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Abstract

We describe a generic approach to image interpretation, based on combining a

general method of building flexible template models with Genetic Algorithm

(GA) search. The method can be applied to a given image interpretation prob-

lem simply by training a Point Distribution Model (PDM), using a set of

examples of the image structure to be located. A local optimisation technique,

developed for use with PDMs, has been incorporated into the GA search with

the aim of improving the speed of convergence and optimality of solution. We

present results, from three practical applications, demonstrating that the new

method offers significant improvements when compared to previously reported

approaches to flexible template matching. The benefits include the ability to deal

with different domains of application using a standard method, the ability to

deal with complex multi-part models and improved search performance.

1 Introduction

Flexible templates have been employed widely as a means for model-based image

interpretation. In most cases, however, the flexible template employed is hand-

crafted and the search strategy used to locate instances of the template within a

given image is problem specific [11,12,13,14]. In a previous publication [8] we

described an approach to flexible template matching using a generic search strategy

- Genetic Algorithms (GAs) [4,6,9]. The method generates good interpretation hy-

potheses robustly and at moderate computational cost. We presented results ob-

tained using a system for automatically delineating the left ventricle of the heart

in echocardiograms, employing a flexible template model of the left ventricle which

was hand-crafted. We present here a development of that work which employs

a generic technique for flexible template construction based on Point Distribution

Models (PDMs) [2]. Several improvements to the original GA method result from

the use of the PDM approach :

• The method is now entirely generic; it can be applied to new problems by

training a PDM using examples of the image structures to be located.

• The ability of a PDM to capture both the variability in shape of an object

and the spatial relationships between a number of different objects enables

complicated biological structures to be modelled and subsequently located

using a GA search.

• By incorporating into the GA a local optimisation technique developed for

use with PDMs [3], significant improvements in the performance of the GA
BMVC 1992 doi:10.5244/C.6.29
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search can be achieved both in terms of speed of convergence and optimality

of solution; the ability of a GA search to extract multiple candidate interpre-

tations from an image is also enhanced by the use of the local optimiser.

Our results demonstrate how complex biological structures can be automati-

cally located using the combination of PDMs and a GA search. The delineation

of the left ventricle in echocardiograms previously reported [8] has been enhanced

by employing a more complex, PDM model of the heart. We also present results

of locating the first and second ventricles of the brain in Magnetic Resonance

images. The improved performance of the GA search when incorporating the PDM

local optimiser is also demonstrated. The effect of the local optimiser when using

a GA to extract multiple interpretation hypotheses is discussed and results are pres-

ented for locating simultaneously many resistors on a printed circuit board.

2 Genetic Algorithms

GAs employ mechanisms analogous to those involved in natural selection to con-

duct a search through a given parameter space for the global optimum of some

objective function. The main features of the approach are as follows :

• A point in the search space is encoded as a chromosome.

• A population of N chromosomes/search points is maintained.

• New points are generated by probabilistically combining existing solutions.

• Optimal solutions are evolved by iteratively producing new generations of

chromosomes using a selective breeding strategy based on the relative values

of the objective function for the different members of the population.

A solution, z = (zi,Z2,..,zn), is encoded as a string of genes to form a chromo-

some representing an individual. In many applications the gene values are [0,1] and

the chromosomes are simply bit strings. An objective function,/, is supplied which

can decode the chromosome and assign a fitness value to the individual a chromo-

some represents. In our case the z-, are model parameters which define the shape

and pose of possible image objects. The objective function measures the extent

to which the potential interpretation represented by a particular chromosome is

supported by image evidence.

Given a population of chromosomes the genetic operators crossover and muta-

tion can be applied in order to propagate variation within the population. Crossover

takes two parent chromosomes, cuts them at some random gene/bit position and

recombines the opposing sections to create two children e.g. crossing the chromo-

somes 010-11010 and 100-00101 at position 3-4 gives 010-00101 and 100-11010.

Mutation is a background operator which selects a gene at random on a given indi-

vidual and mutates the value for that gene (for bit strings the bit is complemented).

The search for an optimal solution starts with a randomly generated population

of chromosomes; an iterative procedure is used to conduct the search. For each

iteration a process of selection from the current generation of chromosomes is fol-

lowed by application of the genetic operators and re-evaluation of the resulting
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chromosomes. Selection allocates a number of trials to each individual according

to its relative fitness value fj/f, f = 1/N {f\ + fz + .. + /#} • The fitter an individual

the more trials it will be allocated and vice versa. Average individuals are allocated

a single trial.

Trials are conducted by applying the genetic operators (in particular crossover)

to selected individuals, thus producing a new generation of chromosomes. The algo-

rithm progresses by allocating, at each iteration, ever more trials to the high per-

formance areas of the search space under the assumption that these areas are asso-

ciated with short sub-sections of chromosomes which can be recombined using

the random cut-and-mix of crossover to generate even better solutions.

The major feature of GAs which makes them attractive for object location is

the use of a population of solutions, allowing competition between alternative inter-

pretations. If there are several possible candidates, within an image, for the object

we wish to locate, either because there are several instances of the object itself

or instances of similar objects, the manner in which a GA search is conducted

allows the various plausible interpretations to compete with one another, the

strongest solution having the greatest probability of success. We have shown previ-

ously [8] how this facet of a GA search can be exploited to extract multiple plaus-

ible interpretations from an image by allowing separate species to adapt to various

niches within the search space.

3 Point Distribution Models

We have employed the method described by Cootes et al [2] for constructing flex-

ible templates. The technique captures the statistical variation in the distribution

of sets of points to produce Point Distribution Models (PDMs). We describe the

construction of PDMs for a chamber of the heart in echocardiograms and structures

in the brain in Magnetic Resonance images. We also describe briefly Active Shape

Models : instances of PDMs which deform to improve their fit to image data.

3.1 Constructing Point Distribution Models

The key steps in constructing a PDM from a set of examples of an object to be

modelled are as follows :

• Generate a set of object descriptions upon which the model is to be trained.

An object description is simply a labelled set of points (x&yo; x\,yi; •••)•

Each labelled point represents a particular position on the object (for

example, the corner of a boundary). Corresponding points on different ob-

jects represent equivalent locations on each object.

• Align the sets of points and perform a Principle Components Analysis to

the locations of the points. This involves finding the mean position of each

point and the co-variance matrix of the position variables

(*o>.yo; x\,yti ...)-The principle eigenvectors of the matrix give the main

modes of variation of the training set.
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This procedure results in a model with a small set of parameters

b = (b\,b2,-,bm) which act as weights for the major m eigenvectors of the co-va-

riance matrix. These weights can be manipulated to create new instances from the

class of objects modelled.

Because the technique is concerned only with the statistical variations of sets

of points it can be employed not only to model objects which are, for example,

closed boundaries but can also be used to capture the spatial relationships between

objects. In this paper we have constructed PDMs of two complex biological struc-

tures : the left ventricle, septum and mitral valve of the heart (as imaged in echocar-

diography - see figure 3) and the first and second ventricles of the brain (as imaged

in Magnetic Resonance Imaging - see figure 4). Both of these models exhibit com-

plex structure (several parts) as well as variability in shape (see figure 1).

Heart Brain

Figure 1: Examples from Heart and Brain Ventricle Models.

For the PDM of the heart we employed echocardiogram time sequences from

33 individuals. From each of these sequences two images were selected which

showed the left ventricle in its most contracted and extended states, giving a train-

ing set of 66 images. These images were labelled by an expert. For the ventricles

of the brain we employed 3D Magnetic Resonance data sets from ten individuals.

Because the ventricles of the brain are 3D structures we were able to employ several

"slices" from each data set to give variability in shape due to slice position as well

as variability in shape between individuals. On average, nine images were used

from each sequence giving a total training set of 88 images.

3.2 Active Shape Models

Cootes and Taylor [3] have developed a local optimisation technique which can

deform a PDM to fit image data. The technique is similar to that employed in the

so called "Snake" approach presented by Kass et al [10] in that image evidence

is used to suggest deformations of the model in order to improve the correspon-

dence between model and data. An important property of the method presented

by Cootes and Taylor, however, is that the shape constraints learned during the
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training of the PDM are never violated during model deformation i.e. the shape

of the model is always legal during the iterative deformation process.

Each iteration of the procedure is as follows :

• Place the current instance of the model onto the image and interrogate the

image data locally to deduce the deformation of each point required to im-

prove the correspondence between model and data.

• Compute changes in the translation (tx,ty) scale (s) and orientation (8) of

the model from these local deformations. Apply these changes to (tx,ty),s, 9

and evaluate any residual deformations which remain.

• The residual deformations are now employed to suggest changes to the

model parameters which control shape, b. The current model parameters

b are updated to reflect these changes in shape.

By applying this procedure iteratively the position, scale, orientation and shape of

the model which best fit the data in the locality of the original estimate can be

determined.

4 Combining Active Shape Models and Genetic Algorithms

4.1 Possible Frameworks

There are two possible ways we might combine Active Shape Models (ASMs) and

GAs:

• Consider the techniques as separate but complementary. Here the GA search

would be conducted as normal and the ASM applied to the solutions sug-

gested by the GA. This uses the ASM as a refinement procedure; if the GA

suggests a solution in a non-optimal area of the search space, the ASM can

do no better than locate the local optimum for that area of the search space.

• Incorporate the ASM directly into the GA search; in the GA literature it has

been suggested that incorporating heuristic information and local optimisa-

tion techniques within a GA search can improve performance significantly

(see the discussion of the Travelling Salesman Problem in [4]). The basis

of this approach is that the GA can locate the hills in the search space while

the local optimiser embedded within the GA can climb to the top of these

hills.

We are particularly interested in the second of these approaches which allows a

more thorough investigation of the search space, especially when a speciated version

of the GA is employed.

4.2 Genetic Algorithms and Active Shape Mutation

In a single iteration of the ASM procedure, a set of local deformations are computed

from the image data and applied to the model to generate suggested changes to

(tx,ty),s,9, and b in order to improve the correspondence between model and

data. When using a chromosomal representation of the parameters these changes

can be realised by first decoding the chromosome to generate the current values
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of (tx,ty),s,9,b, then updating the parameter values and re-encoding the para-

meters to produce an updated chromosome. In effect, the genes on the chromosome

are mutated to reflect the suggested changes in the parameters. This mutation will,

in general, be beneficial to the individual concerned because the template which

the chromosome encodes will represent a better fit to the image data; consequently

the objective function value associated with the template will be improved. There

are two parameters which control the incorporation of the ASM mutation into a

GA:

• The rate at which the mutation is applied (Masm)\ each individual in the

current population is mutated with probability Ma^,.

• The number of iterations of the ASM technique, M,-, to be applied for each

mutation.

It will often be the case that the local deformations applied to the model can

be generated as a by-product of evaluating the objective function which we are

attempting to minimise/maximise i.e. when estimating how well the model fits the

data, estimates of improved positions of model points suggest themselves naturally.

This means that we can apply a single iteration of the ASM for "free" every time

the objective function is evaluated - the only additional computing requirements

being those to calculate the model transformation from the given local deforma-

tions. Taking this into consideration, together with the fact that the ASM mutation

is generally beneficial, we suggest the values M^m = 1 and M,- = 1 i.e. a single

iteration of the local optimiser is applied every time the objective function is evalu-

ated.

5 Results

The results we present below were obtained using a GA with "standard" parameter

values [7] (unless otherwise stated): rate of crossover = 0.6, population size = 50,

rate of random mutation = 0.005. The crossover operator employed was the con-

strained, two-point version suggested by Booker in [4]. The Remainder Stochastic

Independent Sampling (RSIS) algorithm suggested by Baker [1] was used for selec-

tion. All model parameters were encoded as unsigned gray-code binary integers

as suggested by Fitzpatrick et al [5]; 8 bits were used to represent each parameter.

The same objective function was employed in all cases. The function was con-

structed in such a manner that it was minimised when strong edges of similar

magnitude were located within the image close to the boundary of a given instance

of a PDM (see [8] for more detail).

5.1 Improved Performance of GAs using ASM Mutations

In [8] we showed how GAs could be employed together with a flexible template

model of the left ventricle of the heart to locate left ventricular boundaries in echo-

cardiograms (see figure 3). We have compared the performance of GAs with and

without ASM mutations using this exemplar. We applied a GA search to 5 echocar-
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diograms 10 times, starting from different (random) initial populations. Two

measures were recorded at each iteration of the GA procedure and average values

of these measures computed for all 50 applications. The measures used were :

• the value of the objective function averaged over the current population.

• the best objective function value in the current population.

On average the performance of the GA incorporating the ASM was significantly

better than that of the GA without the ASM. Convergence was more rapid and

the best solution found was also improved. The results are shown in figure 2.
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Figure 2 : Comparison of GA and GA +ASM Searches.

5.2 Objects with Multiple Parts

As we have already stated, employing the PDM method as a generic flexible tem-

plate construction technique extends greatly the applicability of image interpreta-

tion using GA search. Objects with many variable parts can be modelled using a

single PDM and the search technique applied as before. We have found that the

increased specificity of such models can help resolve potentially ambiguous inter-

pretations of image data. For example, in the model of the left ventricle of the

heart we have included both sides of the septum and mitral valve in the model

(see figure 1) placing stricter constraints on possible interpretations of the image

data than if only the boundary of the left ventricle itself had been modelled. Figure

3 shows the automatic location of the septum, mitral valve and left ventricle in

an apical 4-chamber echocardiogram using the GA+ASM technique. Figure 4

shows the automatic delineation of the first and second ventricles in a Magnetic

Resonance image of the brain. The PDM of the ventricles of the brain was trained

on images from different individuals and also from images at various positions

in a 3D data set; the 2D shapes and locations of the ventricles vary considerably

from slice to slice. The image shown was selected at random from a 3D data set

and no indication of the "slice index" was employed in the interpretation process.
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Figure 3 : Automatic Delineation of the Left Ventricle,

Septum and Mitral Valve in the Heart.

Figure 4 : Automatic Delineation of the First and

Second Ventricles in the Brain.

5.3 Extracting Multiple Plausible Interpretations using Speciation

In [8] we showed how a speciated version of the GA could be employed to extract

multiple candidates for a given object within an image. In this case the GA is forced

to spread its effort over different areas of the search space, rather than converging

upon one particular area. This is accomplished by penalising individuals that reside

in over-crowded areas of the search space in order to force migration to less

crowded, yet still promising, areas. Speciation is also promoted by encouraging

individuals to mate (crossover) with nearby rather than distant individuals. One

problem with this approach is that adaptation of any particular species to the par-

ticular niche it occupies in the search space can be quite poor. This is because

only a small gene pool is available for any given species due to the low numbers
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of individuals belonging to each species (given a population of 100 individuals and

just 3 or 4 possible interpretations, species might be represented by groups as small

as 10 individuals). The danger here is that a species will become extinct in a promis-

ing area of the search space.

What is required is the ability to optimise locally with only a small number

of individuals. This is exactly what the ASM mutation incorporated within the GA

search can achieve. An example of the ability of the GA+ASM to maintain stable,

small sub-populations is shown in figure 5 where a number of resistors have been

located automatically on a printed circuit board using a PDM resistor model and

a speciated GA+ASM search. The 7 resistors identified (5 "real" and 2 spurious)

were located using a population size of 100 individuals and the 7 species shown

were stable i.e. the GA maintained the sub-populations indefinitely without species

becoming extinct.

Figure 5 : Multiple Plausible Interpretations Employing a Speciated GA+ASM

(the component on the left was excluded from the search area).

6 Conclusions

Combining a generic method of flexible template construction with the GA search

technique has been shown to produce a very powerful and generally applicable

method of model-based image interpretation. The ability of the PDM to capture

both the variation in shape of single objects and the spatial relationships between

different objects enables models of complex structures to be derived. We have

shown that the GA search technique can be successfully employed to locate in-

stances of these complex models within image data. Furthermore, the incorporation

of a local optimisation technique for PDM models within the GA framework as

an Active Shape Mutation improves considerably the performance of the GA search

both in terms of speed of convergence and optimality of solution. The active shape

mutation also improves the speciated version of the GA, in which many solutions

are extracted simultaneously, by enabling small sub-populations to survive and

improving the adaptation of each species to its particular environmental niche.
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