, the GLA algorithm can be repeatedly applied by

adding additional seed representatives at every iteration until

the algorithm yields a partition of B′ such that the maximum

difference between any sample to its representative is within

the tolerance. In our experiment, we use 1/32 of RGB cube’s

side length as the tolerance level, which has yielded a final

color quality that is perceptually indistinguishable from the

original in all our test models.

Having determined quantization representatives and ranges

along each dimension of B′, we construct a color quantization

table, which consists of the following data items.

• The origin C, and axes V1, V2 and V3 of the new color

frame.

• The following data along each of the above three axes:

– the value of the first quantization representative.

– the number of quantization ranges and intervals

between every two consecutive quantization repre-

sentatives.

For time and space efficiency, GLA is conducted along each

dimension separately. Please note that, running GLA three

times, once for each dimension, for 1-D ranges of size k
each is about three orders of magnitude faster than running

it once for 3-D cubes of size k3 that partition the entire

3D bounding box. Furthermore, the separable GLA scheme

demands a table consisting of 3k 1-D representatives, rather

than a table consisting of k3 3-D representatives as demanded

by the joint GLA scheme.

Effectiveness of Adaptive Color Quantization: To illus-

trate the effectiveness of the proposed adaptive color quantiza-

tion scheme, we use two other color quantization schemes as

benchmarks: the uniform quantization scheme that subdivides

each dimension of the original RGB color cube into equal-

sized ranges and the octree-based color quantization scheme

by Gervautz and Purgathofer [33] that adaptively constructs

an octree in the original RGB color cube for the quantization

purpose.

We plot estimated R-D curves of three quantization schemes

in Fig. 8 with the Face model. The schemes are denoted as

‘uniform’, ‘octree’ and ‘adaptive’ in the figure. The quantiza-

tion resolution is controlled by the number of quantization

ranges along each dimension in the uniform quantization

scheme and the proposed adaptive quantization scheme, and

by the number of quantization representatives in the octree-

based scheme. For each quantization resolution, we estimate

the corresponding coding bits per input sample based on the

entropy of quantized color indices, and estimate the distortion

per input sample by the average distance between each input

color sample and its quantized representative. We see from

Fig. 8 that the proposed adaptive quantization scheme yields

a significant R-D advantage over the uniform quantization

scheme.

Although the octree-based color quantization scheme yields

almost the same R-D performance as the adaptive color

quantization scheme, the memory efficiency of the adaptive

scheme can be two orders of magnitude superior to the octree-

based quantization scheme. For O(k3) 3D color quantization

representatives, the octree-based color quantization scheme

requires O(k3) of space to store the color quantization table,

while the adaptive scheme requires just O(k) of space since

the quantization representatives are stored independently on

each of the three axes of the bounding box.

Entropy Coding: Since the color decoder requires the

color quantization table, the encoder has to encode the table

before encoding the colors of representatives in any LOD. In

our implementation, the color quantization table is arithmetic

coded.

In an intermediate LOD, the color of a representative is

quantized in the new color frame F ′ according to the obtained

quantization table, and the quantized color coordinates are to

6 8 10 12
0

5

10

15

estimated bitrate
e

s
ti

m
a

te
d
 d

is
to

rt
io

n

adaptive

uniform

octree

Fig. 8. Comparison of R-D curves of three color quantization schemes for
the Face model.

be encoded. Motivated by the observation that there is usually

high correlation between colors of a child representative and

its parent, a child representative is predicted to have the same

color as its parent, and only the residual is coded with an

arithmetic coder leading to further entropy reduction.

Please note that the RGB color representation instead of

the luminance-chrominance representation (such as the YUV

color space) is used here. Since the luminance-chrominance

color representation models human perception of color more

closely, it would be interesting to study the quantization

scheme in the luminance-chrominance color representation as

a future extension. For example, we may apply the adaptive

quantization scheme separately to the 1-D luminance-subspace

and the 2-D chrominance-subspace to prioritize the luminance

component over the chrominance components.

VI. EVALUATION ON TIME AND SPACE EFFICIENCY

A. Asymptotic Performance Analysis

In this subsection, we conduct an asymptotic performance

analysis on the computational and memory costs of the pro-

posed point cloud coder. In order to provide a big-O analysis,

we focus on the cost associated with major algorithmic steps

and the most expensive operations in each step. Consider the

case where there are N points in the input 3D model, which

is decoded to a sufficient level of detail; namely, O(N) cell

subdivisions in total.

Computational Cost: The computational cost for each cell

subdivision can be analyzed as follows.

• Position encoding/decoding: The neighbor search re-

quires b point-point distance calculations, where b is the

size of candidate neighbor set. The probability assignment

entails b + 8 point-plane distance calculations. The bit

re-ordering process demands at most 8 × log
2
8 = 24

comparisons. Since b is a bounded constant by the

definition of local neighborhood, the computational cost

for each position encoding/decoding is O(1).
• Normal encoding/decoding: The major cost of normal en-

coding resides in the normal table search, which is dom-

inated by the local normal indexing. For each nonempty

child cell, the encoder performs at most 52 (mostly less

than 10) calculations and comparisons of the normal

difference and the decoder retrieves the normal vector

through a table lookup whose cost is negligible. Thus, the

computational cost for each normal encoding/decoding is

O(1). Note that the normal quantization table can be built

up once and stored for use by any encoder/decoder.

• Color encoding/decoding: The encoder performs

3O(log k) searches to quantize each color, if the

quantization ranges and representatives of each

dimension are organized into a binary search tree,

where k is the average number of ranges along each

dimension. Typically, we have log k ≤ 8 for k ≤ 256.

The decoder simply retrieves the quantized color through

three table lookups. In addition, both the encoder

and the decoder need to perform a color coordinate

transformation through a matrix-vector production. The

total computational cost of color encoding/decoding is

thus O(1).

Besides the computational cost per cell subdivision as

analyzed above, we need to construct the octree and the color

quantization table once at the encoder as a pre-processing step.

For a 3D model of N points, building an (r + 1)-layer octree

costs O(rN) in the position encoding, where r is the number

of quantization bits along each 1D dimension. For the color

encoding, one PCA step and one GLA iteration cost O(N)
and O(kN), respectively, where k is the average number of

quantization ranges along each dimension in the adaptively

determined color frame.

Based on the above analysis, we conclude that the pro-

posed encoding scheme has a computational complexity of

O(max(r, k)N). Based on our experiments, r and k typically

take their values from the range of 10−30 in order to produce

an approximation to the original 3D model with perceptually

indistinguishable quality. We also conclude that the proposed

decoding scheme has a computational complexity of O(N),
which is much faster than encoding scheme. For more detailed

timing data, we refer to Table IV in Sec. VIII

Memory Cost: Both the encoder and the decoder have to

store several tree-front layers of the octree, i.e. 3 tree-front

layers of the octree, which takes O(N) space. In addition, the

encoder has to store the position, normal and color attributes

associated with each point in the input model, whose memory

cost is again O(N). Furthermore, both the encoder and the

decoder need to store the normal quantization table and the

color quantization table. The normal quantization table takes

O(sM) space where s is the neighborhood size in the local

normal indexing, which is a constant, and M is the number

of distinct normals in the maximum quantization resolution.

The color quantization table takes O(k) space. Since M < N
and k < N , the overall memory cost of the encoder/decoder

is O(N).

B. Comparison with the Prior Art

In this subsection, we compare the asymptotic performance

of our scheme with the prior art [25]–[27]. Since all these

works and our work has O(N) space complexity, we just focus

on the comparison of computational complexity below.

Botsch et al. [26] only compress the position data with a

computational cost of O(N). As compared to our coder, its

computational efficiency is slightly better since no prediction

is made in the encoding process (at the cost of poorer R-D

performance).

Waschbüsch et al. [25] compress all position, normal and

color data. A computational cost of O(N) is needed for

the actual encoding/decoding of each attribute. Before the

actual coding, the encoder needs to build up a multi-resolution

hierarchy through a minimum weight perfect matching pro-

cess [36], which demands an extra computational cost of

O(N2 log N). In addition, both the least-square local plane

approximation in the position coding and the local coordinate

transformaion/conversion in attribute coding demand higher

complexity than ours.

Schnabel and Klein [27] encode position and color data. The

overall coding time is between O(N log N) and O(N2 log N)
due to the expensive re-ordering of tree-front cells in both the

position and the color octrees. The prioritization of nonempty-

child-cell configurations associated with each cell subdivision

step is also computationally intensive. Actually, we observe

that prioritization of nonempty-child-cell configurations and

re-ordering of tree-front cells are major computational bottle-

necks in some octree-based 3D model coders such as those by

Schnabel and Klein [27] and Peng and Kuo [15].

VII. DISCUSSION ON BIT ALLOCATION STRATEGY

In this section, we consider the bit budget allocation strategy

among different types of point attributes for the proposed

point cloud coder. Since the coding process is driven by the

iterative octree cell subdivision, the positional resolution is

always increased at every level of octree expansion. For the

normal and color coding, we have the flexibility in specifying

the octree level at which the points would inherit those

attributes from parents and at which the difference between

their attributes should be encoded. Further, since the resolution

of normal quantization is progressively refined, we have extra

flexibility in specifying the octree level at which the resolution

of normal quantization should increase.

For models without color attributes, better approximation

quality of intermediate models has been observed for most

of our test models when we encode the normal updates and

increment the level of normal space partitioning at every other

octree level (rather than every octree level). This may be due

to the fact that the positional accuracy contributes more to

the model quality than the normal accuracy when points are

densely sampled.

We plot the R-D curves for the Dragon model in Fig. 9

using different bit allocation strategies. Two sets of R-D

curves are obtained with two bit allocation strategies: to

increase the normal resolution and conduct the normal coding

at every level, and at every other level, denoted by ‘Every’

and ‘EveryOther’, respectively. The horizontal axis is the total

coding bitrate while the vertical axis is the corresponding

PSNR values for the position/normal coding. We see from

Fig. 9 that the ‘EveryOther’ strategy leads to significantly

better position quality at any fixed total bitrate. Interestingly,

the ‘EveryOther’ strategy achieves not only higher position

quality, but also higher normal quality at relatively high

bitrates. This could be explained by the fact that the normal

quantization reaches its maximum resolution quickly with the

‘Every’ strategy while the position resolution is still relatively

low. After that, the normal coding is not efficient since normals

are already encoded in full resolution while the relatively low

position resolution does not help much in providing good

normal prediction accuracy.

0 5 10 15

20

40

60

80

100

total bits per point

P
S

N
R

/d
B

EveryOther:normal
Every:normal
EveryOther:position
Every:position

Fig. 9. R-D curves of normal coding for the Dragon model with different
bit allocation strategies.

For models with color attributes, we have an additional

flexibility in specifying the bit-allocation priority of color

coding. It is still an open problem to find the optimal bit

allocation among different attributes. Instead of providing an

optimal or a suboptimal solution, we only illustrate the effect

of different bit allocation strategies on the model quality here.

The reconstructed Santa model at 2.5bpp with two bit

allocation strategies is shown in Fig. 10. Fig. 10(a) adopts

color coding at every level and normal resolution refinement

and coding at every other level. Fig. 10(b) uses color coding at

every other level and normal resolution refinement and coding

at every level. We see clearly that the reconstructed model

in Fig. 10(a) has higher visual quality than that in Fig. 10(b)

especially in regions around Santa’s hat, face, beard and waist.

This could be due to the higher contribution to visual quality

of position’s and color’s accuracy than normal’s accuracy. For

example, densely sampled models usually have smooth normal

variation among adjacent points over the surface.

Although our experiments suggest that we need higher

resolution for position and color data than the normal data

during bit allocation, it is worthwhile to study the bit allocation

problem and its optimality conditions more thoroughly. In

general, we need to estimate the R-D curves for different

attributes and measure the relative importance of different

attributes accordingly. A preliminary study along this direction

was conducted by Li and Kuo in [11].

(a) (b)

Fig. 10. Visual comparison of the Santa model at 2.5bpp with two bit
allocation strategies.

VIII. EXPERIMENTAL RESULTS

Nine point-based models are used in our experiments

as shown in Fig. 11. They are: Face, Igea, Dragon

and Octopus by the courtesy of Pointshop 3D,

Acer saccarinum from Xfrog public plants (http://web.inf.tu-

dresden.de/ST2/cg/downloads/publicplants/), Dragon-

vrip, Santa, Happy Buddha (vripped reconstruc-

tion) from the Stanford 3D scanning repository

(http://graphics.stanford.edu/data/3Dscanrep/), and FemaleWB

from Cyberware (http://www.cyberware.com/). Two versions

of dragon models (namely, Dragon and Dragon-vrip) are

used in our experiments for fair comparison with previous

work, although only one dragon model is rendered in Fig. 11.

Except for models provided by Pointshop 3D, all other

models were transferred to the Surfel format by ourselves.

Igea Acer_saccarinum Happy_buddha Octopus

Santa Dragon Face FemaleWB

Fig. 11. Models used in our experiments.

A. Rate-Distortion Performance Comparison

The coding performance is measured in bits per point (bpp),

which is the ratio of the total coding bit rate and the number

of points in the original model. Although the MLS surface

that compares the difference between two point-based models

was adopted as the distortion measure by Pauly et al. [37] and

Fleishman et al. [21], we do not use the MLS-surface-based

distortion metric since it is not suitable for measuring normal

and color distortions [25]. Here, we use the peak-signal-to-

noise ratio (PSNR) to measure position, normal and color

distortions as done by Waschbüsch et al. [25]. The position

PSNR is calculated using the Euclidean distance between

corresponding points in the original and the reconstructed

models with the peak signal given by the diagonal length

of the tightly-fit axis-aligned bounding box of the original

model. The normal PSNR is calculated using angles between

the original and the reconstructed normals with a peak signal

of 180 degrees. The color PSNR is measured separately for

each color channel, using the difference between the original

and the reconstructed color coordinates with the peak signal

of 255 for an 8-bit pre-quantization of each color channel.

We measure the color PSNR in the RGB space except that,

when the color encoding performance is compared with that

of Waschbüsch et al.’s work [25], the color PSNR is measured

in the YUV space for fair comparison.

We compare the R-D performance of the proposed point

cloud coder with those in [25]–[27], which serve as bench-

marks since they too can encode point samples of 3D objects

with arbitrary topology progressively. Please note that the

coder of Botsch et al. [26] encodes only position data, the

coder of Schnabel and Klein [27] encodes both position and

color data, and the coder of Waschbüsch et al. [25] encodes

all position, normal and color data.

The R-D performance of the proposed position coder and

that of our own implementation of Botsch et al.’s [26]

algorithm is compared in Fig. 12. We see that the proposed

position coder has 33–50% bitrate reduction for PSNR values

below 65.

The R-D performance of the proposed progressive coder

and that of Waschbüsch et al. [25] for position and normal

coding is compared in Fig. 13(a) and Fig. 13(b), respectively.

The horizontal axis is the coding bitrates while the vertical axis

gives the position/normalPSNR values. Note that the R-D data

of the position coder of Waschbüsch et al. [25] are taken from

the progressive encoding curves in Fig. 10 of [25] and the R-D

data of normal encoding for [25] are taken from the encoding

results in Table 2 of [25]. Due to the lack of data, we are

not able to make full-range comparison especially for normal

encoding as shown in Fig. 13(b). As shown in Fig. 13(a),

the PSNR improvement in position coding is around 10dB

and 15dB for Igea and Dragon, respectively, at all bitrates.

Further, the proposed normal coder can reduce the bitrate by

about 50% at certain high PSNR values.

0 1 2 3 4

50

55

60

65

70

bits per point:position

P
S

N
R

:p
o

s
it
io

n

our coder
[26]

Fig. 12. R-D performance comparison of the proposed coder and that in
Botsch et al.’s work [26] for Octopus (466k).

Next, we compare the R-D performance with all coding

schemes taken into account. The R-D performance of position,

normal and Y-color-component coders for Octopus is shown

in Figs. 14(a)-(c), where the horizontal axes are the total

coding bitrates (i.e., the sum of position, normal and color

encoding bitrates) in bpp and the vertical axes give the

corresponding PSNR values. The proposed position and color

coders outperform those of Waschbüsch et al. [25] at almost

all bitrates with an improvement of up to 9dB, which roughly

corresponds to 65% distortion reduction. As compared with the

normal coder of Waschbüsch et al. [25], the proposed coder

has comparable or better R-D performance for higher bit rates

as shown in Fig. 14(b). For lower bit rates, performance of

the proposed normal coder is dictated by the coarse normal

3 4 5 6 7 8 9
50

55

60

65

70

75

80

bits per point:position

P
S

N
R

/d
B

:p
o

s
it
io

n

our coder:dragon
[25]:dragon
our coder:igea
[25]:igea

(a)

0 5 10 15 20
15

20

25

30

35

40

45

bits per point:normal

P
S

N
R

/d
B

:n
o

rm
a

l

our coder:dragon
[25]:dragon
our coder:igea
[25]:igea

(b)

Fig. 13. R-D performance comparison of the proposed coder and that of
Waschbüsch et al. [25]: (a) position coding and (b) normal coding, for Dragon
(436k) and Igea (134k).

quantization resolutions that are adopted in initial octree levels.

As the resolution of normal quantization is refined, the normal

encoding performance is improved at higher bitrates.

Since Schnabel and Klein [27] do not compress normal

data, we compare this work with only the proposed position

and color coders in Tables I and II. Table II shows only the

PSNR value of the B-color-component coding; similar trends

are observed for other color components as well. The position

coder of Schnabel and Klein’s [27] achieves higher PSNR

values by 4dB at most bitrates for Dragon-vrip and Igea. In

contrast, the proposed color coder outperforms [27] by 10dB

or higher at lower bitrates and around 2–6dB at higher bitrates

for Santa and FemaleWB. The R-D data of [27] shown in

Table I and Table II were not reported in the original paper

yet kindly provided by the authors for this comparison.

TABLE I

COMPARISON WITH SCHNABEL AND KLEIN’S WORK [27]:POSITION

CODING

Bitrate(bpp) 0.04 0.15 0.53 1.82 4.15 5.34 8.41

PSNR our coder 42.16 48.15 53.89 60.10 66.23 68.82 75.59
[27] 45.86 52.07 58 63.84 68.52 N/A N/A

(a) Dragon-vrip

Bitrate(bpp) 0.04 0.43 1.77 4.35 6.45 8.71 11.28

PSNR our coder 38.59 49.91 55.44 61.59 66.10 71.15 75.15
[27] 47.79 53.6 59.39 65.4 70.17 76.65 82.21

(b) Igea

A comprehensive list of R-D data for position, normal

TABLE II

COMPARISON WITH SCHNABEL AND KLEIN’S WORK [27]:COLOR CODING

Bitrate(bpp) 1.865 2.09 2.75 4.82 5.82

PSNR our coder 34.88 35.59 38.18 42.08 44.36
[27] 17.52 26.7 32.35 37.61 N/A

(a) Santa

Bitrate(bpp) 1.022 1.31 2.2 5.36 6.62

PSNR our coder 26.41 26.91 28.83 38.32 43.72
[27] 13.96 24.95 28.55 32.63 N/A

(b) FemaleFB

and color coding with the proposed point cloud coder for

six test models is given in Table III, where the bitrate and

distortion are reported in bpp and PSNR, respectively. ‘N/A’

signifies unavailable data because the fully expanded octree

in our experiments has 12 levels only, and the final total

bitrate of Happy Buddha is less than 16.0 bpp. Due to high

randomness in position and normal data and non-manifoldness,

Acer saccarinum requires more coding bits than other models.

Similarly, due to high variation in the color of Octopus, it

requires more bits than other models to represent the color

information. To the best of our knowledge, no other work

except that of Huang et al. [28] has ever reported R-D data

on highly complex models like Happy Buddha.

Intermediate LODs of Dragon, Octopus and

Acer saccarinum are shown in Fig. 15 for visual comparison.

The same Dragon and Octopus models were considered

by Waschbüsch et al. [25] also. The first four rows show

the models reconstructed at total bitrates of 2bpp, 4bpp,

8bpp and 16bpp, respectively, while the last row shows the

uncompressed original models. As shown in this figure, a

reasonable profile already appears at 2bpp. We can achieve

very decent model quality at 8bpp. The reconstructed models

are almost indistinguishable from the original ones at 16bpp.

B. Computational Complexity Comparison

Another important advantage of the proposed coding

scheme is its low computational complexity. In addition to the

asymptotic performance analysis given in Sec. VI, we report

the measured timing data for selected models in Table IV. The

experiment was conducted on a PC with Intelr Pentiumr-4

3.20GHz CPU and 1GB RAM. The reported timing data in

this table refer to full-resolution encoding/decoding with our

unoptimized prototype research code. We see from Table IV

that models with less than a half million points (e.g. Igea,

Dragon and Octopus) can be decoded within 10 seconds while

models with around one million points (e.g. Acer saccarinum

and Happy Buddha) may take about 30–40 seconds. For very

large models such as Acer saccarinum and Happy Buddha, the

increase in decoding time seems to be super-linear with respect

to the number of points in the input model, which could be

due to the large memory requirement. Typically, the encoding

time is several times higher than the decoding time due to the

extra cost associated with the maintenance of original point

attribute data and the quantization of normal and color data.

0 5 10 15 20 25
50

55

60

65

70

75

total bits per point

P
S

N
R

/d
B

:p
o

s
it
io

n

our coder
[25]

0 5 10 15 20 25
20

25

30

35

40

total bits per point

P
S

N
R

/d
B

:n
o

rm
a

l

our coder
[25]

0 5 10 15 20 25
15

20

25

30

35

40

total bits per point

P
S

N
R

/d
B

:c
o

lo
rs

−
Y

our coder
[25]

(a) (b) (c)

Fig. 14. R-D performance comparison of the proposed progressive coders and those in Waschbüsch et al.’s work [25]: (a) position, (b) normal and (c)
Y-color-component coding for Octopus (466k).

TABLE III

R-D DATA FOR POSITION, NORMAL AND COLOR CODING USING THE PROPOSED POINT CLOUD CODER.

Position Normal Color
Total Data Dragon Acer Octopus Happy Dragon Acer Octopus Happy Octopus Santa FemaleWB

saccarinum Buddha saccarinum Buddha
bitrate type (436k) (889k) (466k) (1,088k) (436k) (889k) (466k) (1,088k) (466k) (76k) (148k)

1.0 R 0.38 0.46 0.08 0.29 0.62 0.54 0.61 0.71 0.30 0.63 0.63
D 53.28 53.02 53.15 53.88 19.99 12.95 20.08 18.91 17.45 28.28 24.73

2.0 R 0.61 0.69 0.14 0.47 1.39 1.31 0.88 1.53 0.98 1.08 1.1
D 54.35 53.46 53.99 56.07 20.73 13.23 20.32 21.22 18.34 31.96 26.38

4.0 R 1.07 1.17 0.24 1.86 2.93 2.83 1.55 2.14 2.21 2.66 2.69
D 57.76 54.51 58.33 63.35 24.13 13.70 22.83 24.52 21.69 36.67 30.38

8.0 R 3.88 2.11 1.24 3.39 4.12 5.89 3.96 4.61 2.79 4.30 4.49
D 65.78 57.98 65.21 66.84 25.64 14.86 28.09 26.07 22.40 39.95 34.33

12.0 R 5.36 5.45 2.03 4.72 6.64 6.55 4.52 7.28 5.46 5.66 5.88
D 68.81 65.06 66.40 70.38 29.06 15.07 28.63 28.64 24.55 42.59 36.88

16.0 R 8.32 6.78 2.73 N/A 7.68 9.22 5.43 N/A 7.84 6.84 7.39
D 75.17 66.78 68.40 N/A 30.44 16.43 30.80 N/A 27.49 46.52 43.83

The reader may have noticed that, for some models other

than Acer saccarinum and Happy Buddha, the relative mag-

nitudes of decoding and/or the encoding time may not be

commensurate with the relative magnitudes of the point

numbers. Although the number of points in Santa is only

about one half that in Igea, the encoding and the decoding

times for Santa are more than those of Igea. The reason is

that color data need to be encoded and decoded for Santa

but not for Igea, and significant amount of computation is

demanded by the adaptive color quantization in encoding and

the color coordinate transformation in decoding. Although

there are almost twice the number of points in FemaleWB

as in Santa, the decoding time for FemaleWB is comparable

with that for Santa. This may be related to the different bit

allocation strategies we employ for the two models. For Santa

(FemaleWB), normal resolution refinement and coding is

performed every other (every) octree level while color coding

is performed every (every other) octree level. Reconstruction

of a normal vector requires decoding of one integral index and

looking up a normal table once, while reconstruction of a color

vector requires decoding of three integral indices, searching

three 1D color representative tables and transforming the

color coordinates. This difference in the decoding complexity

of normal and color leads to similar decoding performance

of two models with significantly different sizes. As for the

encoding time, however, FemaleWB takes significantly more

time due to the complexity associated with adaptive color

quantization over significantly more points in the color space,

when compared with Santa. Although Octopus and Dragon

have comparable numbers of points, the encoding time for

Octopus is more than twice that of Dragon. This may again

be explained by the complexity in adaptive color quantization,

since we need to encode the color data for Octopus but not

for Dragon. Interestingly, their decoding time is comparable,

although more types of attributes are encoded for Octopus.

This may be explained by different point distributions or,

in other words, different numbers of octree cell subdivisions

to encode/decode in these two models. According to our

statistics, 711,658 cell subdivisions are encoded/decoded for

Octopus while 1,022,947 cell subdivisions are encoded for

Dragon.

IX. CONCLUSION AND FUTURE WORK

A generic point cloud coder was proposed to encode

attributes, including position, normal and color, of points

sampled from 3D objects with arbitrary topology in this work.

With novel and effective schemes of quantization, prediction

and data rearrangement, the proposed point cloud coder results

in a significant R-D gain and offers a computational advantage

over prior art. Another advantage of the proposed point cloud

coder is that it does not re-sample the input model. Thus, it

can be potentially used for lossless encoding, if the levels of

4bbp 8bpp 16bpp Original

Fig. 15. Models reconstructed at different bitrates.

octree expansion and normal space partitioning are sufficiently

large, and the resolution of color quantization is fine enough.

There are several ways to extend the current research. First,

we would like to design more effective predictors for normal

and color data. Currently, we predict that each child cell has

the same color and normal as its parent. However, a local-

neighborhood-based predictor may further improve prediction

accuracy. Second, for better color quantization, we may seg-

ment all color samples inside the RGB cube into several

small clusters analytically and perform adaptive quantization

TABLE IV

STATISTICS OF ENCODING/DECODING TIME IN THE UNIT OF SECONDS AND THE NUMBER IN THE PARENTHESIS REFERS TO THE NUMBER OF POINTS IN

EACH MODEL.

Igea Dragon Acer saccarinum Happy Buddha Santa FemaleWB Octopus

(123K) (436k) (889k) (1,088k) (76k) (148k) (466k)

Encoding 5.11 21.93 162.66 190.58 8.26 13.94 48.76

Decoding 4.03 9.94 33.52 41.90 5.49 5.56 9.69

separately for each small cluster for higher efficiency in data

representation. Other interesting directions of future work

include analytical bit allocation, view-dependent 3D rendering,

out-of-core compression of gigantic point clouds and efficient

decoding and rendering implementation on GPUs.

ACKNOWLEDGMENT

We would like to thank M. Waschbüsch for patiently an-

swering our questions about the work [25] and R. Schnabel for

generously sharing the experimental data that are not available

in [27].

This research was partially supported by the NSF grants

IIS-0712253, CCF- 0738401, and CCF- 0811809.

REFERENCES

[1] J. Peng, C.-S. Kim, and C.-C. J. Kuo, “Technologies for 3D mesh
compression: A survey,” Journal of Visual Communication and Image

Representation, vol. 16, no. 6, pp. 688–733, 2005.

[2] G. Taubin and J. Rossignac, “Geometric compression through topolog-
ical surgery,” ACM Trans. Graphics, vol. 17, no. 2, pp. 84–115, 1998.

[3] C. L. Bajaj, V. Pascucci, and G. Zhuang, “Single resolution compression
of arbitrary triangular meshes with properties,” Computational Geome-

try: Theory and Applications, vol. 14, pp. 167–186, 1999.

[4] C. Touma and C. Gotsman, “Triangle mesh compression,” in Proceed-

ings of Graphics Interface, 1998, pp. 26–34.

[5] P. Alliez and M. Desbrun, “Valence-driven connectivity encoding for 3D
meshes,” in EUROGRAPHICS, 2001, pp. 480–489.

[6] S. Gumhold and W. Straßer, “Real time compression of triangle mesh
connectivity,” in ACM SIGGRAPH, 1998, pp. 133–140.

[7] J. Rossignac, “Edgebreaker: Connectivity compression for triangle
meshes,” IEEE Trans. Visualization and Computer Graphics, vol. 5,
no. 1, pp. 47–61, 1999.

[8] H. Hoppe, “Progressive meshes,” in ACM SIGGRAPH, 1996, pp. 99–
108.

[9] D. Cohen-Or, D. Levin, and O. Remez, “Progressive compression of
arbitrary triangular meshes,” in IEEE Visualization, 1999, pp. 67–72.

[10] P. Alliez and M. Desbrun, “Progressive encoding for lossless transmis-
sion of triangle meshes,” in ACM SIGGRAPH, 2001, pp. 198–205.

[11] J. Li and C.-C. J. Kuo, “Progressive coding of 3-D graphic models,”
Proceeding of the IEEE, vol. 86, no. 6, pp. 1052–1063, Jun 1998.

[12] C. Bajaj, V. Pascucci, and G. Zhuang, “Progressive compression and
transmission of arbitrary triangular meshes,” in IEEE Visualization,
1999, pp. 307–316.

[13] P. M. Gandoin and O. Devillers, “Progressive lossless compression of
arbitrary simplicial complexes,” ACM Trans. Graphics, vol. 21, no. 3,
pp. 372–379, 2002.

[14] J. Peng and C.-C. J. Kuo, “Progressive geometry encoder using octree-
based space partitioning,” in Proc. of the 2004 IEEE International

Conference on Multimedia and Expo, ICME 2004, 2004, pp. 1–4.

[15] J. Peng and C.-C. J. Kuo, “Geometry-guided progressive lossless 3D
mesh coding with octree (OT) decomposition,” in ACM SIGGRAPH,
2005, pp. 609–616.

[16] Z. Karni and C. Gotsman, “Spectral compression of mesh geometry,” in
ACM SIGGRAPH, 2000, pp. 279–286.

[17] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive geometry
compression,” in ACM SIGGRAPH, 2000, pp. 271–278.

[18] A. Khodakovsky and I. Guskov, “Compression of normal meshes,” Ge-

ometric Modeling for Scientific Visualization, G. Brunnett, B. Hamann,
H. Müller, L. Linsen (Eds.). Springer Verlag pp. 189–206, 2002.

[19] S. Gumhold, Z. Karni, M. Isenburg, and H.-P. Seidel, “Predictive point-
cloud compression,” in Siggraph Sketches, 2005.

[20] S. Rusinkiewicz and M. Levoy, “Qsplat: A multiresolution point render-
ing system for large meshes,” in ACM SIGGRAPH, 2000, pp. 343–352.

[21] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva, “Progressive
point set surfaces,” ACM Trans. Graph., vol. 22, no. 4, pp. 997–1011,
2003.

[22] T. Ochotta and D. Saupe, “Compression of point-based 3d models by
shape-adaptive wavelet coding of multi-height fields,” in Eurographics

Symposium on Point-Based Graphics, 2004, pp. 103–112.
[23] J. Wu, Z. Zhang, and L. Kobbelt, “Progressive splatting,” in Eurograph-

ics Symposium on Point-Based Graphics, 2005, pp. 25–32.
[24] A. Kalaiah and A. Varshney, “Statistical geometry representation for

efficient transmission and rendering,” ACM Transactions on Graphics,
vol. 24, no. 2, pp. 348–373, 2005.

[25] M. Waschbüsch, M. Gross, F. Eberhard, E. Lamboray, and S. Würmlin,
“Progressive compression of point-sampled models,” in Eurographics

Symposium on Point-Based Graphics, 2004.
[26] M. Botsch, A. Wiratanaya, and L. Kobbelt, “Efficient high quality

rendering of point sampled geometry,” in EGRW ’02: Proceedings of the

13th Eurographics workshop on Rendering. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2002, pp. 53–64.

[27] R. Schnabel and R. Klein, “Octree-based point cloud compression,” in
Eurographics Symposium on Point-Based Graphics, 2006, pp. 111–120.

[28] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi, “Octree-based progressive
geometry coding of point clouds,” in Eurographics Symposium on Point-

Based Graphics, 2006, pp. 103–110.
[29] J. Krüger, J. Schneider, and R. Westermann, “Duodecim - a structure

for point scan compression and rendering,” in Eurographics Symposium

on Point-Based Graphics, 2005, pp. 99–107.
[30] M. Gopi, S. Krishnan, and C. Silva, “Surface reconstruction using lower

dimensional localized delaunay triangulation,” Eurographics, vol. 19,
no. 3, pp. 467–478, 2000.

[31] M. D. Berg, M. V. Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications. Springer, 1998.

[32] G. Taubin, W. Horn, F. Lazarus, and J. Rossignac, “Geometry coding
and VRML,” Proceeding of the IEEE, vol. 96, no. 6, pp. 1228–1243,
Jun 1998.

[33] M. Gervautz and W. Purgathofer, “A simple method for color quantiza-
tion: Octree quantization,” Graphics Gems I, pp. 287–293, 1990.

[34] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Communications, vol. 28, no. 1, pp. 84–95, 1980.

[35] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Academic
Press, 1999.

[36] L. Lovasz and M. D. Plummer, Matching Theory. Elsevier Science
Ltd, 1986.

[37] M. Pauly, M. Gross, M., and L. KOBBELT, “Efficient simplification of
point-sampled surfaces,” in Proc. VIS, 2002, pp. 163–170.

APPENDIX

The generalized Lloyd algorithm (GLA): GLA is em-

ployed to calculate the quantization ranges and representatives

along each dimension of the axis-aligned bounding box in the

new color frame F ′ such that the overall quantization error

is minimized along each dimension. For a given set of 1-

D color coordinates S = {s1, s2, . . . , sN}, if k quantization

representatives are to be calculated, GLA can be stated as

follows.

1) Initialization: Select randomly an initial representative

set R0 = {r1, r2, . . . , rk} from S.

2) Iterative Partition: For l = 1, 2, · · · , we perform the

following.
a) Partition S into nonoverlapping subsets

P1, P2, . . . , Pk using the nearest neighbor

rule; namely, S =
⋃

i∈{1,2,...,k} Pi, Pi ∩ Pj = ∅
for all i 6= j and Pi = {s|d(s, ri) ≤ d(s, rj),∀1 ≤
j ≤ k, s ∈ S}, where d(.) is a distance metric.

b) Compute the new centroid, ri, from all coordinates

in Pi, 1 ≤ i ≤ k, update representative set Rl with

the k new centroids and calculate the distortion

El =
1

n
Σk

i=1
Σp∈Pi

d(p, ri).

3) Stopping Criterion: The above iteration stops if either

(El−1 − El)/El < δ or l = L, where δ and L are design

parameters. Rl gives the final set of representatives.

Yan Huang Yan Huang is a Ph. D. student in the
Department of Computer Science at the University
of California, Irvine. She got her M.S. at the Uni-
versity of California, Irvine in 2003 and her B.S. in
Computer Science at the Beijing University, People’s
Republic of China in 1997. Her current research
interests include 3D data processing, interactive
walkthrough applications and realtime rendering.

Jingliang Peng Dr. Jingliang Peng received the
Ph.D. degree in electrical engineering from Univer-
sity of Southern California in 2006, the B.S. and
the M.S. degrees in computer science from Peking
University in 1997 and 2000 respectively. Currently
he is with the Department of Computer Science, Sun
Yat-sen University in China as an Associate Profes-
sor. His research topics include 3D graphics data
compression, digital geometry processing, 3D shape
analysis, enhanced reality and medical imaging.

C.-C. Jay Kuo Dr. C.-C. Jay Kuo received the B.S.
degree from the National Taiwan University, Taipei,
in 1980 and the M.S. and Ph.D. degrees from the
Massachusetts Institute of Technology, Cambridge,
in 1985 and 1987, respectively, all in Electrical
Engineering. He is Director of the Signal and Image
Processing Institute (SIPI) and Professor of Electri-
cal Engineering, Computer Science and Mathematics
at the University of Southern California (USC).
His research interests are in the areas of digital
image/video analysis and modeling, multimedia data

compression, communication and networking, and biological signal/image
processing. He is co-author of about 140 journal papers, 730 conference papers
and 9 books.

Dr. Kuo is a Fellow of IEEE and SPIE and a member of ACM. He is Editor-
in-Chief for the Journal of Visual Communication and Image Representation,
and Editor for the Journal of Information Science and Engineering, LNCS
Transactions on Data Hiding and Multimedia Security and the EURASIP
Journal of Applied Signal Processing. He was on the Editorial Board of
the IEEE Signal Processing Magazine in 2003-2004. He served as Asso-
ciate Editor for IEEE Transactions on Image Processing in 1995-98, IEEE
Transactions on Circuits and Systems for Video Technology in 1995-1997
and IEEE Transactions on Speech and Audio Processing in 2001-2003. Dr.
Kuo received the National Science Foundation Young Investigator Award
(NYI) and Presidential Faculty Fellow (PFF) Award in 1992 and 1993,
respectively. He received the Northrop Junior Faculty Research Award from
the USC Viterbi School of Engineering in 1994. He received the best paper
award from the multimedia communication Technical Committee of the IEEE
Communication Society in 2005. He is an IEEE Signal Processing Society
Distinguished Lecturer in 2006. He is also Advisor to the SMPTE (Society
of Motion Picture Television Engineers)-USC student chapter.

M. Gopi Dr. Gopi Meenakshisundaram (M. Gopi)
is an Assistant Professor in the Department of
Computer Science at the University of California,
Irvine. He got his Ph.D from the University of
North Carolina at Chapel Hill in 2001, M.S. from
the Indian Institute of Science, Bangalore in 1995,
and B.E from Thiagarajar College of Engineering,
Madurai, India in 1992. He has worked on various
geometric and topological problems in computer
graphics. His current research interest focusses on
graph algorithms for geometry processing, geometry

and topology compression, and sketch based modelling.

