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Abstract

Extracting important features from ultra-high dimensional data is one of the primary tasks in 

statistical learning, information theory, precision medicine and biological discovery. Many of the 

sure independent screening methods developed to meet these needs are suitable for special models 

under some assumptions. With the availability of more data types and possible models, a model-

free generic screening procedure with fewer and less restrictive assumptions is desirable. In this 

paper, we propose a generic nonparametric sure independence screening procedure, called BCor-

SIS, on the basis of a recently developed universal dependence measure: Ball correlation. We show 

that the proposed procedure has strong screening consistency even when the dimensionality is an 

exponential order of the sample size without imposing sub-exponential moment assumptions on 

the data. We investigate the flexibility of this procedure by considering three commonly 

encountered challenging settings in biological discovery or precision medicine: iterative BCor-SIS, 

interaction pursuit, and survival outcomes. We use simulation studies and real data analyses to 

illustrate the versatility and practicability of our BCor-SIS method.
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1. INTRODUCTION

Ultra-high dimensional data arise from a variety of applications; analyzing such data poses 

major computational and statistical challenges to modern statistical inference. For instance, 

many studies in precision medicine search for risk factors among various types of data such 

as clinical, genomic and protein data for complex diseases. Many penalized variable 

selection techniques have been introduced to identify a small set of ‘significant’ factors 

related to disease status. Such penalized variable selection methods include the least 

absolute shrinkage and selection operator (LASSO, (Tibshirani, 1996)) and smoothly 

clipped absolute deviation (SCAD, Fan and Li (2001)), among many others. However, most 

of these methods suffer from the curse of dimensionality due to diverging spectra and noise 

accumulation in the ultra-high dimensional feature space (Fan, Feng and Tong, 2010). High 

variance and overfitting have been major concerns in this setting.

To overcome the issues associated with ultra-high dimensionality, many marginal screening 

techniques, such as the sure independence screening (SIS) procedure, have been shown to 

filter out many uninformative variables in many scenarios (Fan and Lv, 2008). Subsequently, 

standard penalized variable selection methods can be applied to the remaining variables. A 

desired marginal screening procedure possesses the sure screening property; that is, with 

probability close to 1, the procedure retains all of the important variables. The key idea of 

the SIS procedure is to rank all predictors by using a utility measure between the response 

and each predictor and then to retain the top variables for further investigation. The SIS 

procedure has been rapidly extended to various models and data types (Fan, Song et al., 

2010; Fan et al., 2009; Zhao and Li, 2012; Gorst-Rasmussen and Scheike, 2013). Further 

extensions to complex cases have been proposed along the same lines. Zhu et al. (2011) used 

the expectation of the square of the correlation between the predictor and an indicator 

function of the response for an ultra-high-dimensional multi-index model (SIRS), and Li et 

al. (2012) used distance correlation to carry out marginal screening (DC-SIS). These two 

methods are model-free but not robust to the predictors whose distributions are heavy tail. 

Similar to the work of Li et al. (2012), Shao and Zhang (2014) proposed a martingale 

difference correlation for high-dimensional variable screening (MDC-SIS). For variable 

interaction, Fan et al. (2017) proposed a sure independent screening procedure based on 

Pearson correlation (P-IT), and Kong et al. (2017) developed one based on distance 

correlation (DC-IT).

Table 1 summarizes the strengths and weaknesses of a set of representative SIS procedures. 

Specifically, we consider six important aspects, including multivariate response, group 

predictor, survival response, collinear predicts, predictor interaction, nonlinear model, and 

robustness. The aim of this paper is to develop a screening procedure that can work for all 

these six aspects, while detecting complex associations under less restrictive assumptions. 

Our screening procedure is based on a recently developed universal dependence measure: 

Ball correlation (BCor, Anonymity (2017)). BCor efficiently measures the dependence 

between two random vectors, which is between 0 and 1, and 0 if and only if these two 

random vectors are independent under some mild conditions. This property enables us to use 

the empirical BCor between the response of interest and each predictor vector to rank the 

predictors.
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Our proposed SIS procedure, called BCor-SIS, is a generic method that is model-free and 

has fewer and less restrictive data assumptions. Four defining characteristics of BCor-SIS 

are given here. i) It has a strong screening consistency property (Huang et al., 2013) without 

finite sub-exponential moments of the data even when the dimensionality is an exponential 

order of the sample size since empirical BCor is a function of some indictors. ii) It is 

nonparametric and has the property of robustness, which is also due to the boundedness of 

the empirical BCor. iii) It works well for complex responses and/or predictors from the 

definition of BCor. iv) It can extract important features even when the underlying model is 

complicated. We also evaluate BCor-SIS and investigate its flexibility in three commonly 

encountered challenging settings in biological discovery or precision medicine: iterative 

BCor-SIS, interaction pursuit, and survival outcomes. We show that the modified procedures 

also theoretically exhibit strong or sure screening properties, and illustrate their versatility 

and practicability by simulation studies and real data analyses. We have developed the BCor-

SIS package using Rcpp and released it through the website https://github.com/BIG-S2/

SBISIS.

The rest of this paper is organized as follows. We introduce our BCor-SIS procedure and 

establish its strong screening property in Section 2. We consider three challenging settings of 

BCor-SIS and the sure screening properties in Section 3. We carry out simulations to 

examine the finite sample performance of BCor-SIS in Section 4. We apply BCor-SIS to a 

real data set in Section 5. We make some concluding remarks in Section 6. We defer the 

technical details to the Appendix.

2. METHODOLOGIES

2.1 A Review of Ball Correlation

We first introduce the definition of Ball covariance and then review some of its theoretical 

properties. Ball covariance is an important tool for measuring the dependence between two 

random vectors. Specifically, denote W = (X, Y) and let X and Y be random vectors in two 

separable Banach spaces ( , ζX) and ( , ζY), where ζX and ζY are norms. Let θ be a Borel 

probability measure on  ×  and (X, Y) be a B-valued random variable defined on a 

probability space (Ω, , P) such that (X, Y) ~ θ, X ~ μ, and Y ~ ν, where μ and ν are, 

respectively, a Borel probability measure on  and . Moreover, we use B̄(x1, ζX(x1, x2)) 

(or B̄ζX(x1, x2)) to denote the closed ball with the center x1 and the radius ζX(x1, x2) in 

and B̄(y1, ζY (y1, y2)) (or B̄ζY (y1, y2)) to denote the closed ball with the center y1 and the 

radius ζY (y1, y2) in .

Definition 1—The Ball covariance BCov(X, Y) is defined as the square root of

BCov2(X, Y) =
U × V

[θ − μ ⊗ ν]2(BζX(x1, x2) × BζY(y1, y2))θ(dx1, dy1)θ(dx2, dy2),

where μ ⊗ ν is a product measure on  × .

Definition 2—The Ball correlation BCor(X, Y) is defined as the square root of
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BCor2(X, Y) = BCov2(X, Y)/ BCov2(X, X) × BCov2(Y , Y),

if BCov(X, X) × BCov(Y, Y) > 0, or 0 otherwise.

We then calculate the sample forms of BCov(X, Y) and BCor(X, Y) based on an observed 

random sample W = (X, Y) = {(Xk, Yk) : k = 1, …, n} generated from the joint distribution 

of random vectors X and Y. Let δij, k
X ≔ I(Xk ∈ BζX

(Xi, X j)), where I(A) denotes an indicator 

function of event A. Therefore, δij, k
X  indicates whether Xk is located in the closed ball 

B̄ζX(Xi, Xj), and δij,kl
X = δij, k

X δij, l
X  denotes whether both Xk and Xl fall into the closed ball 

B̄ζX(Xi, Xj). We also define ξij,klst
X = (δij,kl

X + δij,st
X − δij,ks

X − δij,lt
X )/2. Similarly, we define 

δij, k
Y , δij,kl

Y , and ξij,klst
Y  for Y. Next, we introduce the following definitions.

Definition 3—Empirical Ball covariance BCovn(X, Y) is defined as the square root of 

BCovn
2(X, Y) = n−6∑i, j, k, l, s, t = 1

n ξij,klst
X ξij,klst

Y .

According to Definition 3, if we replace δij,kl
X  and δij,kl

Y  by symmetric positive definite kernel 

functions kX(Xk, Xl) and kY(Yk, Yl), then Ball covariance is equivalent to Hilbert-Schmidt 

independence criterion (HSIC, Gretton et al. (2008)).

Definition 4—Empirical Ball correlation BCorn(X, Y) is defined as the square root of

BCorn
2(X, Y) = BCovn

2(X, Y)/ BCovn
2(X, X) × BCovn

2(Y, Y),

if BCovn
2(X, X) × BCovn

2(Y, Y) > 0, or 0 otherwise.

We review some theoretical properties of Ball correlation as follows.

Lemma 1—Let Sθ, Sμ and Sν be the support sets of θ, μ, and ν, respectively. Consider 

three conditions as follows:

• Condition 1: θ is a discrete distribution or continuous distribution with 

continuous density function, or more generally a mixture of these two 

distributions;

• Condition 2: Sμ × Sν = Sθ and  ×  is a finite dimensional Banach space;

• Condition 3:  ×  = Sθ and  ×  is a separable Banach space with a 

normalized basis.

If one of Conditions 1–3 holds, then BCor(X, Y) = 0 is equivalent to θ = μ ⊗ ν.

Lemma 1 shows that Ball correlation can capture various dependence relationships between 

X and Y in Banach space under some mild conditions. Although distance correlation and 
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HSIC are also powerful dependence measures for detecting multivariate and nonlinear 

relationship, they require strong negative type condition (Lyons, 2013) or positive type 

condition (Sejdinovic et al., 2013). Specifically, distance correlation (or HSIC) is suitable for 

the type of spaces that can be embed to Hilbert space or reproducing kernel Hilbert space, 

whereas many standard spaces are neither negative type nor positive type. In contrast, Ball 

correlation can detect multivariate, nonlinear and non-Euclidean (i.e., infinite dimension and 

manifold) dependences without assuming the negative and positive type conditions.

Lemma 2—(Properties of Ball correlation)

i. BCor(X, Y) is an nondecreasing function of |ρ| when X and Y are standard 

normal variables with Cov(X, Y) = ρ.

ii. 0 ≤ BCorn(X, Y), BCor(X, Y) ≤ 1.

iii. If there exist a vector a, a nonzero real number b and an orthonormal matrix C 

such that Y = a+bCX or Y = a+bX, then BCorn(X, Y) = BCor(X, Y) = 1 holds.

Lemma 2 (i) shows that BCor is order preserving with respect to the correlation strength 

under the Gaussian assumption. We will use this result to establish a relationship between I-

BCor-SIS and I-SIS (Fan and Lv, 2008) in Theorem 2. The second item explains why BCor 

is standardized based on the Cauchy-type inequality. The third item ensures that BCorn(X, 

Y) reaches the maximum when X and Y are linear relationships.

Lemma 3—BCovn(X, Y) and BCorn(X, Y) almost surely converges to BCov(X, Y) and 

BCor(X, Y), respectively.

Lemma 4—If X and Y are independent, then nBCovn
2(X, Y) converges to a mixture of χ2 

distribution.

nBCovn
2(X, Y)

n ∞
d ∑

υ = 1

∞
λυZυ

2,

where Zυs’ are independent standard normal random variables and λυs’ are nonnegative 

constants that depend on the distribution of (X, Y).

2.2 BCor-based Sure Independence Screening Procedure

In this section, we propose the BCor-based SIS procedure (BCor-SIS) as follows. The BCor-

SIS procedure shares the same model-free property as DC-SIS (Li et al., 2012), but it has the 

distinctive feature of not requiring finite moments, since BCor is the rank function of 

distance. This leads to robustness for data with a heavy-tailed distribution.

Let Y be a response vector and X = (X1
T, …, X p

T)T be a vector of predictors, where each Xr is 

a qr × 1 vector for either grouped or categorical data for r = 1, …, p. The goal of feature 

screening is to identify a set of predictors in X that is relevant to at least one component of 
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Y. We define the index sets of active and inactive predictors without specifying a statistical 

model as follows:

𝒜 = {r:P(B | Xr) is non − constant in Xr for some B ∈ σ(Y)}, (1)

ℳ = {r:P(B | Xr) is a constant in Xr for any B ∈ σ(Y)} .

Under the conditions of Lemma 1,  and ℳ are equivalent to {r : ρr > 0} and {r : ρr = 0}, 

respectively. A good screening approach is to identify an index set that includes all indexes 

in , while excluding as many indexes as possible in ℳ as the sample size tends to infinity.

Our BCor-SIS is based on the assumption that the predictors with larger BCor are more 

strongly correlated with the response vector. Specifically, BCor-SIS consists of two steps:

i. Calculate ρr = BCorn
2(Xr, Y), which is an estimate of ρr = BCor2(Xr, Y), and use 

it as a marginal utility of Xr for r = 1, …, p;

ii. Select the Xrs that fall into 𝒜n
∗ = {r: ρr ≥ τn, r = 1, …, p}, where τn is a pre-

specified constant. We discuss the selection of τn in the following section.

2.3 Theoretical Properties

In this section, we study the screening property of BCor-SIS. We need two conditions as 

follows:

(C1) There exist a constant c > 0 and 0 ≤ κ < 1/2 such that minr∈  ρr ≥ 2cn−κ.

(C2) Assume log(p) = o(n1−2κ), where κ is defined in condition (C1).

Condition (C1) is critical for performing ultra high-dimensional feature screening. It 

requires that the values of BCor are not too small between each active predictor vector and 

the response vector. It is similar to condition 3 of Fan and Lv (2008) and condition (C2) of 

Li et al. (2012). Condition (C2) assumes that p diverges at an exponential rate of n. SIS, 

SIRS, DC-SIS, and MDC-SIS also require the common sub-exponential moment assumption 

on Y and each Xr to establish the sure screening property. Our BCor-SIS procedure does not 

require this condition, which makes it suitable for more relaxed model assumptions.

With only conditions (C1) and (C2), we prove that BCor-SIS possesses strong screening 

consistency (Huang et al., 2013). We defer the proof to the Appendix.

Theorem 1—(Strong screening consistency of BCor-SIS) There exists a positive constant 

c1 > 0 such that

ℙ( max
1 ≤ r ≤ p

| ρr − ρr | ≥ cn−κ) ≤ O(p × exp( − c1n1 − 2κ)) .

If condition (C1) holds and (Xr, Y) satisfies the conditions of Lemma 1, then for any τn ∈ (0, 

2cn−κ), there exists a constant c2 > 0 such that
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ℙ(𝒜 ⊂ 𝒜n
∗) ≥ 1 − O(γ exp( − c2n1 − 2κ)), ℙ(𝒜n

∗ ⊂ 𝒜) ≥ 1 − O(γ∗ exp( − c2n1 − 2κ)),

where γ and γ* are the cardinality of  and 𝒜n
∗. Thus, if condition (C2) also holds, then the 

property of strong screening consistency holds,

ℙ(𝒜n
∗ = 𝒜)

n ∞
a . s . 1 .

Remark 1—The property of strong screening consistency says that the selected set 𝒜n
∗ is 

exactly equal to the active set  with probability 1. This implies the SIS property instead of 

vice versa. Huang et al. (2013) proved this strong screening consistency of feature screening 

for ultrahigh-dimensional categorical data, but that work requires the assumption that the 

measure between the response and the predictors in an inactive set is equal to 0. Wang et al. 

(2015) also proved the strong screening consistency property for SIS under the restricted 

diagonally dominant (RDD) condition.

2.4 Tuning Parameter Selection

We discuss the choice of the tuning parameter τn for 𝒜n
∗. Theorem 1 shows that the ideal 

value of τn lies in the interval (0, 2cn−κ), but the true values of c and κ are unknown. We 

introduce two rules to determine the value of τn below.

The first rule is a soft cutoff rule, which introduces some auxiliary variables for the choice of 

threshold (Zhu et al., 2011). First, we generate m auxiliary variables, denoted as z1, …, zm, 

from some pre-specified distribution, such as a standard normal distribution. In practice, we 

usually set m = p. Second, we calculate the BCor between each zj and the response Y for j = 

1, …, m. Third, we set τn as the largest value of all BCor values between zj and Y for all j. 
Fourth, we select all the predictors for which the BCor is larger than τn. The rationale for the 

soft cutoff rule is based on the theoretical results in Theorem 1. Since all z1, …, zm are 

independent of Y, the true BCor between zj and Y is equal to zero for all j. It follows from 

Theorem 1 that τn lies between 0 and 2cn−κ almost surely. Therefore, it provides a 

reasonable estimated value of τn.

Furthermore, there is another predictor selection soft rule, which is based on controlling the 

false positive rate, which is proposed by Zhao and Li (2012). Similar to Zhu et al. (2011), 

the method based on controlling the false positive rate is also a data-driven method. It takes 

advantage of the statistical distribution of the active predictor size and its false discovery rate 

(FDR). The active predictor size is the one that minimize its expectation of FDR.

The second rule is a hard cutoff rule proposed by Fan and Lv (2008). This method is based 

on a sparsity assumption that only o(n) predictors are truly associated with the response 

variable. This phenomenon is common in gene selection or risk control problems. Therefore, 

the hard cutoff rule suggests selecting d variables with the largest BCor values, where d is 
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usually chosen to be [n/log n] or n − 1, in which [a] denotes the integer part of a. According 

to Theorem 1, we have the following corollary.

Corollary 1—If conditions (C1) and (C2) hold, then we have

ℙ( max
r ∈ ℳ

ρr < min
r ∈ 𝒜

ρr)
n ∞

a . s . 1 .

Corollary 1 has several important implications. The BCor values of all active predictors are 

larger than those of all inactive predictors asymptotically. It is reasonable to choose the 

predictors for which the BCor is among the largest d ones. In the next section, we adopt the 

hard cutoff method in our simulations and examine the effects of different ds on the 

convergence rate of the sure screening property.

3. EXTENSIONS

We consider three extensions of BCor-SIS, including iterative BCor-SIS, linear interaction 

models, and censored responses.

3.1 Iterative BCor-SIS

Since the BCor-SIS approach picks out the important predictors based on their marginal 

correlation with Y, it may suffer from two possible issues. The first issue is that BCor-SIS 

may miss some important predictors that are marginally uncorrelated, but jointly correlated 

with the response. The second issue is that BCor-SIS may mistakenly select an irrelevant 

variable that is highly correlated with some of the truly active predictors.

We consider an extension of BCor-SIS by accounting for the joint distribution information. 

Similar to the work of Zhong and Zhu (2015), we use an iterative BCor-SIS approach to 

enhance its power. Let d be the pre-specified number of total selected predictors. The key 

steps of the iterative BCor-SIS are as follows. First, we use BCor-SIS to select a small subset 

of k (k < d) predictors. Second, we regress the response and the remaining predictors over 

this subset of predictors in order to remove the influence of the subset of selected predictors. 

The residuals can be explained as the projection of the response and all remaining predictors 

onto the orthogonal complement space of the selected predictors. Third, we treat the 

residuals as new predictors and repeat the previous two steps until we pick d predictors. 

More specifically, the procedure is shown in algorithm 1.

A key advantage of the I-BCor-SIS procedure is that it takes advantage of the information of 

selected predictors. When an active variable is marginally independent of the response due 

to its correlation with other active variables, Step 2 aims to break down its plausible 

marginal independence with the response and make it marginally detectable. Moreover, 

when many irrelevant variables are highly correlated with the active variables that have 

strong signals, Step 2 can dramatically reduce the effects of these irrelevant variables on 

correct selection once their correlated active variables are selected in Step 1. This can 

enhance the detection of the rest of the active variables. Although the I-BCor-SIS procedure 
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uses the hard cutoff rule to determine the active variable set, the soft cutoff rule is also 

applicable here.

Algorithm 1

I-BCor-SIS

Step 1 : We apply the BCor-SIS method to the response Y and all predictors X. Suppose that d(1) predictors are 
selected. We denote this subset of predictors as 𝒜̂

1.

Step 2 : Denote the design matrix of 𝒜̂
1 and (X1, …, Xp}\𝒜̂

1 as X1 and X1
c, respectively. Then we define the 

predictor residual matrix as

X∗ = X1
c − E(X1

c | X1), Y∗ = Y − E(Y | X1),

where E(X1
c | X1) and E(Y|X1) are the projections on X1. Next we apply the BCor-SIS procedure to Y* and the 

predictors in X*, and then select d(2) predictors. We denote this subset of predictors as 𝒜̂
2.

Step 3 : We update 𝒜1̂ with 𝒜̂
1∪𝒜̂

2. We repeat step 2 until the total number of selected predictors exceeds the 
prespecified number d. The final selected predictor set is 𝒜 ̂

1.

The following theorem shows that the iterative BCor-SIS is asymptotically equivalent to 

forward-stepwise selection (Hastie et al., 2004) when both X and Y are normally distributed.

Theorem 2—Suppose that X ~ N(ηx, Σ) and Y ~ N(ηy, σ), the I-BCor-SIS is 

asymptotically equivalent to the forward-stepwise selection. Furthermore, the components of 

X* at every step are independent predictors and their indexes are the same as the predictors 

selected asymptotically by the forward-stepwise selection.

As shown in Hastie et al. (2004), the forward-stepwise selection is sub-optimal compared to 

best subset selection. Thus, Theorem 2 implies that I-BCor-SIS is no worse than I-SIS (Fan 

and Lv, 2008) when n is large, whereas I-BCor-SIS can be used to detect a more complex 

nonlinear relationship, which is shown in Tables 2 and 3 below.

3.2 Linear Interaction Models

Although BCor-SIS is a model-free procedure, its performance can be competitive even 

under some specific modeling settings. As an illustration, we consider a linear interaction 

model. This type of interaction models has wide applications, such as in the analysis of 

gene-gene interactions and gene-environment interactions in genome-wide association 

studies, and treatment and covariate interactions in personalized medicine. Specifically, we 

consider a response variable Y and a p × 1 vector of covariates (X1, …, Xp). A linear 

interaction model is given by

Y = β0 + ∑
j = 1

p
β jX j + ∑

k = 1

p − 1
∑

j = k + 1

p
γkjXiX j + ∑

k = 1

p − 2
∑

j = k + 1

p − 1
∑

l = j + 1

p
γkjlXlX jXk

+ ∑
m = 1

p − 3
∑

j = m + 1

p − 2
∑

k = j + 1

p − 1
∑

l = k + 1

p
γmjklXmX jXkXl + ε,
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where β0, βj, γkj, γkjl, and γmjkl are, respectively, the intercept and regression coefficients 

for the main effects, and those for the second-, third-, and fourth-order interactions, and ε is 

a measurement error independent of (X1, …, Xp) with mean zero and finite variance. Since 

the interactions often have heavy-tailed distributions and our BCor-SIS method can 

efficiently deal with such heavy-tailed distribution data, BCor-SIS should be suitable for the 

interaction pursuit. The interaction screening procedure based on Ball correlation is 

summarised as follows.

We write Xr
∗ = f (Xr) and Y* = g(Y), where f(·) and g(·) are some specific transformations 

that may improve performance in interaction variable screening. Fan et al. (2017) suggested 

that the interaction predictor Xr can be retained by ranking the marginal correlations 

between the squared response Y2 and the squared predictor Xr
2, which implies that the 

squared transformation can strength the dependence between Y and Xr. Indeed, absolute 

transformation maybe an better alternative because of the moment conditions. Here we still 

choose the squared transformation since Ball correlation does not require moment condition. 

Define two quantities of Ball correlation as ρr1 = BCor2(Xr1, Y) and ρr2
∗ = BCor2(Xr2

∗ , Y∗)

for 1 ≤ r1, r2 ≤ p. Similarly, let , , and ℳ, respectively, denote the index set of active 

main variables, active interaction variables and inactive variables as follows:

𝒜 = {r:   some Xr are main variables which affect Y},

𝒮 = {r:   some Xr are interaction variables which affect Y},

ℳ = {r:   any Y  does not depend on Xr} .

Similarly, we can define the estimators as 𝒜n
∗ = {r1: ρr1

≥ τ1, r1 = 1, …, p} and 

𝒮n
∗ = {r2: ρr2

∗ ≥ τ2, r2 = 1, …, p}.

(I1) There exist some constants c1, c2 > 0 and 0 ≤ κ1, κ2 < 1/2 such that minr1∈  ρr1 

≥ 2c1n−κ1 and minr2 ∈ 𝒮ρr2
∗ ≥ 2c2n

−κ2.

(I2) Assume log(p) = o(n1–2 max{κ1, κ2}), where κ1, κ2 is defined in condition (I1).

Theorem 3 implies that new screening procedure based on BCor-SIS for the linear 

interaction model satisfies strong screening consistency property.

Theorem 3—(Strong screening consistency for linear interaction models) There exist some 

positive constants c3 and c4 such that
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ℙ( max
1 ≤ r1 ≤ p

| ρr1
− ρr1

| ≥ c1n
−κ1) ≤ O(p × exp( − c3n

1 − 2κ1)),

ℙ( max
1 ≤ r2 ≤ p

| ρr2
∗ − ρr2

∗ | ≥ c2n
−κ2) ≤ O(p × exp( − c4n

1 − 2κ2)),

when n > max{(320/c1)

1
1 − κ1 , (320/c2)

1
1 − κ2}. If condition (I1) holds and (Xr, Y) satisfies the 

conditions of Lemma 1, then for any τ1 ∈ (0, 2c1n−κ1) and τ2 ∈ (0, 2c2n−κ2), there exist 

some positive constants c5 and c6 such that

ℙ(𝒜 = 𝒜n
∗, 𝒮 = 𝒮n

∗) ≥ 1 − O(p exp( − c5n
1 − 2κ1) + p exp( − c6n

1 − 2κ2)) .

Furthermore, if condition (I2) also holds, then the property of strong screening consistency 

holds, that is,

ℙ(𝒜 = 𝒜n
∗, 𝒮 = 𝒮n

∗)
n ∞

a . s . 1 .

3.3 Censored Survival Data

In this subsection, we extend BCor-SIS to deal with censored survival data and high-

dimensional predictors. Let T be the failure time variable, C be the censoring time variable, 

and X = (X1, …, Xp)T be a p × 1 vector of the predictors, respectively. Suppose that we 

consider a random sample of n subjects and observe data {(Xi, Vi, Δi) : i = 1, …, n}, where 

Xi = (Xi1, …, Xpi)T, Vi = min(Ti, Ci), and Δi = I(Ti ≤ Ci), in which I(·) is an indicator 

function of an event. It is assumed that the censoring time C is independent of failure time T 
and covariates X. Similarly, let  and ℳ, respectively, denote the index set of active 

variables and inactive variables:

𝒜 = {r:   some T  depends on Xr},

ℳ = {r:   any T  does not depend on Xr} .

Our goal is to select the set of active variables X . We propose a new empirical BCov for 

the survival response as follows:

Pan et al. Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2019 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



𝒟n(T , Xr) = 1
n ∑

i = 1

n Δi

S3(Vi)
{1

n ∑
k = 1

n
I(Vk > Vi, Xrk > Xri) − 1

n ∑
k = 1

n
I(Vk > Vi)

1
n ∑

k = 1

n
I(Xrk > Xri)}

2

= 1
n5 ∑

i = 1

n
∑

k, l, u, υ = 1

n Δi

S3(Vi)
(δi, kl

V + δi, uυ
V − δi, ku

V − δi, lυ
V )(δi, kl

Xr + δi, uυ
Xr − δi, ku

Xr − δi, lυ
Xr ),

where δi, kl
V = I(Vk > V i, V l > V i), δi, kl

Xr = I(Xrk > Xri, Xrl > Xri), and Ŝ(·) is the Kaplan-Meier 

(KM) estimator of S(t) = P(C ≥ t). We show below that n(T, Xr) is a consistent estimator of 

(T, Xr).

Proposition 1—We have

𝒟(T , Xr) = E{
Δi

S3(Vi)
(δi, kl

V + δi, uυ
V − δi, ku

V − δi, lυ
V )(δi, kl

Xr + δi, uυ
Xr − δi, ku

Xr − δi, lυ
Xr )}

= E[{ℙ(T > T′, Xr > Xr′ |T′, Xr′ ) − ℙ(T > T′ |T′)ℙ(Xr > Xr′ | Xr′ )}2] .

To derive the sure screening property of our new statistic, we further impose an additional 

condition on the distribution of censoring time C as follows. For simplicity, we denote (T, 
Xr) as r.

(S1) There exist a constant c > 0 and 0 ≤ κ < 1/2 such that minr∈  ρr ≥ 2cn−κ.

(S2) ℙ(C = ν) > 0 and ℙ(C > ν) = 0 for some ν > 0.

Condition (S2) has been widely used in the literature (Peng and Fine, 2009; Song et al., 

2014).

Theorem 4—Under condition (S2), for any positive constants c5 ≤ c6, when 

n > max{D2(1 − δ)−2[1.5(1/3) − 1]−2‖S‖∞
−2, 49D2c5

−2n2κ(1 − δ)−2‖S‖∞
−2, (c5/1.01)

1
κ }, there exist 

positive constants c1, c2, and c4 such that

ℙ( max
1 ≤ r ≤ p

|𝒟r − 𝒟r | > c6n−κ) ≤ γ[2.5n exp( − c1n) + 2 exp( − c4n1 − 2κ) + 2.5n exp( − c2n1 − 2κ)],

where ‖·‖∞ is the L∞ norm, and D is a constant that is defined in Lemma 2 of the Appendix. 

If condition (S1) holds, then for τn = c7n−κ with 0 < c7 ≤ c, we have

ℙ(𝒜 ⊂ 𝒜n
∗) ≥ 1 − γ[2.5n exp( − c1n) + 2 exp( − c4n1 − 2κ) + 2.5n exp( − c2n1 − 2κ)],

where γ is the cardinality of .
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Theorem 4 ensures the SIS property of our method for survival data. Moreover, γ can reach 

an exponential rate as n goes to infinity. Similar to the conditions in the work of Song et al. 

(2014), our method does not require the tail probability condition for the covariates. Thus, it 

is suitable for survival data with a heavy-tailed distribution. However, compared with the 

method of Song et al. (2014), our method can deal with more complex relationships between 

the covariates and survival time, such as the interaction and square relationships. We will 

elaborate more on this point in the next section.

4. SIMULATION STUDIES

In this section, we conduct Monte Carlo simulation studies to numerically compare BCor-

SIS with SIS (Fan and Lv, 2008), SIRS (Zhu et al., 2011), DC-SIS (Li et al., 2012), and 

MDC-SIS (Shao and Zhang, 2014). For a fair comparison, we consider different scenarios, 

including linear and nonlinear models, a normal distributed error structure, a heavy-tailed 

distributed error structure, a group predictor scenario, and a multi-response scenario, among 

which three examples are given in the Appendix for the sake of space. When the true model 

is a standard linear model with normal noise levels, the BCor-SIS approach can perform as 

well as SIS, SIRS, DC-SIS and MDC-SIS. In all other scenarios, BCor-SIS outperforms all 

competing screening methods.

Following Li et al. (2012), we generated X = (X1, …, Xp)T from a multivariate normal 

distribution with a zero mean vector and covariance matrix Σ = (σjk)p×p, where σjk = 0.8|j−k| 

for 1 ≤ j, k ≤ p. We set p to be 1000 and the sample size n to be 150. We repeated each 

experiment 500 times. We consider the following two criteria:

Pm, the likelihood that an individual active predictor is selected for a given size d in 

the 500 replications; and

Pa, the likelihood that all active predictors are selected for a given size d in the 500 

replications.

(Pm, Pa) is used to verify the sure screening property. Ideally, the sure screening property 

ensures that both Pm and Pa are close to one when the model size d is sufficiently large. We 

set d to be d1 = [n/log n], d2 = 2[n/log n], and d3 = 3[n/log n], respectively.

4.1 Simulation Results for I-BCor-SIS

Example 1: We compare BCor-SIS with I-BCor-SIS in the following four models:

:Y = X1 + 1.25X2 + 0.75X8 − 2.4X16 + ε (1.a)

:Y = 3X1
2 + 5X2 + 5X8 − 8X16 + ε, (1.b)

:Y = 2I(ω > 0)ω + 1  with  ω = 5X1
2 − 5X2

2 + 3X8 + 2X16 + ε, (1.c)
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:Y = 2I(ω > 0)ω + 1  with  ω = 5X1X2 + 3X8 + 3X16 + ε, (1.d)

where ε ~ N(0, 1).

Here, we choose the additive models and set p to be 2,000, sample size n to be 200, and d(1) 

and d(2) to be 5 in Algorithm 1. Moreover, we set the correlation parameter σ0 to be 0.2, 0.5, 

and 0.8, respectively. In model (1.a), the dependency between X1 and Y is linear, but it is 

nonlinear in models (1.b)–(1.d). Tables 2 and 3 present the simulation results of I-SIS (Fan 

and Lv, 2008), I-DC-SIS (Zhong and Zhu, 2015), and I-BCor-SIS. In all cases, I-BCor-SIS 

outperforms I-SIS and I-DC-SIS for the nonlinear models.

4.2 Simulation Results for Interaction Selection

We compare our screening methods, BCor-SIS and I-BCor-SIS, with four screening 

methods, including SIS (Fan and Lv, 2008), SIRS (Zhu et al., 2011), DC-SIS (Li et al., 

2012), and P-IT (Fan et al., 2017). We generate X = (X1, …, Xp)T from a multivariate 

normal distribution with zero mean vector and covariance matrix Σ = (σjk), where σjk = 

0.5|k−j| for 1 ≤ k, j ≤ p. Here we set p to be 2000, the sample size n to be 200, and d = 2[n/log 

n]. We repeat each experiment 500 times.

Example 2: We consider the following four models

:Y = 3X1X5 + 2X10 + 2X15 + ε, (2.a)

:Y = 3X1X5 + 3X10X15 + ε, (2.b)

:Y = 3X1X5X10 + 3X15 + ε, (2.c)

:Y = 3X1X5X10X15 + ε, (2.d)

where ε ~ N(0, 1).

Table 4 reveals that the interaction variables screening procedure based on Ball correlation 

outperforms other methods in all models. Specifically, the results shows that the new 

screening procedure based on Ball correlation is suitable to the linear interaction model 

especially for high order interaction variables.

4.3 Simulation Results for Censored Survival Data

In this subsection, we compare our method with four screening methods, including 

correlation screening (CS), log-rank statistics screening (LRSS, Gorst-Rasmussen and 

Scheike (2013)), partial likelihood ratio screening (PLRS), and censored rank independent 

screening (CRIS, Song et al. (2014)). For correlation screening, we used an inverse 

probability of censoring weighted method to compute the Pearson correlation between the 

survival time and predictors, which is the generation of Fan and Lv (2008) for survival data. 
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For partial likelihood ratio screening, a marginal Cox model was fitted for each predictor 

and the partial likelihood ratio statistic was constructed by the corresponding model, which 

is asymptotically equivalent to the method proposed by Zhao and Li (2012).

Example 3: We generate Ti from the following three transformation models:

H(T) = − 3X1 − 2X2 + 0.8X9 + X10 + ε, (3.a)

H(T) = − 3X1X2 + 0.8X9 + X10 + ε, (3.b)

H(T) = − 3X1
2 − 2I(X2 < 0) + 0.8X9 + X10 + ε, (3.c)

where H(T) = log{2(e4t − 1)} and ε ~ N(0, 1). We set n = 300 and p = 2000. The covariates, 

Xi, are generated from a multivariate normal distribution with a mean of zero and a first-

order autoregressive structure Σ = (σjk) with σjk = 0.5|j−k| for j, k = 1, …, p. The censoring 

time is generated from a uniform distribution on [0, c], where c is chosen to achieve 

censoring proportions of 15% and 40%.

Table 5 presents all the simulation results. For model (3.a), BCor-SIS performs slightly 

worse than CRIS, but much better than CS, LRSS and PLRS. In contrast, for models (3.b) 

and (3.c), BCor-SIS significantly outperforms all four competing methods under the 

nonlinear model settings.

5. ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE

To motivate the proposed methodology, we consider a large database with imaging, genetic, 

and clinical data collected by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

study (adni.loni.usc.edu). We consider the joint analysis of hippocampus surface and genetic 

data collected through ADNI-1. To reduce the population stratification effect, we included 

708 Caucasians (421 men and 287 women) from healthy controls and individuals with 

Alzheimer’s disease (AD) and mild cognitive impairment (MCI) (163 AD, 347 MCI, and 

198 healthy controls). The scans were performed on a variety of 1.5 T MRI scanners with 

protocols individualized for each scanner and include standard T1-weighted images obtained 

using volumetric 3-dimensional sagittal MPRAGE or equivalent protocols with varying 

resolutions. We applied a hippocampal subregional analysis package based on surface fluid 

registration to all segmented hippocampus surfaces extracted from structural MRI images. 

Then, we calculated the radial distance map of the hippocampal surface, which retains 

information on the deformation along the surface normal direction. More details can be 

found in Wang et al. (2011).

We considered the 708 subjects’ genotype variables acquired by using the Human 610-Quad 

BeadChip (Illumina, Inc., San Diego, CA) in the ADNI-1 database, which includes 620,901 

single nucleotide polymorphisms (SNPs). By following Wang et al. (2012), we focus on 

SNPs belonging to the top 40 AD candidate genes. After the quality control procedures, 

1072 SNPs remained in the final data analysis.
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The objective of this data analysis was to examine the genetic effect of each of 1,072 

candidate SNPs on either the left or right hippocampus. To achieve this objective, we applied 

the DC-SIS, BCor-SIS and I-BCor-SIS (d(1) = d(2) = 3) procedures to screen the candidate 

genes and compared the results obtained from these three approaches. Moreover, we chose 

the 15000 radial distances of either the left or right hippocampus as a functional phenotype 

after regressing out age and gender and then computed the standard L2 norm.

Tables 6 and 7 list the top 10 potential genes selected by the above three approaches. The 

data analysis results have confirmed the important role of well-known genes such as APOE-

ε4 and SORCS1, where APOE-ε4 is the most influential gene of the left or right 

hippocampus. A flood of literature (Lescai et al., 2011; Hao et al., 2016) suggested that 

APOE-ε4 is the top genetic risk factor of Alzheimer’s disease, thus it can potentially affect 

the shape of the hippocampus. In contract to DC-SIS, BCor-SIS and I-BCor-SIS are inclined 

to screen more types of useful genes. Take left hippocampus for example, I-BCor-SIS 

ranked the gene LOC651924 as the top 10 genes, which was ignored by BCor-SIS and DC-

SIS. Belbin et al. (2011) provided support for LOC651924 as risk modifiers of late-onset 

Alzheimer’s disease by meta-analyses of all published follow-up case-control association 

studies. Besides, I-BCor-SIS procedure also detected gene CH25H, which was taken as an 

Alzheimer’s disease risk factor in Shibata et al. (2006).

6. DISCUSSION

We propose a novel nonparametric feature screening procedure based on the Ball 

correlation. Without finite sub-exponential moments, we proved its strong property of sure 

screening when the dimensionality is an exponential order of the sample size. We used 

Monte Carlo simulations to demonstrate its screening accuracy compared to that of several 

popular methods in some important scenarios. Compared with the existing methods, our 

proposed method is a generic procedure that is model-free and has fewer and less restrictive 

assumptions of the data.

Some issues deserve further study. The computational complexity of BCor-SIS is O(pn2 log 

n) for multivariate responses and group predictors, but can be reduced to be O(pn2) for 

univariate responses. The threshold used in the proposed method is adopted from those of 

Fan and Lv (2008) and Zhu et al. (2011). It is also of interest to develop a new criterion to 

determine the threshold for finite samples; however, we leave this topic for future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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