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Summary

1. Plant traits are fundamental for understanding and predicting vegetation responses to global

changes, and they provide a promising basis towards a more quantitative and predictive approach

to ecology. As a consequence, information on plant traits is rapidly accumulating, and there is a

growing need for efficient database tools that enable the assembly and synthesis of trait data.

2. Plant traits are highly heterogeneous, exhibit a low degree of standardization and are linked and

interdependent at various levels of biological organization: tissue, organ, plant and population.

Therefore, they often require ancillary data for interpretation, including descriptors of the biotic

and abiotic environment, methods and taxonomic relationships.

3. We introduce a generic database structure that is tailored to accommodate plant trait complexity

and is consistent with current theoretical approaches to characterize the structure of observational

data. The over-arching utility of the proposed database structure is illustrated based on two inde-

pendent plant trait database projects.

4. The generic database structure proposed here is meant to serve as a flexible blueprint for future

plant trait databases, improving data discovery, and ensuring compatibility among them.

Key-words: ancillary data, bio-informatics, covariates, dimensional data model, eco-infor-

matics, functional biodiversity, hierarchical data structure, relational database, star-scheme

Introduction

There is a critical need for integrated analyses in ecology to bet-

ter understand andmanage Earth’s biological resources (Clark

et al. 2001). This raises significant challenges in accessing

relevant data, including the development of global data infor-

mation systems (Scholes et al. 2008), of which integrated plant

trait databases must be a keystone. Plant traits – morphologi-

cal, anatomical, physiological or phenological features mea-

surable at the individual level (Violle et al. 2007) – reflect the

outcome of evolutionary processes in the context of abiotic

and biotic environmental constraints (Grime et al. 1997;

Westoby et al. 2002; Dı́az et al. 2004; Valladares, Gianoli &

Gomez 2007). Information on a set of traits may therefore be a

more objective predictor of ecosystem dynamics and function-

ing than, for example, species identity or functional group clas-

sification (McGill et al. 2006).

Plant trait data have been used in studies covering a diversity

of topics, including plant functional ecology (Wright et al.

2004; Reich, Wright & Lusk 2007; Sperry, 2008), community

ecology (Lavorel & Garnier 2002; Ackerly & Cornwell 2007;

Messier, McGill & Lechowicz 2010), plant evolution (Moles

et al. 2005; Cavender-Bares et al. 2009), macroecological the-

ory (Enquist et al. 2007), palaeobiology (Barboni et al. 2004;

Royer et al. 2007), disturbance ecology (Wirth 2005; Diaz

et al. 2007), plant migration and invasion (Schurr et al. 2005;

Tackenberg & Stocklin 2008), conservation biology (Kahmen,

Poschlod & Schreiber 2002) and – more recently – plant geog-

raphy (Swenson & Enquist 2007; Swenson &Weiser in press).

Plant trait data are also critical for parameterizing vegetation

characteristics in models of ecosystem dynamics (White et al.

2000; Kattge et al. 2009) and individual-based models of plant

growth and mortality (Ogle & Pacala 2009; Wirth & Lichstein
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2009). Furthermore, plant traits provide complementary infor-

mation to earth observations like remote sensing (Ollinger

et al. 2008), measurements of atmospheric CO2 fluxes and con-

centrations (e.g. FluxNet1 and GlobalView2), forest invento-

ries (e.g. the US Forest Inventory3), and global biodiversity

assessments (Scholes et al. 2008).

The scientific focus determines the database requirements:

the structure of a database should be as complex as necessary

but as simple as possible, because the data compilation itself

tends to introduce its own level of complexity. Major compila-

tions of plant trait data have been, and are still being developed

for different purposes: to characterize the species–trait matrix

for specific geographical regions or selected traits, to compile

trait measurements in the context of their environmental or

experimental conditions, or to analyse correlations between a

limited number of different traits accounting for intraspecific

variability in an environmental context (for references see

Table 1). Data compilations to characterize species–trait

matrices compile one to several trait values per species and

trait, but do not need to characterize the intraspecific variabil-

ity in an environmental context in detail, as they are focussed

on the species’mean state. Compilations focussed on traitmea-

surements in the context of environmental or experimental

information account for intra- and interspecific variability, but

they do not necessarily support the correlation analysis

between different traits, as they only allow indirect deducing if

differentmeasurements had been conducted on the same object

from information about the environmental ⁄ experimental con-

text (location, plot, experimental treatment, individual, etc.).

This indirect identification easily becomes ambiguous andmay

complicate analyses of trait correlations (see Appendix S1).

Data compilations that account for the fact that different traits

have been measured on the same object are often two-dimen-

sional spreadsheets (tables) with traits and additional informa-

tion (ancillary data) in separate columns and observations in

rows. These two-dimensional spreadsheets are convenient for

the compilation of a limited number of traits and ancillary

data, but they become increasingly inconvenient as the number

of traits and ⁄or ancillary variables increase (Madin et al.

2007). This limitation leads to researchers often only including

a limited amount of ancillary information and important

details of the data collection reside in written notes or the

researcher’s memory (Michener et al. 1997).

In the past few years, the focus of plant trait research

included the characterization of ecological strategies and biodi-

versity in a quantitative, functional context as a function of the

environment and phylogenetic constraints, which provide con-

ditions for amore quantitative and predictive community ecol-

ogy (McGill et al. 2006) and for a more realistic representation

of vegetation in earth systemmodels (Lavorel et al. 2007). This

requires the compilation of several traits in combination with a

detailed characterization of their intra- and interspecific vari-

ability, trait–trait correlations, abiotic and biotic environment,

and phylogeny. Statistical tools and modelling concepts to

accomplish these demands are being developed with strong

momentum, e.g. the adaptation of hierarchical Bayesian con-

cepts to ecological analyses (Ogle&Barber 2008), or the imple-

mentation of adaptive strategies to vegetation modelling

(Scheiter & Higgins 2009), while dedicated structures for plant

trait databases have not been published so far, and ecological

Table 1. Examples of current major compilations of plant trait data

Database Reference Url

Trait–species matrix

LEDA Kleyer et al. (2008) leda-traitbase.org

BIOPOP Poschlod et al. (2003) uni-oldenburg.de/landeco/Projects/biopop/biopop_en.htm

BiolFlor Klotz, Kühn, & Durka (2002) ufz.de/biolflor

ECOFLORA Fitter & Peat (1994) ecoflora.co.uk

SID data.kew.org/sid

InsideWood insidewood.lib.ncsu.edu

PLANTSdata Green (2009) bricol.net/downloads/data/PLANTSdatabase

Wood Density Chave et al. (2009)

BROT Paula et al. (2009) uv.es/jgpausas/brot.htm

Traits in their environmental or experimental context

ECOCRAFT Medlyn & Jarvis (1999)

MARIWENN Ollivier, Baraloto, & Marcon (2007) ecofog.cirad.fr/Mariwenn

ALTA Lavorel et al. (2009)

VISTA Garnier et al. (2007)

ArtDeco Cornwell et al. (2008)

Intraspecific variability and trait–trait correlation in an environmental or experimental context

GlopNet Wright et al. (2004) bio.mq.edu.au/~iwright//glopian.htm

CORDOBASE Dı́az et al. (2004)

Meta-Phenomics Poorter et al. (2010)

FET bgc-jena.mpg.de/bgc-organisms/pmwiki.php/Research/FET

TRY try-db.org

1FluxNet: http://daac.ornl.gov/FLUXNET/index.cfm.

2Globalview: http://www.esrl.noaa.gov/gmd/ccgg/globalview.

3US Forest Inventory and Analysis National Program: http://

www.fia.fs.fed.us.
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researchers had to develop them for each individual applica-

tion.

The need for integrated analyses poses another requirement

for the development of database structures: interoperability –

the seamless merging of disparate information from different

databases into an integrated form for analysis. Here, ontolo-

gies, formal models that use mathematical logics to define con-

cepts and their relationships (Madin et al. 2008), provide a

mechanism for creating a common computer-interpretable

basis for interoperability. Ontologies have been successfully

used in genetics, microbiology, and medicine, especially when

used for interoperability among different databases and orga-

nizations. In ecology, where data structures are more complex,

framework ontologies have only recently been laid out, which

show considerable overlap (Madin et al. 2008). Consistency

with these ontology schemata should ensure compatibility

between different datasets and therefore be another require-

ment for future trait databases. However, simultaneously

accounting for the various aspects of plant traits and the need

for database interoperability poses a new challenge to the

development of plant trait databases.

In the following, we analyse the structure of plant trait data

to derive the key requirements for the development of plant

trait databases (‘entity-relationship analysis’, Chen 1976).

Based on this we propose a generic structure, which is sup-

posed to serve as a blueprint to help ecologists develop plant

trait databases according to their individual needs. Finally, we

illustrate consistency with current framework ontologies and

improvements in access and interoperability of disparate plant

trait data by two recently developed trait databases using the

generic database structure presented here.

Entity-relationship analysis of plant traits

PLANT TRAITS ARE A HETEROGENEOUS GROUP OF

DATA WITH LOW DEGREE OF STANDARDIZATION

The term ‘plant trait’ is used in a wide range of contexts and

there have been numerous attempts to define, conceptualize

and categorize plant traits. Violle et al. (2007) propose a gen-

eral definition of plant traits: ‘Any morphological, physiologi-

cal or phenological feature measurable at the individual level,

from the cell to the whole-organism level,…’ According to this

definition, plant traits may characterize anything from a leaf

dark respiration rate to a maximum plant height, referring to

an organ vs. the whole plant, measured with different instru-

ments (e.g. gas exchange instrument vs. hypsometer), reported

in different units (e.g. lmol CO2 m
2 s)1 vs. m), and with differ-

ent modes of standardization (e.g. at 25 �C in the dark vs.

mean of tallest 5% of individuals ever measured), and so on.

There have been substantial efforts to develop standardized

trait definitions and measurement protocols, e.g. Cornelissen

et al. (2003) and in the context of the LEDA project (Knevel

et al. 2003; Kleyer et al. 2008), but these standards are only

available for a limited set of traits, are often ignored, and do

not help when it comes to the vast literature dating prior to

2003. Some traits cannot bemeasured but need to be estimated

by fitting models to raw data (parameter-based traits, e.g.

Vcmax,25, the maximum carboxylation rate at 25 �C or parame-

ters defining seed dispersal kernels). In summary, plant traits

can be seen as a heterogeneous group of information with rela-

tively low degree of standardization (Table 2).

VARIABIL ITY AS SIGNAL AND NOISE IN COMPARATIVE

TRAIT ANALYSIS : THE NEED FOR ANCILLARY DATA

Understanding and quantifying the variability of plant traits at

the species or functional group level in response to changes in

environmental drivers are of utmost importance in global

change research and evolutionary ecology. Traits that are

treated as qualitative, like leaf habit (e.g. needle-leaved, broad-

leaved) or wood porosity type (e.g. ring-porous, diffuse-

porous) are often nearly invariant within species, even though

in some cases they aremuchmore variable than studies suggest

(e.g. flower colour, dispersal mode). Traits that are treated as

quantitative, like leaf mass per area or leaf dry matter content

vary substantially between and within individuals of a species

(Messier, McGill & Lechowicz 2010). This intraspecific trait

variability can optimize plant performance and fitness in

response to abiotic and biotic constraints and is the conse-

quence of genetic variation and phenotypic plasticity, the latter

being the environmentally contingent trait expression of a

given genotype (Fig. 1). The capacity for expressing trait vari-

ability may differ between species and developmental stages

and may be constrained by trade-offs between different traits

(Valladares, Gianoli & Gomez 2007). This variability may be

the signal of interest, but may also represent unwanted ‘noise’

in a comparative analysis (Fig. 1).

For qualitative traits, which are almost invariant at the spe-

cies-level (e.g. wood porosity type), we can assign each species i

its unambiguous trait value hi. For quantitative traits with a

low degree of variability (e.g. density of cell walls), it is often

sufficient to calculate themean trait value �hi if several measure-

ments per species are available. In this case �hi is a stochastic (or
uncertain) quantity, and this uncertainty should be propagated

into a comparative analysis. However, the majority of quanti-

tative traits, including many of the most relevant traits for

ecosystem functioning, are strongly modulated by the environ-

ment. In this case, the absence of quantifying the variability in

the trait substantially reduces the information content in the

data and can lead to inference problems (e.g. ecological fallacy,

Robinson 1950). Using the mean value will yield an unrealistic

point estimate contingent to the particular individuals and

localities that happen to be represented in the dataset (Albert

et al. in press). Here, we need to model the variable trait in

response to ‘driving variables’ (covariates). For example, esti-

mates of maximum photosynthesis rates should account for

the influence of irradiance, temperature, water availability,

and air humidity during the measurement period as well as

plant and leaf developmental stage (Kattge & Knorr 2007).

The result is a standardized rate hi*, i.e. a predicted rate at

some reference state of the covariates (e.g. maximum photo-

synthesis at light saturation and 25 �C), coefficients that quan-

tify the influence of the respective covariates (variability

A generic structure for plant trait databases 3

� 2010 The Authors. Journal compilation � 2010 British Ecological Society, Methods in Ecology & Evolution



coefficients), andmeasures of their uncertainty and covariance.

Comparing between species requires a standardization of

traits, which in turn requires ancillary information about the

environmental context, the type and amount of which depends

on the trait and its inherent variability.

Moreover, ancillary data are often used for filtering, classifi-

cation, and for accounting for data heterogeneity (Table 2).

For example, filter variables may be used to tailor the dataset

to the research questions. An analysis only interested in the

traits of mature trees under field conditions might filter the

data by ‘tree age’ and ‘growth environment’. Ecological data

are inherently stochastic and often structured by processes

(e.g. ‘random effects’) that do not necessarily reflect the

impacts of treatments or covariates of interest. For example, in

a study on specific leaf area, the data may come from 15 differ-

ent laboratories and these laboratories may have employed

slightly different methods. In this case, it is not desirable to esti-

mate separate parameters for each laboratory, and yet wemust

account for this extra variability to obtain accurate parameter

estimates for the quantities of interest. Thus, providing infor-

mation on laboratories or research groups allows one to treat

them as random effects. It should be noted that traits might

themselves be used for filtering, classification and grouping of

another trait. For example, the variable ‘photosynthetic path-

way’ may be used as a grouping variable in a study on leaf

nitrogen concentrations or as a response variable in a study on

the distribution of photosynthetic pathways.

TRAIT CORRELATIONS AND THE IDENTITY PRINCIPLE

Correlations between traits are important as they often reflect

optimality principles (Wright et al. 2004; Reich et al. 2006,

2008) and allow us to draw conclusions about the underlying

evolutionary forces (Reich et al. 2003). Modellers employ

them to exclude non-reasonable parameter combinations

(Moorcroft, Hurtt & Pacala 2001) and for improved parame-

terization (Kattge et al. 2009). Most traits involved in these

correlations and trade-offs vary from organ to organ, from

individual to individual, and they covary over time in response

to ontogenetic processes and environmental fluctuations.

Correlations will appear progressively weaker if the different

traits have been measured at different points in time or on

Table 2. Common types of data in plant trait databases, their sources and application in ecological research

Definition Example Typical sources Application

Categorical –

phylogenetic

Taxonomical descriptor Species

Genus

Floras

Species monographs

Grouping variable

Random or fixed factor

in mixed effects model

Categorical –

nominal

Qualitative feature that

cannot be expressed

numerically

Photosynthetic pathway

Composite leaves

Deciduous

Weed

Animal dispersed

Floras

Species monographs

Physiological literature

Trait databases

Grouping

Definition of plant

functional types

Categorical –

ordinal

Qualitative feature that

describes a perfor

mance intensity

relative to other plants

Shade tolerance

Frost tolerance

Resprouting capacity

Literature on plant

indicator values

Specialized databases

Applied sciences

(forestry, agriculture)

Grouping

Classification

Covariate

Definition of plant

functional types

Categorical –

environment

Qualitative feature

describing a plant’s

growth environment

Slope exposure

Growth chamber

Soil classification

Vegetation descriptions

Original publications

Filtering

Classification

Random factor in

mixed effects model

Quantitative –

environment

Quantitative measure

describing a plant’s

growth environment

Annual precipitation

Fertilizer application

Clay content

LAI of community

Original publications

Climate ⁄ Soil databases
Experimental setup

Covariate

Driver in model

inversion

Quantitative

plant state

Quantity characterizing

the (often transient)

state of a plant

Height

Growth rate

Specific leaf area

Original publications

Inventories

Covariate

Model validation

Quantitative

plant trait

Quantity characterizing

a typical (non-tran

sient) feature of a tax

onomic unit (e.g.

family, species)

Maximum height

Specific leaf area of sun

leaves

Stem wood density

Original publication

Trait databases

Dependent variable

Covariate

Model parameter

Parameter-based

trait

Statistical parameter of

a function relating a

plant state to an

environmental variable

Vcmax

Rate constant of leaf

litter decomposition

Q10 of leaf respiration

Original publications

Meta-analyses

Parameter in process

model
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different organs of the same individual, different individuals of

the same population, etc. (Fig. 2). Keeping track of the identi-

ties of the objects and the temporal context associated with a

trait measurement (identity principle) within a database is

therefore important if one wishes to control for the ‘degree of

relatedness’ when analysing correlations.

HIERARCHICAL STRUCTURE

The objects from which traits are measured are often nested

in an observational hierarchy (Madin et al. 2007; Messier,

McGill, & Lechowicz 2010). Each level of the hierarchy can be

characterized by a unique set of traits and ancillary data that

provide important context for other levels in the hierarchy

(Fig. 2). An example is the hierarchy of ecological organiza-

tion: the leaf is part of a branch, characterized by its length and

particular position in the tree canopy; the branch is part of a

tree, which may be healthy or damaged, young or old, and so

on; the tree is part of a stand, which could be, for example, an

uneven-aged mixed or mono-specific even-aged stand. The

stand is part of a larger landscape unit, which may be charac-

terized by shallow or deep soils. Since all the levels of this eco-

logical hierarchy are connected, the influence of landscape (or

site) conditions propagates along the hierarchy from the level

of the stand to the individual leaf and cells.

TRAIT INFORMATION IS ONLY AS GOOD AS THE

RESPECTIVE TAXONOMIC INFORMATION

Finally, the trait information is only as good as the taxonomic

information. This poses an additional challenge to the develop-

ment of a database structure. One problem that is very difficult

to resolve is the mis-identification of species. Here, the collec-

tion of specimen of each studied individual may help and the

plant trait database should facilitate the link from species name

Stand covariates (Cs) 
(e.g. stand structure, disturbance regime) 

Ci1 

(e.g. size, competitive status, vitality, …) 

Ci2

Co2

Tree-level covariates ( Ci)

Cs1

Co3 SLA 
Amax 

N%

Ct(SLA) 

Ct(Amax) 

Ct(N%) 

Organ-level covariates C0 

Co1

(e.g. position, damage, …) 

Trait-specific  
covariates (Ct)

(e.g. method, duration, …) 

Density 

N%

Ct( ) 

Ct(N%) 

Stand identity To4

To3

To2

Organ 
identity

Whole-plant identity 

To1

Location covariates (Cl) 
(e.g. soil type, climate, geomorphology) 

Cl1

Fig. 2. Representation of the identity principle and hierarchical structure. T, vector of traits. The example traits are specific leaf area (SLA), nitro-

gen concentration (N%), maximum photosynthesis rate (Amax), and wood density (q). C, vectors of covariates (or ancillary data). Covariates

either characterize trait measurements directly (trait covariates, Ct) or the hierarchical context of trait measurements, i.e. organ covariates (Co),

individual tree (or plant) covariates (Ci), stand covariates (Cs), location covariates (Cl) and time covariates (not shown). This scheme allows the

measured objects to be unambiguously characterized and various types of identities specified (examples in italics).

Trait observation
no variability

Trait observation 
low variability 

Trait observation 
high variability 

Aggregation Modeling 
plastic response 

Mean trait value i
Standardized  
trait value i*

Phylogeny Phylogeny Phylogeny 

Comparative trait analysis using i, i, and i*

Covariates 

Frequency

i

_ 

_ 

Fig. 1. Different levels of variability of plant traits and statistical

treatment. No variability: qualitative traits invariable at the respec-

tive level of phylogeny (e.g. leaf habit at species-level); each species i is

assigned its trait value hi. Low variability – quantitative traits with a

low degree of variability (e.g. lignin content of bark): calculate the

mean trait value �hi from several measurements for species i. High var-

iability – quantitative traits with a high degree of variability (e.g. pho-

tosynthetic capacity): model the plastic response in relation to factors

that affect it (cf. ‘covariates’); the result, hi*, is the standardized (pre-

dicted) trait value at a reference state of the covariates. Finally, a com-

parative analysis requires phylogenetic (or taxonomic) information

as a predictor or grouping variable. Frequency indicates the relative

occurrence of the different types of traits: most traits are characterized

by a high variability and only a few show no variability.

A generic structure for plant trait databases 5

� 2010 The Authors. Journal compilation � 2010 British Ecological Society, Methods in Ecology & Evolution



to the respective specimen. Additional problems are different

species concepts used by different floras, the synonymy of plant

names, and the ongoing development and updating of species

names and the deep taxonomy (Berendsohn&Geoffroy 2007).

Assuming a good representation according to the current taxo-

nomic concepts, what happens to the database 6 months,

2 years, a decade from now, when many of those species have

been lumped, split, renamed, synonymized, etc.? Names are

not static. The generic database structure cannot solve these

problems, but it has to provide the respective concepts to

enable the ecologist to treat these problems appropriately, e.g.

by introducing a versioning system and facilitating links to

specimen compilations.

A generic structure for plant trait databases

As a consequence of the above arguments, a plant trait data-

base needs to provide the appropriate structure to (i) character-

ize each trait entry in detail, which is necessary due to the

heterogeneity and relatively little standardization of plant

traits, and (ii) place it in its specific biotic and abiotic context,

accommodating ancillary data, the degree of relatedness of

different measurements, inherent hierarchical structures and

taxonomic specifications.

CHARACTERIZ ING TRAIT AND ANCILLARY DATA AS

MEASUREMENTS ON SPECIF IC OBJECTS

Despite their heterogeneity, all plant trait data can be charac-

terized as being measurable characteristics of specific objects:

e.g. the length of a leaf or the height of a plant (cf. Madin et al.

2007). This is also true for ancillary data, like latitude and lon-

gitude of a location or the name of the person that has con-

ducted the measurements. In this context, even the taxonomic

classification can be addressed as measurable characteristics of

specific objects: e.g. ‘Quercus robur L.’ is the binomial expres-

sion of the characteristic ‘species’, like ‘tree’ is an expression of

the categorical trait ‘growth form’. In terms of data structure,

there is hence no principle difference between trait data and

ancillary data, including the taxonomic specification, and we

propose to treat them identically as measurements of specific

objects (cf.Madin et al. 2007).

MEASUREMENTS ARE AGGREGATED TO

OBSERVATIONS

All measurements that have been taken on the same object for

the same time are directly related to each other. We consider

this aspect of differentmeasurements being ‘related to the same

object and time’ as the most important relationship among

traits and between traits and ancillary data (the identity princi-

ple). We therefore propose to directly keep track of this rela-

tionship in the database and link all individual measurements

taken at the same time on the same object to a unique ‘observa-

tion’ identifier.

In accordance with the hierarchical structure of traits and

ancillary data we propose observations to be hierarchically

nested, and influences on a higher level of the hierarchy, like

stand, are propagated along the hierarchy to the lower levels,

like individual leaf and cells (Fig. 2). Due to this hierarchically

nested structure, different observations provide context for

each other, and thus facilitate the comprehensive description

of abiotic and biotic environmental conditions.

THE DATABASE STRUCTURE

The enfolding database structure is characterized by two key

aspects: ‘measurement’ and ‘observation’ (Fig. 3). Measure-

ment integrates all information directly related to a specific

measurement, like name of trait or ancillary data, measure-

ment standard, value, unit and precision. Relating all of this

information to a measurement facilitates the detailed charac-

terization of each database entry of a trait or ancillary data.

The aggregation of different measurements to observations

facilitates the realization of the most important relationship

between traits and ancillary data: ‘being related to the same

object in time’. Finally, observations are hierarchically nested,

which facilitates the comprehensive characterization of the

abiotic and biotic context of each measurement, accounting

for the degree of relatedness.

1:n 

1:n 
n:1 

n:1 

1
n

Measurement standard
Measurement standard key 
Name 
Unit 

Measurement 
Measurement key 
Observation key 
Characteristic key 
Measurement standard key 
Value 
Precision

Entity 
Entity key 
Entity name

Characteristic 
Characteristic key 
Name 

Observation 
Observation key
Higher level observation key  
Entity key 

Fig. 3. Core tables (boxes) and relationships (connectors) of the proposed generic structure for plant trait databases: a dimensional data model

realized in a relational database. ‘Observation’ is the central table of this conceptual framework, indicated by the 1:n (one to many) relationship

betweenObservation andMeasurement table: each observation can be characterized bymeasurements in n dimensions (traits and ancillary data).

Each measurement is characterized by a value, precision (if appropriate), characteristic, and a measurement standard. Traits and ancillary data

are defined in the Characteristic table.Measurements on the same object in time are aggregated to an observation. Observations are embedded in

a hierarchy of observations on different levels, which is realized via the link within the observation table. Each Observation is related to a real

world object, here called entity. No specification into traits, ancillary data or taxonomy here. In this generic representation of the database struc-

ture, all of these data are identically treated as measurable characteristics of specific objects. Bold italics: primary key (uniquely identifies each

row in a table); italics: foreign keys (a key stored in one table which refers to a primary key in another table, used to establish a relationship

between two tables); plain text: data entries.
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Due to the aggregation of different measurements to obser-

vations and their hierarchical nesting, observation becomes the

central element of the database structure. Such a centralized

structure is called a ‘dimensional’ database, because the central

element is characterized by attributes in different dimensions

(Kimball &Ross 2002). In our case, the central element ‘obser-

vation’ is characterized bymeasurements of traits and ancillary

data, where each trait and each kind of ancillary data represent

a dimension, such that this results in a database structure with

n dimensions. Dimensional databases with one central element

are called ‘star-schema’ (Kimball &Ross 2002).

Realized as a relational database, the dimensional structure

is appropriate to compile diverse data, like plant traits and

their ancillary data, because a relational database is highly flex-

ible and can be easily adapted to the required level of complex-

ity (e.g. adding new dimensions or subcentres to characterize

the measurements). Finally, the proposed generic structure for

plant trait databases can be characterized as a hierarchically

nested relational-dimensional database structure.

Two example databases using the generic
database structure

The proposed generic database structure, designed to be a

blueprint for the development of plant trait databases for indi-

vidual purposes, has so far been used in the development of

three plant trait databases. Here, we will present two contrast-

ing databases – the Functional Ecology of Trees (FET) data-

base and the TRY database – and illustrate how the generic

database structure ensures data interoperability.

The FET4 database (Fig. 4) was collaboratively developed

to address questions in the field of comparative trait research,

functional biodiversity, and biogeochemical and demographic

modelling. It was designed to compile data for a wide range of

tree physiological, morphological, anatomical, and life-history

traits accompanied by a wide range of ancillary data related to

several hierarchical levels of organization (organ, individual,

forest stand, site), with the goal to disentangle phylogenetic,

environmental, and disturbance-related influences on plant

trait values (Kattge et al. 2009; Kutsch et al. 2009). Data are

primarily derived from the literature (data summaries) and

direct experiments (raw data). The database supports the

standardization of numerical and textual data during manual

data entry.

The TRY5 database (Fig. 5) is a communal effort to merge

information about ecological traits of plant species from differ-

ent existing datasets at a global scale (Lavorel et al. 2007). The

specific traits, ancillary data and formats of data to be com-

piled within the TRY database were not known during the

development of the database. The objective was therefore to

design a database structure that is flexible enough to compile

data for any plant trait and ancillary data contributed in any

format without compromising the integrity of the contributed

data.

SPECIF IC ASPECTS OF THE TWO DATABASES

The FET database provides a modular organization of tem-

plates (groups of tables with preset formats) to compile trait

and context-specific data. Each dimension of the traits and

their context is characterized by a separate template. Themod-

ular organization conserves the transparency of the database

and allows for exchanging or adding of templates. For exam-

ple, it is easy to add a new trait with its own set of trait-specific

ancillary data. The users can therefore easily adapt the data-

base according to their specific needs and it still is compatible

with other users’ databases. The modular organization facili-

tates highly standardized data input via specific entry forms.

These entry forms support the consistent design of experiments

and extraction of data from literature sources and facilitate the

standardized manual input of data into the FET database. An

inbuilt hierarchical structure promotes the quantification of

plant traits or ancillary data at the prescribed levels of organs,

individuals, stands and sites (Figs 1 and 5 and Appendix S2).

There are sets of ancillary data at each of these levels, which

may be continuous variables or binary, categorical, or ordinal

variables, in which case, the possible entries are predefined.

The major requirement of the TRY database was to respect

the integrity of the contributed data, such that they can be

reproduced from the database in their originally contributed

form. This requirement was addressed through the use of an

automated algorithm for importation of the original data val-

ues with minimal manual interference. By assembling numer-

ous databases, the TRY project revealed a vast heterogeneity

of the contributed trait information. For example, up to six dif-

ferent units were provided per trait; 138 different categories

were provided for the categorical trait plant growth form; leaf

toughness was provided as three different measures and as a

categorical trait; and, identical traits comewith different names

(e.g. specific leaf area and leaf mass area). The database struc-

ture proved to be appropriate to deal with this heterogeneity

and to support its standardization.

TREATMENT OF TAXONOMIC SPECIF ICATION

A separate ‘Species’ table is used in FET and TRY to organize

the taxonomy. This table contains fields for the ‘original spe-

cies name’ and ‘accepted species’ identifier. An entry in the field

‘original species name’ consists of the binomial species name,

which should be accompanied by the authority and, if possible,

a reference to the regional flora. The original species name is

on the one hand linked via the observation table to the data

source, which is either a literature source or a specimen, and on

4The FET database is being collaboratively developed by the Organ-

ismic Biogeochemistry group at theMax-Planck-Institute for Biogeo-

chemistry in Jena (Germany), the Department of Special Botany and

Functional Biodiversity Research at the University of Leipzig (Ger-

many) and the Ogle-Labat the University of Wyoming, Laramie

(USA).

5The TRY initiative (try-db.org) has been developed under the frame-

work of the International Geosphere–Biosphere Programme (IGBP)

in the context of the Fast-Track Initiative ‘Refining Plant Functional

Classifications for Earth SystemModelling’ (http://www.igbp.kva.se/

page.php?pid=369).
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the one hand to an accepted species identifier, which is linked

to an official plant name index, e.g. IPNI.6 Conserving the

originally contributed species name and linking it to accepted

species lists ensures that the species classification can be

adapted to changes of the official taxonomy without loosing

the original information.

INTEROPERABIL ITY OF DIFFERENT DATASETS

Interoperability ensures that information – data and their rela-

tionships – from different datasets can seamlessly be merged

for subsequent integrated analysis. Ontologies provide a for-

malmechanism for defining terms and their relationships using

mathematical logic, to facilitate the interoperability of different

datasets. One ontology scheme that is gathering support in

ecology and environmental science is the Extensible Observa-

tion Ontology (OBOE, see Appendix S3), developed by the

SEEK project.7 Like in the generic database structure pre-

sented here, inOBOE the information content of observational

data is structured along ‘Measurement’ and ‘Observation’:

measurements are aggregated to observations, which in turn

are hierarchically nested. The generic database structure

proposed here and the two databases presented are therefore

consistent with this general structure of the OBOE ontology

scheme, which facilitates interoperability, the seamlessmerging

of disparate information from different databases into an inte-

grated form for analysis (details see Appendix S4).
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Fig. 4. Simplified relationships in the FET database. All information is linked through the central Observation table. Measurements are sepa-

rated into traits (Trait data andMeasurement standard tables) and tables providing information about the context of trait measurements with an

inbuilt hierarchical structure (Entity, Site, Treatment, Taxonomy ⁄ phylogeny, and Source information). For each trait value entered in the trait

measurement tables, information is entered, when available, on study site details, manipulative treatments and other study ⁄ sampling informa-

tion. The trait data are linked to this information and a species, which is linked to external taxonomy datasets, to a position in the phylogenetic

relationships, and to categorical traits that are invariable within species. Each box represents a core table in the database, and the current num-

bers of fields in each table are indicated.

6IPNI: International Plant Names Index, http://www.ipni.org.

7Science Environment for Ecological Knowledge (SEEK): http://

seek.ecoinformatics.org.
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Discussion

In this article, we analysed the inherent structure of plant trait

data to determine an appropriate database structure for cap-

turing existing and future plant trait data. This entity-relation-

ship analysis uncovered several key aspects that must be

considered to develop successfully an appropriate and interop-

erable database structure: plant traits are a heterogeneous

group of data with a relatively low degree of standardization; a

wide range of equally heterogeneous ancillary data are

required to characterize the biotic and abiotic environment

and the measurement methods; it is important to keep track of

object identities in order to specify the ‘degree of relatedness’

relevant for the analysis of trait correlation, of the hierarchical

structure of biological systems and of the taxonomy, which is

constantly under revision. The resulting generic database struc-

ture for plant trait data followed three principles: (i) traits and

ancillary data are treated identically as measurements of

objects, (ii) measurements are aggregated to observations, and

(iii) observations are hierarchically nested along the hierarchy

of biological integration. These principles resulted in a hierar-

chically nested relational-dimensional database structure.

Finally, we illustrate the realization of this structure with two

plant trait databases developed for different purposes, and we

show that the new structure is consistent with the existing

ontology schemes in ecology, which facilitate interoperability

among plant traits and other ecological and environmental

databases. The realized databases may be very detailed (e.g.

FET) or comparatively simple (e.g. TRY). However, the

underlying database structure is straightforward and is based

on a dimensional datamodel that facilitates easy and unambig-

uous data entry, queries, and data quality assurance (Kimball

&Ross 2002).

The database software needs not be specified, because the

structure can be implemented in any software that facilitates

the construction of a relational database. The appropriate soft-

ware depends on user preference and application, and will

probably depend on whether the database shall facilitate

Internet-based user access. The expected size of the database

will in most cases not be an issue, as all common database

programmes provide sufficient storage capacity for plant trait

databases. Compared to other ecological data streams, the

quantity of plant trait and ancillary data to be stored is

relatively small (e.g. 750 megabytes in the case of the TRY

data base, realized in Microsoft Office Access 2007, ver-

sion 12.0.6535.5005; Microsoft Corporation, Redmond,

Washington, USA), because the individual trait measurements

are often manual, and therefore relatively time-consuming and

expensive. This is in contrast to other ecological databases, e.g.

remote sensing or eddy covariance data, which contain data

that are sampled automatically and may be weighed in the

order of giga- to terabytes.

We are not aware of any other trait database that simulta-

neously accounts for (i) different measurements being taken on

the same object and (ii) the hierarchical nesting of information.

Two-dimensional spreadsheet datasets often account for

different measurements being taken on the same object (obser-

vation), which obviously has been identified by ecologists as

being a pivotal characteristic of plant trait data. Yet, spread-

sheet datasets are limited with respect to the number of

different traits and ancillary data, and the representation of the

hierarchical structure. During the transition from two-dimen-

sional spreadsheets to a relational database the characteristic

‘being measured on the same object’ gets lost if the relational

database does not provide the respective structure.

IDENTICAL TREATMENT OF TRAITS, TAXONOMY AND

ANCILLARY DATA

The proposed generic structure for plant trait databases is

not defined explicitly in terms of plant traits, taxonomy and

ancillary data, but it is based on measurements of objects.

Traits and covariates are only defined a posteriori as specific

characteristics of the measurements. This is a major advantage

because only in some cases are traits well defined (Cornelissen

et al. 2003), while in most cases their definition is either vague

or deliberatelymodified to address a specific scientific question.

For example, in the literature, leaf nitrogen content could be

reported as the average leaf nitrogen content of all leaves of an

individual plant, the nitrogen content of a single leaf, the nitro-

gen content of a single leaf per dry mass or leaf area, the nitro-

gen content per leaf area of a sun-exposed leaf, or the nitrogen

1:n 
n:1 

1:n 

1:n 

n:1 Dataset 
Dataset key 
Dataset 
Contributor 
Reference 

Species 
Species key 
Accepted species key 
Original species name 

Characteristic 
Characteristic key 
Characteristic name 
Characteristic definition 
Characteristic standard unit 
Measurement standard 

Measurement 
Measurement key 
Observation key 
Characteristic key
Original value 
Original precision 
Original unit 
Standardised Value 
Standardised Precision 

Observation 
Observation key 
Dataset key 
Species key 

Dataset characteristic 
Dataset characteristic key 
Dataset key 
Characteristic key 
Original characteristic name 
Original characteristic details 
Permission status 

Fig. 5. Core tables, relationships and data entry-types of the TRY database (each box represents a table). Each observation is characterized by

one to several measurements, the respective dataset and the name of a species. Eachmeasurement is linked to a characteristic (either trait or ancil-

lary data). The measurement standard is specified in the Characteristic table. In the DataSet table each contributed dataset is at least character-

ized by its name and the names of contributors. The additional DataSet Characteristic table facilitates the import of the original name of each

trait and ancillary data, and a specific characterization of measurement details for each dataset. The automated import of contributed data as

original entries realizes data integrity (original value, original precision, original unit, original species name and original characteristic name).

Standardized values and species names are added to the original entries.
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content per leaf area of a sun-exposed leaf during the peak

growth period. The compilation of the individual measure-

ments together with key ancillary data exactly describing the

measurement provides the opportunity to make this decision

and select the relevant data a posteriori, as dictated by the eco-

logical question and subsequent statistical analysis (see also

Appendix S5: The representation of parameter-based traits).

The transparent aggregation of measurements to observations

and the hierarchical structure of observations avoids duplicat-

ing information and allows tracking post-sampling data

processing (Ellison et al. 2006).

Even the treatment of taxonomy fits into this concept of

‘being ameasurement of a specific object’, although the classifi-

cation systems are not always unambiguous (e.g. synonymy),

different classification systems exist in parallel and are overlap-

ping (regional floras, global name indices), and these classifica-

tion systems are constantly changing (Berendsohn & Geoffroy

2007). Here, the compilation of the original species name

related to an accepted species name has proven convenient and

flexible. The original names are unambiguously linked via the

Observation table to the data source (literature source, speci-

men), while the accepted names are linked to ‘official’ lists of

species names, and thus make use of the treatment of syn-

onyms in these lists and are able to follow changes. Dealing

with species information in a few specific tables is a major

advantage over using species names independently in several

separate spreadsheets. Thus, the database structure supports

the adaptation of taxonomy within the database to keep track

with changes in external taxonomy sources.

DEFIN IT ION OF OBSERVATION: WEAKNESS OR

STRENGTH?

The central element of the proposed database structure is the

observation. An observation is defined by measurements on

the same object in space and time. Deciding which measured

values belong to the same observation is flexible and can be

subjective. The decision to be made is: what is to be considered

an object in space and time? Two measurements on one leaf

may be considered to belong to the same or different observa-

tions, depending on the perspective of the researcher (they will

still be related on a higher level of the hierarchy). This subjec-

tivity does not present a weakness but a strength of this

approach, because the decision of what is to be considered a

group of information that belongs to the same observation is

most vivid at the time of data acquisition. Thus, the aggrega-

tion of measurements to observations already constitutes a

knowledge component (Baumeister et al. 2007) stored in the

database and ready to be reused by later projects.

Due to the separation of measurements, the aggregation of

measurements to observations and the hierarchical arrange-

ment of observations, the generic database structure realized in

an relational database is extremely flexible, and facilitates the

consistent compilation of data on higher levels of the biological

organization, e.g. community-level data, in combination with

plant trait data. This flexibility in consistence with the major

ontology schemes (e.g. OBOE)makes the generic structure not

only appropriate for plant trait databases, but also applicable

in other contexts (e.g. databases to compile data for scientific

projects in general), where different kinds of data are to be

compiled in combination with several ancillary data. First

applications of the generic database structure for such project

databases are currently being tested.

Conclusions and perspectives

Based on a comprehensive examination of plant traits with

respect to data compilation, we have developed a generic

dimensional database structure that follows three key princi-

ples: (i) traits and ancillary data are identically treated as mea-

surements of specific objects; (ii) measurements related to the

same object and time are aggregated to observations; and (iii)

observations are hierarchically nested from organ to ecosys-

tem. This database structure is consistent with main ontology

frameworks (e.g. OBOE) that are currently being developed in

ecology for improving data interoperability among research

efforts. We illustrate the over-arching utility of the proposed

database structure using two independent plant trait database

projects. The generic database structure will serve as a flexible

blueprint for future plant trait databases, improving data dis-

covery, and ensuring compatibility among them.
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