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Abstract

Constructing biological networks capable of performing specific biological functionali-
ties has been of sustained interest in synthetic biology. Adaptation is one such ubiquitous
functional property, which enables every living organism to sense a change in its sur-
roundings and return to its operating condition prior to the disturbance. In this paper, we
present a generic systems theory-driven method for designing adaptive protein networks.
First, we translate the necessary qualitative conditions for adaptation to mathematical
constraints using the language of systems theory, which we then map back as ‘design
requirements’ for the underlying networks. We go on to prove that a protein network
with different input–output nodes (proteins) needs to be at least of third-order in order
to provide adaptation. Next, we show that the necessary design principles obtained for
a three-node network in adaptation consist of negative feedback or a feed-forward real-
ization. Interestingly, the design principles obtained by the proposed method remain the
same for a network of arbitrary size and connectivity. Finally, we prove that the motifs
discovered for adaptation are non-retroactive for a canonical downstream connection.
This result explains how complex biological networks achieve robustness while keeping
the core motifs unchanged in the context of a particular functionality. We corroborate
our theoretical results with detailed and thorough numerical simulations. Overall, our
results present a generic, systematic and robust framework for designing various kinds of
biological networks.

1 Introduction 1

All living cells display a remarkable array of functions, which can be perceived as the re- 2

sponse of a complex, multi-level biological network at a systems level. These complex 3

networks are comprised of a variety of components— biological macro molecules—wired 4

together in exquisite fashion. How the wiring of these components affects system func- 5

tion has been a classic subject of research over the last two decades. A variety of math- 6

ematical modeling techniques have been employed to model and predict the function 7

of various biological networks [1–3]. Beyond mathematical modeling, systems theory 8

has been particularly useful to understand and characterize various biological systems [4]. 9

Graph-theoretic tools have also found applications in analyzing and understanding bio- 10

logical networks as functional modules [5–9].Notably, it has been seen that the design 11
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principles, for any given biological response, are relatively conserved across organisms 12

[10]. For instance, it is well-known that the adaptation (definition to be reviewed shortly) 13

involved in performing bacterial chemotaxis in E. coli employs negative feedback. Sim- 14

ilarly, an adaptive homeostasis network in higher organisms [11] also uses a negative 15

feedback control strategy [12], suggesting relative independence of design principle from 16

the particularities of the rate dynamics for different biological networks. This observation 17

serves as an essential motivating factor behind the search for minimum networks capable 18

of achieving a given biological functionality. 19

Besides adaptation, several studies have focused on understanding the emergence of 20

functionalities such as oscillation, toggle switches, and determining the underlying cir- 21

cuitry [13–16], employing methods ranging from brute force searches [16] and rule- 22

based modelling [13] to control-theoretic approaches [15]. Tyson et al (1974) conceived 23

a two-protein negative feedback model with specific rate kinetics to prove the existence 24

of an invariant Poincaré–Bendixson annulus which can lead to oscillation [13]. Li et al 25

(2017) employed a brute force search across the topology–parameter space and concluded 26

that incoherent self-loops and negative feedback provide robust oscillation in protein 27

systems [14]. Sontag et al (2004) showed the necessity of positive feedback to attain a 28

switch-like behavior which plays a crucial role in cell-fate decision making and quorum 29

switching [17]. 30

Adaptation is defined as the ability of the system output (O) to sense a change in the in-
put (I) from the surrounding environment and revert to its pre-stimulus operating state.
From the widely discussed bacterial chemotaxis [12], to the regulation of temperature
in a volatile environment, or homeostasis, adaptation is believed to have played a pivotal
role in evolution [18]. Typically, adaptation is characterized by two key quantities [10],
precision and sensitivity. Precision is the ratio of relative changes of input and output and
is quantified as

P =

∣

∣

∣

∣

I2 − I1

I1

/

O2 −O1

O1

∣

∣

∣

∣

(1)

where, I2 is the new input, I1 is the initial input, O2 is the new output steady-state level,
and O1 is the pre-stimulus output level. If O2 = O1, i. e. the system’s response returns to
exactly the pre-stimulus level, the adaptation is known as perfect adaptation. On the other
hand, sensitivity refers to the ratio to the relative difference between the peak value of the
output (Opeak) and the initial steady-state to that of the input:

S =

∣
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∣

∣

(2)

Previously, Tang and co-workers [10] investigated three-protein systems that were ca- 31

pable of perfect adaptation. A three-protein system, including self-loops, involves nine 32

possible interactions, each of which can be positive (activating), or negative (repressing), 33

or absent, resulting in a large number (39 = 19, 683) of possible network structures or 34

topologies. A brute force study of all the possible structures was carried out assuming 35

Michaelis–Menten kinetics for the protein interactions. Each topology was examined for 36

10, 000 different sets of parameters leading to over 1.6 × 108 simulations. The topology– 37

parameter combinations that provided precision and sensitivity more than 10 and 1 re- 38

spectively were considered capable of adaptation. Their study showed that only 395 39

topologies could perform robust adaptation. Surprisingly, all of the admissible structures 40

had either negative feedback associated with a buffer species or incoherency in the input 41

node’s effects on the output via two different paths. Later, other systems such as voltage- 42

gated sodium channels and gene regulatory networks were observed to exhibit adaptation 43

as well. Notably, all the deduced structures employed negative feedbacks [19–21]. Son- 44

tag et al (2003) argued from an internal model principle perspective that attainment of 45
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adaptation with respect to a step-type disturbance requires an integrator within the sys- 46

tem [22]. This, if used for a three-protein network, produces topologies similar to the 395 47

topologies discussed above. 48

Further, others have suggested specific control strategies like integral feedback to be capa- 49

ble of producing adaptation for a small network (containing three nodes) from an internal 50

model principle and transfer function point of view [23–28]. Sontag et al [29] suggested 51

the supremacy of negative feedback loops over the incoherent feed-forward structures in 52

the context of providing adaptation to periodic responses with varying duration for small 53

scale network structures. We have previously employed a transfer function approach to 54

deduce the design principles for adaptation in a three-node network [26]. The main argu- 55

ments were that the condition for perfect adaptation requires the transfer function of the 56

system to be stable and contain a zero on the origin. Recently, Araujo and Liotta [30] de- 57

veloped a graph-theoretic method arguing that the feedback and feed-forward strategies 58

are the only two ways of providing adaptation for networks with an arbitrary number of 59

nodes and edges. 60

The present work provides a generic control-theoretic method using a state-space frame- 61

work and shows that either negative feedback and incoherent feed-forward loop are nec- 62

essary conditions for adaptation. In this sense, the necessary requirements on the network 63

structure obtained through this work are more accurate and stronger than the previous 64

studies. Our entire algorithm is independent of the kinetics, barring some minimal as- 65

sumptions. This approach is in agreement with, and a generalization of the findings from 66

previous studies [5, 10], which have argued that the structure of the network plays a deter- 67

mining role for the governing functionality. 68

The proposed approach enables us to identify all possible control strategies without re- 69

sorting to a computationally demanding brute-force approach that can achieve perfect 70

adaptation. We argue that the presence of either negative feedback or incoherent feed- 71

forward loop are the only two ways to achieve adaptation. Besides, the proposed work 72

also discusses the cases for adaptation for a staircase-type disturbance. We argue that a 73

system that meets perfect adaptation is also capable of producing peak response in the min- 74

imum time. Further, we propose that the adaptive behaviour is invariant to a canonical 75

downstream connection, which in turn shows the context-independence property of the 76

adaptive networks, as opposed to oscillatory networks [31]. 77

The rest of this article is organized as follows. The Methodology Section presents key 78

concepts leading to the proposed algorithm, where the conditions for perfect adaptation 79

are translated into certain equality constraints on the parameters of systems theory. The 80

question of minimum peak response time is also addressed in this section. In the Appli- 81

cation Section, the postulated mathematical conditions are used to identify the potential 82

network structures of any size for adaptation The particular case of retroactivity in adap- 83

tation is also explained in the proposed mathematical framework of control theory. The 84

final Discussion Section places the results along with the simulation studies in perspective. 85

2 Methodology 86

In this section, we outline a generic framework to deduce network structures capable of 87

adaptation. First, we derive the mathematical requirements for the condition of adapta- 88

tion using linear systems theory. Using these conditions, we first discover the motifs for 89

adaptation by networks with a minimum number of nodes and edges. These conditions 90

are further scaled-up to determine the necessary conditions for adaptation in networks of 91

larger sizes, with arbitrary numbers of nodes and edges. 92
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2.1 Linearisation of the rate reactions 93

Working in the linear domain allows us to utilize the wealth of linear systems theory. 94

Given an enzymatic reaction network, the rate equations for the nodes, i. e. enzyme con- 95

centrations (x) can be written as 96

ẋ(t) = f(x(t),u(t)), y(t) = g(x(t),u(t))

where x(t), u(t) and y(t) are the states, inputs or known disturbances and output, respec-
tively. For this set-up, the linearized state-space model is

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) +Du(t)

where A, B, C and D are obtained as the Jacobians of f(x,u) and g(x,u) with respect to
the x and u, respectively. The corresponding transfer function can be written as

G(s) = C(sI−A)−1B+D (4)

For the problem under consideration, the output and input are scalar variables. However, 97

the obtained results apply to multiple-input, multiple-output (MIMO) systems. Indeed, a 98

linearized model around a steady state does not always capture the non-linear dynamics 99

accurately. However, since adaptation is a stable (convergent) response, according to the 100

Hartman–Grobman theorem [32], the conditions obtained for adaptation using linear 101

time-invariant (LTI) systems theory serve as sufficient conditions for the same even in 102

non-linear systems. 103

2.2 Conditions for perfect adaptation 104

Perfect adaptation, as defined above, refers to a system that should be sensitive to changes 105

in the input in its transient phase and be able to drive the response to its previous steady- 106

state value. These conditions can be translated to restrictions on the state space matrices 107

using LTI systems theory as (i) a non-zero peak value and (ii) a zero final value of the 108

output. 109

The condition of non-zero peak value translates to a non-zero value of the sensitivity.
This condition can be attained by making the output mode of the system controllable by
the environmental disturbance. This can in turn be guaranteed, if the Kalman control-
lability matrix, Γc, is full row rank, i. e., for an N-dimensional state space with a single
input,

rank(Γc) = rank(
[

B AB · · · AN−1B
]

) = N, (5)

Since the system of rate equations are linearized around a stable fixed point, the initial
value of the deviated output (deviation from the stable point) of the linearized system
should be zero. These conditions, along with the assumption of linear, exponential sta-
bility (matrix A is Hurwitz), can be mapped onto the parameters of an LTI system for a
step-change in the external environment, u(t), as

y(t) =

t∫

0

CeA(t−τ)Bdτ+Du (6)

y(t = 0) = 0 =⇒ D = 0 (7)
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Using (6), the condition for zero final value can be obtained as

y(t) = CA−1[eAt − I]B (8)

lim
t→∞

y(t) = 0 =⇒ CA−1B = 0 [A is Hurwitz] (9)

It is to be noted that the zero final value condition may not be achieved in several practi- 110

cal scenarios, leading to imperfect adaptation [33]. However, we shall limit this discussion 111

to perfect adaptation. In this sense, adaptation and perfect adaptation shall be used inter- 112

changeably from here on. 113

Although (9) and (5) constitute the main checkpoints for adaptation, several other addi- 114

tional constraints, such as minimum peak time and minimum settling time can play a 115

crucial role in sensing the change in the external disturbance and promptly acting to re- 116

ject it. We argue below in Theorem 1 that the peak time for a system is minimum if the 117

condition of zero final value is satisfied: 118

Theorem 1. For a set S ⊂ D (where D is the ring of all causal transfer functions with real poles) 119

consisting of stable, minimum phase transfer functions with the same set of poles and differing by 120

a single zero position with each other, the transfer function with zero final value has the minimum 121

peak time. 122

Proof. To establish this fact, let us assume a proper LTI system G(s) and another system
H(s) with same singularities (all real), except a zero at the origin. Assume y1(t) (Y1(s)),
y2(t) (Y2(s)) and tp1 , tp2 to be the step responses and the peak times for G(s) and H(s),
respectively.

G(s) = K

(s+ z1)
n∏

k=2
(s+ zk)

m∏

i=1
(s+ pi)

, H(s) = K

s
n∏

k=2
(s+ zk)

m∏

i=1
(s+ pi)

(10)

G(s) = H(s)+z1
H(s)

s
(11)

Y1(s) = Y2(s)+z1
Y2(s)

s
(12a)

y1(t) = y2(t) + z1

t∫

0

y2(τ)dτ (12b)

ẏ1(t) = ẏ2(t) + z1y2(t) (12c)

Setting t = tp2 ,

ẏ1(t)

∣

∣

∣

∣

t=tp2

= 0+z1max(y2(t)) > 0 (13a)

tp1 > tp2 (13b)

The equality in (13b) holds only when G(s) = H(s), i. e. g(t) shows perfect adaptation. 123

124

The above result can be extended in the case of damped oscillatory systems as well. From
(12a), it can be seen that

y1(t) = y2(t) + z1

t∫

0

y2(τ)dτ
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Mathematical representation of 

Protein network

Linearised representation of 

Protein network

𝒙· = 𝐟(𝐱, 𝐤, 𝑖)𝒚 = 𝐡(𝐱) 𝒙· = 𝑨𝐱 + 𝒃𝑖𝒚 = 𝑪𝐱 + 𝑫𝑖
Protein Network

Modeling

Condition on 𝐴
(Equations 7, 8, 21)

Condition violated?
Change the output 

node

Derive admissible motifs

(Theorems 3, 4, 5)

No

Yes

Input Output

Fig 1. Workflow of the proposed methodology. Any given protein network is first
linearized, and the conditions on the A matrix are investigated, to ultimately derive
admissible motifs for the desired functionality.

The peak time for y2(t) is always less than or equal to that of its integral
t∫

0
y2(τ)dτ there- 125

fore their combination y1(t) has a peak time always greater than or equal to that of y2(t). 126

Therefore, Theorem 1 implies that perfect (theoretically infinite) precision also ensures 127

minimum peak time if the positions of the poles and the rest of the zeros are unchanged. 128

The minimum settling time requirement involves calculating time constants, which for 129

a large network can be obtained through a simulation study across different sets of time 130

constants while retaining the property of zero final gain ((5)) to ensure perfect adaptation. 131

To summarize, the conditions for adaptation derived above can be broadly divided into 132

two sets. The first set of conditions ((9)) take care of the criteria for infinite precision, 133

which includes the stability of the system matrix A and zero final gain of the step input. 134

The second set ((5)) ensures non-zero sensitivity. This includes the controllability con- 135

dition. Moreover, for a given network with a specific input–output configuration (i. e. 136

with given B and C matrix), if the attainment of one set of conditions ipso facto violates 137

other, then the network with the given input–output node cannot provide adaptation (see 138

Fig. 1). In that case, a modification of the output node (since the input node is fixed for 139

most of the practical cases) may resolve the problem. 140
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3 Results 141

We demonstrate the capability of the methodology we developed above by applying it to 142

protein enzymatic networks, where each node is a protein, and an edge represents either 143

of the following: 144

1. Activation: a protein A is said to activate B when A acts as a transcription factor that 145

binds the active site of the promoter of B to aggravate the transcription process for 146

the synthesis of B. 147

2. Repression: similarly, if A acts as a transcription factor to reduce the transcription 148

rate of mRNA, which translates to B. 149

For a network containing N nodes, there are 3n
2
numbers of possible network structures.

The generalized state equations for an N-node network can be written by considering
the normalized concentration of each protein as states:

ẋ = f(x,k,d)

y = Cx

where, x ∈ RN and k ∈ Rp are the states and the parameters associated with the rate 150

equations. In passing, it may be noted that in the presence of any algebraic constraints on 151

the states (e.g. due to conservation laws), an N-node network corresponds to a reduced- 152

order dynamical system. In the single disturbance case, d is referred to as the disturbance 153

variable. The protein that receives the external disturbance directly is considered as the 154

input node. The concentration of the Nth node is taken as the output. 155

3.1 Two node networks- are they capable of adaptation? 156

From a systems theoretic viewpoint, the step response of a first-order system is always a 157

monotone which is not the case with adaptation. Therefore, the possibility of providing 158

adaptation for any single protein can be safely ruled out. The immediate next case of 159

N = 2 can be investigated. Implementing the aforementioned approach (Fig. 1) reveals 160

that two protein networks with different input and output nodes are unable to provide 161

adaptation. However, two-node networks with the same input and output nodes can 162

perform adaptation (see SI Methods) as shown in 2. 163

It is important to note that the system matrix A for an N-node system linearized around 164

a stable operating point carries not only the necessary information about the structure of 165

the network but also the type of each edge, i. e. activation or repression. For instance, if 166

A represses C, the element in the associated A matrix that corresponds to this edge turns 167

out to be negative. This implies that fij(x) (for activation) or −fij(x) (for repression) is 168

a class K (i. e. monotone within a finite open interval in the domain, and passes through 169

the origin) function with respect to xj, ∀j 6= i. Intuitively, A matrix acts as a variant of 170

the incidence matrix for the graphical network, with the diagonals being the exceptions. 171

It is possible to have a negative or non-positive value of the diagonal element, albeit in 172

the presence of a self-activation loop (refer to SI Methods). These inherent properties of 173

the biological systems’ rate dynamics perform an instrumental role in maintaining the 174

structural determinism property of adaptation. 175

Interestingly, there exists a class of biological networks that provide adaptation for a single 176

step input but do not respond to subsequent perturbations [21]. This is defined as the 177

toilet flush phenomenon (Fig. 2). Friedlander et al (2011) and Goh et al (2013) showed that 178

this phenomenon occurs in a three node network with an equality constraint stemming 179

out from a conservation law thereby reducing the effective number of state variables 180
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Fig 2. Two node networks capable of adaptation subject to staircase disturbance. The
abbreviations LPA, NLPA, LPAFO, NLPAFO stand for linear perfect adaptation,
nonlinear perfect adaptation, linear perfect adaptation for once and nonlinear perfect
adaptation for once respectively.

to two [19, 34]. In this regard, the aforementioned algorithm provides a great systems- 181

theoretic perspective to explain and design such networks. If the time difference between 182

two successive step perturbations is large enough (compared to the system’s settling time), 183

then the condition for adaptation in this case is the same as that for a single step. Along 184

with this, it is to be observed that with each step perturbation, the steady-state values of 185

the system changes (note that the adaptation property guarantees the invariance of the 186

steady-state of the output state only), which leads to a different linearized model. If the 187

modified linearized model remains controllable and the general condition of adaptation 188

is satisfied, the system provides adaptation for staircase input (Refer to SI Methods for a 189

detailed discussion). 190

3.2 Three-node networks with a maximum of three edges 191

The admissible network structures obtained from the analysis of the two-node enzymatic 192

networks exclude the possibility of network structures that can provide adaptation with 193
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different input-output nodes. Therefore, it is important to identify a control strategy– 194

perhaps the inclusion of an additional controlling node–that can bring adaptation to the 195

two-node protein system with different input–output nodes. 196

From the perspective of a control-theoretic framework, the functionality of adaptation
can be thought of as a regulation problem. Considering the biological feasibility and the
network with only one external disturbance input (D), we propose a feedback control
scheme where another protein B can act as a controller node. If the concentration of B is
u, the controller dynamics can be written as

u̇ = g(x1, x2,u) (15)

We adopted g : R3 → R as a linear function of the states and the control input.

g(x1, x2,u) = αabx1 + αcbx2 + αbbu (16)

The parameters such as αab and αcb govern the strength and type (repression or acti- 197

vation) of the edges. From feedback control theory [32] if the open-loop system is fully 198

controllable by u then consideration of u as a variant of dynamic state feedback control 199

strategy does not alter the controllability of the system. 200

3.2.1 Finding the admissible topologies 201

The closed system can be written as

ẋ =

[

α11 α12

α21 α22

]

x+

[

β1 β2

0 β3

] [

d

u

]

(17)

For the system to provide adaptation, x2 has to be controllable by the control input u. For 202

the closed-loop system, the infinite precision condition for adaptation can be written as 203

∃p ∈ R : {x∗ =

[

p

0

]

,u∗} s.t.
[

ẋ
u̇

]

= 0

∣

∣

∣

∣

x∗,u∗

204

For the system with controller,

ẋ =

[

α11 α12

α21 α22

]

x+

[

β1 β2

0 β3

] [

d

u

]

(18a)

u̇ =
[

αab αcb

]

x+ αbbu (18b)
[

ẋ
u̇

]

=





α11 α12 β2

α21 α22 β3

αab αcb αbb





︸ ︷︷ ︸
Acl

[

x
u

]

+





β1

0
0



d (18c)

Using the condition for adaptation,




0
0
0



 =





α11 α12 β2

α21 α22 β3

αab αcb αbb









p

0
u∗



+





β1

0
0



d (19)

=⇒ α21αbb − β3αab = 0 (20)

The condition α21αbb − β3αab = 0 can be achieved in three scenarios: 205

1. All the terms are zero: this leads to singularity of Acl, and is hence not acceptable. 206

2. α21αbb = β3αab = 0: this is feasible. Interestingly, if α21 = 0, the state x2 becomes 207

unobservable. Also, in order to attain the condition for adaptation, making α21 = 0 208

requires either (i) β3 to be zero, which in turn, results making x2 an uncontrollable 209

mode with respect to u or alphaab = 0 leading to uncontrollability with respect to 210

i. 211
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3. α21αbb = β3αab 6= 0: this is acceptable as long as Acl is Hurwitz. 212

Combining each of the feasible possibilities with the infinite precision condition for adap- 213

tation, we arrive at a superset of admissible motifs from the above possibilities. As it can

Table 1. Possible motifs for adaptation
Possibilities Final condition
a21αcbβ2 < 0 Gross −ve feedback.
αcbβ3 < 0 −ve feedback between B and C
αabβ2 < 0 −ve feedback between A and B
α21

β2
αab

< 0 Incoherency in A → C

214

be seen from Table 1, the first three network motifs involve negative feedback engaging 215

node B. This type of network can be termed as negative feedback loop with a buffer node 216

(NFBLB). Since NFBLB involves negative feedback, the corresponding response becomes 217

damped oscillatory for most of the cases. However, as long as the adaptation criterion is 218

satisfied, the output after a damped oscillatory transient response goes back to its initial 219

steady state. 220

The remaining motif carries an incoherency between the two forward paths (A → C and 221

A → B → C) from A to C. This is precisely the reason it is called incoherent feed-forward 222

loop with proportioner node (IFFLP). Owing to the structure of IFFLP, the underlying 223

system matrix A for IFFLP will always have real eigenvalues, thereby eliminating the 224

possibility of oscillatory transients (Fig. 3). 225

3.3 Finding all possible three-node motifs capable of adaptation 226

After finding the minimal network structures—minimal in terms of edges and number 227

of nodes—we extend the above method to find the necessary topological properties, i. e. 228

the existence of feedback or feed-forward configurations without any restriction on the 229

number of edges, for the three-node network. 230

Remark 1: For any three-node network, the corresponding system matrix can be written
as





ẋ1
ẋ2
ẋ3



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33



+





β1

0
0



d

y =
[

0 0 1
]





x1
x2
x3





For adaptation,

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

= 0 and A has to be Hurwitz.

|A| =

∣

∣

∣

∣

∣

∣

a11 a12 0
a21 0 0
a31 0 a33

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸
L1

+

∣

∣

∣

∣

∣

∣

a11 0 0
0 0 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸
L2

+

∣

∣

∣

∣

∣

∣

a11 a12 0
0 0 a23

a31 0 a33

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸
L3

+

∣

∣

∣

∣

∣

∣

a11 0 0
a21 a22 0
a31 a32 a33

∣

∣

∣

∣

∣

∣

︸ ︷︷ ︸
L4
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(a) C for IFFLP topology
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(b) Oscillatory C for NFBLB topology
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(c) Non-oscillatory C for NFBLB topology
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(d) IFFLP+NF

Fig 3. (a) shows the response of the output node for a three-node IFFLP topology. (b)
shows the same for a three-node NFBLB. The oscillatory behavior can be attributed to
the complex eigenvalues of the A. Similarly, (c) shows a non-oscillatory response of an
NFBLB motif. (d) is the response of the output node of a network containing both the
admissible network structure i. e.incoherent feedforward path and negative feedback.
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As it can be seen, the determinant of A can always be written as a combination of deter- 231

minants of elementary topologies containing exactly 3 edges. For A to be Hurwitz, |A| 232

has to be negative, i. e. at least the determinant of any one of these four matrices has to 233

be negative. If any of the first three terms (L1, L2, L3) is negative, it indicates negative 234

feedback. Note the condition

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

= 0 is ‘structurally’ satisfied for L1, L2, L3 but in 235

the case of L4 it has to be satisfied by the parameters. If L4 is the only negative term, then 236

there exists an incoherent feed-forward loop in the network. Similarly, multiple negative 237

terms represent the presence of both types of motifs. This implies that for any three-node 238

network capable of adaptation with arbitrary edges, the presence of negative feedback or 239

incoherent feed-forward loop is a necessary condition. 240

Since the negative determinant for A ∈ R3×3 is a weaker condition for stability compared 241

to that of A being Hurwitz, the presence of either or both incoherent feed-forward and 242

negative feedback loops is only a necessary but not sufficient condition for adaptation. 243

Figure 3 depicts the response of different admissible three-node networks to identical 244

disturbance input. Similar to 2 the signals expressed in lines and dots refer to the responses 245

of the non-linear rate dynamics and corresponding linearised counterparts for the corre- 246

sponding network structure, respectively. In both the cases a variant of Michaelis Menten 247

kinetics is considered for simulation. It can be inferred from figure 3(a) that IFFLP always 248

produces hyperbolic responses. The reason behind this can be traced to the spectrum of 249

the underlying system matrix A ∈ R3×3 in the linearised dynamics. Due to the absence 250

of any loop in the network, the associated A matrix for a feedforward network is lower 251

triangular, with the diagonals being the eigenvalues, thereby resulting in hyperbolic re- 252

sponses. Unlike IFFLP, NFBLB can potentially give rise to oscillatory responses along 253

with perfect adaptation as shown in figure 3(b). 254

The above framework, developed for three-node networks, can be extended to larger 255

networks with N−nodes and P−edges. As shown in the previous section, a three-node 256

network comprising an input, output, and controller can provide adaptation. In this sense, 257

an N (N > 3) node network can be thought of as the closed-loop system incorporating 258

I/O nodes along with the controller network comprising of the remaining N− 2 nodes. 259

At first, we derive the admissible elementary N−node network structures i.e. networks 260

that contain at most N−edges and can provide perfect adaptation. We then use these 261

results to establish the necessary structural conditions for perfect adaptation in case of any 262

N−node network. 263

3.4 Condition on minimum number of edges in an N−node net- 264

work for adaptation 265

In the following theorem, we first derive the lower limit on the number of edges required 266

for an N−node network to provide perfect adaptation. 267

Theorem 2. For a network with N > 3 nodes, at least N edges are required to provide perfect 268

adaptation. 269

Proof. It has already been established that in the case of biochemical networks, the sys-
tem matrix A for the linearized dynamics serves as the digraph generating matrix. Let
us assume that the above statement in the theorem is wrong i.e. there exists an N− node,
N− 1 edge network that can achieve adaptation. For an N-node, N−1-edge network to
show adaptation, it has to satisfy (i) the controllability condition and (ii) infinite precision
condition. The mathematical expression for the second has already been derived in (9).
However, here we modify the equation for convenience.

ẋ = Ax+ Bd (21)
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where, x =
[

x1 x2 · · · xN
]τ

∈ RN is the state vector with each element (xi) repre-
senting the concentration of each node (ith node) and B =

[

β 0 · · ·
]τ

∈ Rn×1. Let
the output be concentration of the Kth node and input be applied on the first node. This
implies that the steady state concentration (x∗k) of the output node is zero in linearised
representation. At the steady state,

Ax∗(x∗

K=0) + Bd = 0 (22)

=⇒ |Ã| =0 (23)

where, x∗(x∗

K=0) is the steady state solution to (21) with the Kth component being zero 270

and Ã is the minor of the component representing the edge from the output to the input 271

node. 272

From elementary network theory, it can be said that it is always possible to design a con- 273

trollable network with N nodes with N− 1 edges if and only if there is no feedback loop. 274

Since the possibility of an isolated node is eliminated, the only feasible structure for a N- 275

node, N − 1 edge is a feed-forward network (N-node networks with a lower number of 276

edges are eliminated for the same reason). Further, since the number of edges is N− 1, no 277

node can have more than one incoming or outgoing edge. In order to satisfy the control- 278

lability condition, it requires at least one forward path from input node to the output. In 279

the case of an N-node network with N− 1 edges and no isolated nodes, there can exist one 280

forward path from the input to output node maximum. 281

The second condition, i.e., the infinite precision condition requires the minor of the com- 282

ponent of A matrix that represents a direct edge from the input to output node be zero. 283

For any digraph matrix in RN×N, every term in the determinant expression contains N! 284

terms, each a product of N−tuples chosen from the matrix. Further, from combinatorial 285

matrix theory, each of these N−tuples can be expressed as a multiplicative combination of 286

the matrix elements that map to existing loops of the network and the diagonal elements. 287

According to this result, each term in the minor of A1K has to contain at least one for- 288

ward path from the first to the Kth node. Since in the case of N− 1 edge networks, there 289

can only be one forward path possible, the minor of A1K is a singleton set. Thus fulfilling 290

the infinite precision condition in this scenario amounts to deleting the only forward path 291

from the input to the output node rendering the system uncontrollable (See SI Appendix). 292

On the other hand, it has been observed that when N = 3, the number of edges required 293

to produce adaptation is also three (more generic demonstration of constructing N-edge 294

N-node motifs that can achieve adaptation is provided in the supplementary information). 295

By virtue of the foregoing discussion, we conclude that the minimum number of edges 296

required for adaptation is N. 297

3.5 Feedforward networks are adaptive only when incoherent 298

We are now ready to present below the most essential and generic results emanating from 299

this work. According to Theorem 2, it requires at least N edges for any N−node network 300

to provide adaptation. It can also be shown that there exist only two principal means to 301

satisfy (23) for any elementary N−node network(refer to SI Methods). The admissible 302

elementary network structures can be divided into two further categories i) network 303

without and ii) with loops. In the first scenario, we argue in the following theorem that 304

the existence of at least two opposing feed-forward paths is a necessary condition for 305

adaptation. 306

Theorem 3. For an N−node network without any loop, the only way to provide perfect adap- 307

tation is to have at least a pair of feed-forward paths from the input to output loop with opposing 308

effects. 309
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Proof. Let us consider the concentration of the kth node as the output variable. It can be 310

shown that for the output variable to adapt to disturbances, k has to be greater than two 311

(refer to SI Methods). Given an N−node, controllable network structure with no loops, it 312

is always possible to order the nodes so that the resultant digraph matrix is lower diagonal. 313

Since the system matrix A is equivalent to the digraph matrix, it shall also inherit the 314

lower diagonal structure. 315

Assuming k > 2, for the output node of the network structure to provide adaptation, it 316

has to satisfy the i) controllability ((5)) and ii)infinite precision (Eqs. 9, 23) conditions. It 317

can be shown that a feed-forward network is always controllable (refer to SI Methods). 318

Also, the lower diagonal property of A guarantees the stability of the system, given the 319

diagonals are strictly negative. 320

The infinite precision condition in (23), requires the minor of the component A1k (De- 321

note it as M) to be zero. From combinatorial matrix theory [35], it can be stated that 322

except the product of all the diagonal elements, every other term in the determinant ex- 323

pression of a digraph matrix maps to the product of the diagonals and the loops. Using 324

this result, it can be claimed that each of the (N− 1)! terms obtained through multiplying 325

A1k with its minor in the determinant expression of A is composed of products of the 326

loops and diagonal elements. Also, each of these terms must contain exactly one loop that 327

involves the edge from kth to the first (input) node. Therefore, the corresponding terms 328

in the minor of A1k should contain exactly one possible forward path from the input node 329

to the output node along with other possible loop or diagonal elements or both. 330

Since there are no loops in the feed-forward network structure, every term in the minor
expression contains exactly one forward path and diagonal elements. Let us define the set
Fks ∀k = 1(i)N − 1 where each element in Fk contains the product of the elements in
the A matrix that represents a forward path with k edges and N− 1− k diagonals with no
common indices with the former. Consequently, the minor expression can be written as

M =

N−1∑

p=1

Np∑

j=1

(−1)pFpj (24)

for adaptation, M = 0 (25)

0 =

N−1∑

p=1

Np∑

j=1

(−1)pFpj (26)

where, Np is the cardinality of the set Fp, Fpj is the jth element of Fp. If Fpj has a for-
ward path fpj and the product of the diagonals as Dpj the associated cumulative sign (Sp)
of Fpj in the minor expression can be written as

Sp = (−1)psign(Fpj)sign(Dpj) (27)

=⇒ (−1)psign(Fpj)(−1)(N−1−p) (28)

Sp = (−1)N−1sign(Fpj) (29)

It is evident from (29), Sp is independent of p but a function of the effective sign of the 331

forward path. For (26) to hold, there should be at least one pair with mutually opposed 332

cumulative signs. This can only be possible if there exists at least one forward path with 333

the effective sign being positive, and at least one of the remaining forward paths has to be 334

of the effective sign negative. 335

3.6 Conditions on elementary networks with loops for adaptation 336

In the second case (N−node, N− edge networks with at least one loop), one of the possible 337

network structures with N edges can be composed of two or multiple loops without any 338
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connecting edge and the common node. In the next theorem, we argue that this type of 339

network cannot attain adaptation. 340

Theorem 4. An N− node network containing multiple loops with no common species and no edge 341

connecting the loops cannot provide adaptation. 342

Proof. As established in the methodology section, the underlying linearized dynamical
system has to be controllable by the external disturbance input to perform adaptation.
Now, for an N-edge network with Lm loops with no common nodes between them, the
associated system matrix A can be written as

A =

[

S 0
0 T

]

(30)

where, s consists of the loop element involving the input node x1 and T comprises el-
ements representing all the remaining Lm − 1 loops. To avoid the trivial scenario, we
consider that the output node is not involved in any loop with the input network. Let
the loop involving the input node x1 involves n1 number of nodes then S ∈ RN1×N1 and
T ∈ R(N−N1)×(N−N1). It is to be noted that if the output node is involved in a loop with
the input node, then the effective network order reduces to N1. In order to avoid such
trivial cases, we assume that the output is involved in any of the remaining Lm − 1 loops.

Given B =
[

β 0...
]T

=
[

Bs1×n1
01×(n−n1)

]T
associated Kalman controllability matrix

(K) for the pair (A,B) can be evaluated as

K =

[

Bs
T SBs

T S2Bs
T · · · S(N−1)Bs

T

0 0 0 · · · 0

]

(31)

=⇒ dim(Im(K)) 6 dim(Im(S)) < N (32)

where, Im(·) denotes the column space of a matrix, and dim(·) calculates the dimension of 343

a given vector space. From (32), it is clear that the Kalman rank condition is not satisfied 344

in this case, leading to failure in achieving adaptation. 345

Therefore, the problem of uncontrollability discussed in Theorem 4 can be circumvented 346

by placing at least one connecting edge between each loop with no common nodes. In 347

that case, the question of stability has to be taken into consideration. 348

Remark 1. Along with the equality condition (23), the stability of the linearized system should
also be guaranteed. Again, we impose a weaker condition of stability by invoking the sign of the
determinant of A. If A ∈ RN×N is Hurwitz then

sign(|A|) = (−1)N (33)

It is to be noted that for any matrix A ∈ Rn×n to be Hurwitz, it is required to satisfy exactly N 349

number of conditions. The condition mentioned in (33) is one of them which is concerned with the 350

product of the eigenvalues. 351

With this stability criterion, it can be shown that specific network structures with positive 352

feedback loops can not provide adaptation due to loss of stability. 353

Theorem 5. An N-controllable node network with multiple loops and no common nodes cannot 354

provide adaptation if the effective signs of all the loops are positive. 355

Proof. Let Q be the set containing all the controllable candidate motifs containing mul- 356

tiple loops with no common nodes but edges connecting each loop. Further, we assume 357

that every node is involved in exactly one loop. Suppose, an element P in Q consists of 358

Lp number of loops. It is evident that for P to be controllable, it has to contain N edges 359
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consumed by all the Lp loops along with minimum Lp − 1 edges connecting the loops 360

summing up to N+ Lp − 1 edges in total. In the present context, The minimal motifs can 361

be thought of as the elements in Q which has N+ Lp − 1 number of edges and Lp number 362

of loops. Define the set Φ ⊂ Q consisting of all possible minimal motifs in Q. 363

In order for a minimal motif in Φ to provide adaptation, it must satisfy the adaptation
condition (23). This can be achieved if and only if at least one of the diagonal elements of
the A matrix is zero (refer to SI). Let us assume, that the Dth

z row of the A matrix con-
tains the zero diagonal. Since none of the loops share any common node, the Dth

z node
must be associated with only one loop denoted by Lz. Suppose Lz involves Nz number of
nodes. The set Q contains all the elements in A matrix that correspond the loop Lz. Sup-
pose Az ∈ RNz×Nz be the sub matrix of A that captures the connection patterns of all the
Nz nodes involved in Lz. Since each node is involved in only one loop the structure of the
associated A matrix can be written as

A =





Au 0 0
Q1 AZ 0
Q2 Q3 ANz



 (34)

where, Au ∈ RNu×Nu is the sub matrix that captures the upstream loops to Lz and ANz
∈

R(N−Nz)×(N−Nz) involves all the loops except the upstream loops and Lz. The sub matrix
Qi captures the downward edges joining the loops. If the spectrum of Az, and ANz

are
νAz

and νANz
respectively then the spectrum of A (νA) can be expressed as

νA = νAu

⋃

νAz

⋃

νANz
(35)

It is evident from equation (35) that for A to be Hurwitz, Az has to be Hurwitz. Impos-
ing the stability criterion as defined in the equation (33) on Az,

sign(|Az|) = (−1)Nz (36)

Since one of the diagonal components of Az is zero, the determinant in this case is the
product of all the elements mapping to all the edges involved in the Lz. From combina-
torial matrix theory [35], the sign assigned to a loop with Nz number of nodes in the
determinant of a matrix can be written as (−1)(Nz)−1.

|Az| = (−1)(Nz−1)
Nz∏

i=1

αi, αi ∈ Q (37)

Therefore, using equation (36) we can say for A to be Hurwitz the following condition
should hold

sign(|Az|) = sign((−1)(Nz−1))sign

( Nz∏

i=1

αi

)

(38)

(−1)Nz = sign((−1)(Nz−1))sign

( Nz∏

i=1

αi

)

(39)

=⇒ sign

( Nz∏

i=1

αi

)

= −1 (40)

From (40), it is clear that, if the cumulative signs for all the loops of any candidate motif in 364

Φ are positive then the resultant A becomes unstable, failing to provide adaptation. 365
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3.7 Conditions for adaptation in larger networks 366

The above important results help us find out the necessary structural conditions for a net- 367

work of N nodes and P edges, (∀N > 2, ∀P > 2) to provide adaptation that are formalized 368

below. 369

Theorem 6. Statement 1 serves as a necessary condition for Statement 2 370

1. There exists either negative feedback or incoherent feed-forward loop or both in the network. 371

2. The network attains perfect adaptation in the presence of a step type disturbance. 372

Proof. From Theorem 2, consequently, if the rank of Ã < (N− 1) then it will lead A to be 373

rank deficient, which in turn, violates the stability criterion. 374

The admissible N−node topologies that satisfy the adaptation condition (23) contain at 375

most (N− 1)(N− 1)! number of elements in the determinant expression of the underlying 376

linearised system matrix, A, Also, each of the (N − 1)(N − 1)! elements is the product 377

of some N terms belonging to A. All the elements except the one that is the product of 378

the diagonal contain at least two off-diagonals. Each term containing the product off- 379

diagonal (and diagonals) terms of the system matrix refers to a loop when mapped back 380

to the structure [35]. For instance, a term in the expression containing P off-diagonal 381

elements (remaining N− p diagonals) can map to a loop engaging P nodes. This refers to 382

a network containing a loop of P links and N − P forward paths (Theorem 2). So, using 383

matrix theory, the prefix sign of each term in the determinant expression of any matrix 384

can be determined by calculating the minimum number of exchanges needed to arrange 385

them as products of diagonals. 386

For instance, an element with a loop with P-nodes, the remaining N− P are the diagonal
elements. Now, for a P-node loop, the minimum number of exchanges necessary for
arranging them as the product of diagonals can be easily obtained as P − 1. So, the stability
condition for N-node network with a single loop with P nodes can be written as:

(−1)P−1sign

(

∏

i

Ai,i

)

sign(Nl) = (−1)N (41)

Using the assumption of all the diagonals to be default negative

(−1)P−1(−1)N−Psign(Nl) = (−1)N (42)

sign(Nl) = −1 (43)

This concludes the presence of negative feedback loops as admissible elementary motifs 387

for adaptation. As it can be seen from Theorem 3, the only term consisting of N diagonal 388

elements can be written as the determinant of incoherent feed-forward loop motif as the 389

associated A matrix for IFFLP is lower diagonal. Interestingly, it can also be shown that 390

the elementary network structures i.e. the negative feedback loop and IFFLP satisfy the 391

stronger Hurwiz stability criterion as well (Refer to SI). 392

So, for any network of arbitrary node N and arbitrary number of edges, if it attains adap- 393

tation, then its determinant can be written as the sum of the determinants of (N−1)(N−1)! 394

numbers of elementary motifs. To satisfy the stability criterion, the determinant of at least 395

one elementary motif should be of the sign (−1)N. This showcases the presence of either 396

NFBLB or IFFLP as a universal, necessary condition for adaptation. The elements in the 397

determinant expression mapping to multiple loops without common nodes can be con- 398

cluded as incapable of adaptation using the second dependency. It can also be shown that 399

these structures with a link between the nodes cannot provide adaptation if there exists no 400

single negative feedback because it fails to satisfy the stability condition as at least one of 401

the eigenvalues of the matrix becomes positive (refer to Theorem 5). 402
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It is to be stressed that these structural conditions for adaptation only serve as necessary 403

conditions for two reasons. Firstly, the sign of the determinant condition used here in 404

(33) is only a weak (necessary) property of a stable system. Secondly, there are additional 405

quantitative constraints that are to be satisfied by fine-tuning the parameters. For instance, 406

in a three-protein system, the negative feedback requires αbb = 0, which needs to be 407

guaranteed by the parameters. Similarly, a three-protein network with incoherent feed- 408

forward loop requires α21αbb = β3αab 6= 0 to be satisfied by the parameters. 409

Interestingly, it is found that adaptation is preserved against the connection with a down- 410

stream system (Fig. 4). The connection considered here is canonical, i. e. only the output 411

node is connected with the downstream network. 412

Lemma 7. If the stability of the system is not altered, then the functionality of perfect adaptation 413

for an upstream system does not get altered if the output node is connected with a downstream 414

system. 415

Proof. Given an upstream adaptive network containing N nodes and P edges, it is to be 416

proved that the system preserves its functionality if it is connected with another arbitrar- 417

ily connected network. Without any loss of generality, let us assume the 1st and the Nth
418

nodes are the input and output nodes of the upstream network, respectively. The down- 419

stream system is connected in a feedback fashion with the output node. 420

Let the system matrices of the upstream and downstream networks be A1 ∈ RN×N and
A2 ∈ RP×P, respectively. As per the statement, the upstream system can provide adapta-
tion, i. e. det|Ã1| = 0, where Ã1 is the matrix associated with the minor of a1N. Due to
the assumption of the structure, the modified system matrix A ′ for the augmented system
can be written as

A ′ =

[

A1 E1

E A2

]

where, the elements of E1 ∈ RN×P are zero everywhere other than the Nth row. Sim- 421

ilarly, the elements of E ∈ RP×N are zero everywhere other than the Nth column. For 422

the combined system to produce adaptation, the minor of a ′

1N has to be zero. The matrix 423

associated with the minor of a ′

1N (Ã1
′

) can be written as 424

Ã1
′

=

[

Ã1(N−1×N−1) E2(N−1×P)

0(P×N−1) A2(N−1×N−1)

]

Since Ã1
′

can be expressed as a block diagonal matrix with the lower non-square matrix 425

being zero, the determinant is the product of the individual determinants of Ã1 and A2. 426

According to the assumption on the upstream system det(Ã1) = 0, therefore the matrix 427

Ã1
′

is singular. This, in turn, implies that the combined system can provide adaptation if 428

the stability is not altered. 429

This is intuitively a well-expected result because, typically, adaptation networks are 430

mounted on the big downstream network to provide robustness with respect to external 431

disturbances, and the above lemma shows that the adaptation networks are not retroactive 432

and context-dependent. 433

4 Discussion 434

Biological networks are complex yet well-coordinated and robust in nature. Although 435

the form of the reaction dynamics underlying a network governs certain behaviors of 436
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(a) Five node IFFLP topology
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(b) Five node NFBLB topology
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(c) NFBLB with downstream
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(d) IFFLP with downstream

Fig 4. (a) shows the response of the output node for a five node IFFLP topology. (b)
shows the same for a five node NFBLB with a hyperbolic response. The oscillatory
behavior in (c) can be due to negative feedback, leading to complex eigenvalues of the
underlying A matrix. (d) demonstrates the modular behavior of an NFBLB motif when
connected to a downstream system. (e) is the response of the output node of an IFFLP
network connected with a downstream system. Although the functionality of adaptation
is not compromised, the oscillatory behavior is undoubtedly due to the negative feedback
associated with the output of the IFFLP module and the downstream node.

the biological system, the major roles of controlling and coordinating different levels of 437

hierarchy in the networks can be attributed to the very structure of the network. Previ- 438

ous research works have adopted one of a brute-force, graph-theoretic or a rule-based 439

approach for identifying admissible structures for perfect adaptation. The nature of results 440

obtained from these approaches are limited by the computational cost, inability to capture 441

all necessary structures and/or the challenges in handling networks of arbitrary sizes. In 442

this work, we appeal to the linear systems and control theory for obtaining formal and 443

generalised results without being bounded by any of the aforementioned limitations. 444
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Intuitively, it is apparent that for any (biological) system to exhibit adaptation, it should 445

internally possess a feedback and / or feedforward configuration as mandated by control 446

theory. However, deeper and concrete answers, especially on how such results scale-up 447

with the size of network, inevitably call for a formal study. The primary questions that 448

formed the basis of this work are (for perfect adaptation) (i) how do these intuitions for- 449

mally manifest in biological networks? (ii) what are the possible signature structures and 450

very importantly (iii) whether a generalised result can be obtained for networks of any 451

size? These are somewhat formidable questions, especially given the non-linear nature 452

of biological processes. However, it turns out that linear systems theory can still provide 453

concrete answers. Essentially, the linearized structure of the system provides the answer 454

to a binary question of whether the network is able to provide adaptation or not. If yes, 455

further conditions on the linearized system are obtained and the problem of determining 456

suitable network structure is resolved. The proposed framework is systematic and generic 457

as against computationally demanding search methods and finding specific control strate- 458

gies for a particular network to achieve adaptation. 459

Deriving the necessary conditions for adaptation, we show that a minimum of N edges 460

are required for an N-node network to produce adaptation. We use this result to deduce 461

further, that there exist only two ways, namely (1) feedback loop, and (2) multiple for- 462

ward paths in an N−node network, to provide adaptation. 463

Finally capturing the above results in Theorem 6, we show that existence of either a neg- 464

ative feedback loop or incoherent feed forward node acts as a necessary condition for 465

adaptation. This result agrees with the observations in the seminal work of Tang and co- 466

workers [10], but without the need for elaborate simulations and parameter samplings. 467

We believe that the conditions obtained for a general N-node network assumes most 468

prominence for two reasons: (i) no prior theoretical results exist and (ii) it provides a 469

deeper understanding of how a general protein network is configured to provide adap- 470

tation. Lemma 7 establishes that adaptation is retained in presence of a canonical down- 471

stream connection. This non-retroactive nature of these networks implies that they are 472

highly likely to preserve their function in synthetic circuits designed with various mod- 473

ules. 474

It should also be noted that the topologies obtained from the linearized hyperbolic system 475

provide perfect adaptation in the practical (nonlinear) scenario. The more generic case 476

comprising of the possibility of a non-hyperbolic system providing adaptation can be 477

an interesting future study. Also, the controllability condition used in this paper works 478

as a sufficient condition for the controllability of the actual nonlinear system. The area 479

of nonlinear controllability can be explored in this context to avoid missing out on false 480

negatives. 481

In sum, we see four definitive contributions of this study. We first proved via Theorem 1 482

that the network structures for adaptation ipso facto reduce peak time because of the in- 483

finite precision (zero-gain) requirement. Second, the question of adaptation for staircase- 484

type disturbances had been addressed and concise conditions inspired from systems theory 485

were proposed regarding this for the first time. Third, we argue that the structural condi- 486

tions obtained as the necessary conditions for adaptation herein, are most stringent among 487

the ones in the existing literature (Refer to Table S1 in the SI). Araujo et al.(2018) em- 488

phasised the need of either a loop or multiple opposing forward paths whereas this paper 489

extends this result further arguing that the sign of at least one feed back loop has to be 490

negative for ensuring adaptation in absence of opposing forward paths [30]. Fourth and 491

most notably, the entire algorithm remains agnostic to the particularities of the reaction 492

kinetics. Our approach lays the foundation for the application of LTI systems theory to 493

predict topologies and fine-grained constraints, for networks capable of achieving other 494

functionalities. 495
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Supporting Information 583

This section presents the necessary calculations, proofs and the rate laws used for simula- 584

tion studies. 585

1 Two-node networks 586

Considering the inability of a single protein network to provide adaptation, we now turn
to a two-protein network. The network comprises two proteins C and A, which are
connected; A is further connected to the external source of disturbance (input D), and the
concentration of C is considered as the “output species”. Let us denote the concentration
of A, C and the disturbance species D by x1(t), x2(t),and d(t) respectively. The resultant
linearized state space representation is:

ẋ = Ax+ Bd (1)

ẋ =

[

a11 a12

a21 a22

] [

x1
x2

]

+

[

α1

0

]

d (2)

According to the previously derived conditions for adaptation (Eqs. (9) and (5)), the out- 587

put state x2 has to be controllable by the applied input. This demands a non-zero value for 588

a21, i. e. there should exist an edge from A to C. As per the second condition for adapta- 589

tion, the final value of the linearized output state x2 should be zero, and the system matrix 590

A should be Hurwitz. 591

Denote the steady-state value as x∗ =
[

x∗1 x∗2
]T
. Then, at steady state,

[

0
0

]

=

[

a11 a12

a21 a22

] [

x∗1
x∗2

]

+

[

α1

0

]

d (3)

For any vector of the form
[

x∗1 0
]T

to be a solution to the above system of equations 592

requires a21 to be zero. This is a violation of the controllability condition. Therefore, 593

it can be concluded that a two-node network with different input–output nodes cannot 594

provide adaptation. 595

To examine an alternate possibility, let us now consider the input node A itself as the 596

output node as well. Note that the state x1 is always controllable by the disturbance ∀α1 6= 597

0. Also, if a22 is made zero possibly with a positive self loop on C, then, the final steady- 598

state value of x1 can be zero, irrespective of x2. In this case, for A to be a stable, a21a12 has 599

to be negative. This condition maps to a negative feedback between A and C (Figure S1). 600

Taken together, the admissible topology must have 601

1. a22 = 0, =⇒ possible positive self loop on C 602

2. a21a12 < 0 =⇒ negative feedback between A and C . 603

1.1 Toilet Flush Phenomenon 604

To demonstrate further, let us consider a network of three proteins, X1, X2, and X3,
where X1 is connected with X2, X2 is connected with X3, and X3 is connected with X1.
Let the output node, X1, be perturbed with an input, u. If we adopt mass-action kinetics
and assume the total mass to be conserved, i. e. [X1] + [X2] + [X3] = 1, thereby leaving two
independent states, the state equation can be written as

˙[X1] = k1u(1− [X1] − [X2]) − k2[X1]

˙[X2] = k2[X1] − k3[X2]

May 31, 2021 24/32

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.27.445914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.445914
http://creativecommons.org/licenses/by-nc/4.0/


For the case of zero input, the steady-state values are [X1]
∗ = [X2]

∗ = 0. It can be shown 605

by our method that, for adaptation, k3 has to be zero, but after a single step, the steady- 606

state values of the states become [0, 1], thereby rendering the system linearized around 607

the new steady-state uncontrollable rendering the system responsive only for the first step 608

type jerk.

C

A

Output

Disturbance

C

A

Output

Disturbance

Fig S1. Admissible two-node topologies. The normal (blue) arrowheads signify
activation, while the bar-headed (red) arrows signify repression.

609

2 Equivalence between conditions between adaptation 610

It was shown in the previous literature that the condition for adaptation is 1) one of the 611

zeros in the transfer function to be placed in the origin. 2) In this work, we have shown 612

for a system (A,B,C,D) to provide adaptation the necessary condition is CA−1B = 0. 613

We argue that these two claims are equivalent. To prove this claim, we first establish 614

1 → 2. 615

Proof A proper and stable transfer function H(s) which provides adaptation can be ex-
pressed as

H(s) =
Nn−1s

n−1 +Nn−2s
n−2 + · · ·+N1s

αn−1sn + αn−1sn−1 + · · ·+ α1s+ α0
(4)

The corresponding state space representation (A,B,C,D) can be written assuming zero 616

pole zero cancellation (full controllbility) can be obtained as 617

A =











0 1 · · · 0
0 0 1 · · · 0
...

...
...

...
−α0 −α1 −α2 · · · −αn−1











, C =
[

0 N1 N2 · · · Nn−1
]

, B =











0
0
...
1











, and D = 0 618

With the structure of (A,B,C,D) it can be seen that CA−1B = 0 which proves the forward asser- 619

tion. 620

Subsequently, it is to be proved that the zero at origo condition amounts to the condition derived in 621

the main script. 622

Proof : For a given state space structure (A,B,C,D) the transfer function can be written as

H(s) = C(sI−A)−1B

. The zero at the origo means zero final value of the step response (Y(s)) of the system.

Y(s) =
H(s)

s
(5)

lim
t→∞

y(t) = lim
s→0

sY(s) (6)

lim
t→∞

y(t) = lim
s→0

H(s)) (7)

lim
t→∞

y(t) = lim
s→0

(C(sI−A)−1B) (8)

=⇒ C(A)−1B = 0 (9)
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So, it can be seen that both the assertion and its converse are true so the condition for adaptation 623

derived in this work is equivalent to the standard condition of zero at the origo. 624

2.1 Derivation of (23) from (5) 625

: In this subsection, we argue that the infinite precision condition derived in equation (5) is a more
general than the one derived in (23). The infinite precision condition is obtained as

CA−1B = 0 (10)

For the specific case of (23), the input disturbance is applied on the first node and the output is 626

considered as the concentration of the kth node. Therefore the B ∈ RN and C ∈ R1×N matrix 627

are of the form βe1 and ζeTk respectively where ej ∈ RN are unit vectors across the jth axis and 628

β, ζ are nonzero scalars. It is to be noted that since A is Hurwitz as per the stability condition the 629

determinant is non-zero and will be the denominator in the expression of CA−1B. According to 630

the very definition of matrix inverse we know that the (i, j)th element of det(A)A−1 refers to the 631

minor of the (j, i)th component of A. Due to the specific structure of B, A−1B will be a scaled 632

version of the first column of A−1. Similarly with the given structure of C the expression CA−1B 633

returns a scaled version of the (k, 1)th element of det(A)A−1 which in turn is the minor of the 634

(1, k)th component of the A matrix. 635

3 Generalization 636

This section deals with the necessary results and demonstrations that act as the stepping stones for 637

the results shown in the main text. 638

3.1 Two principal means of achieving infinite precision 639

: The infinite precision equation represented in (23) involves computation of the minor of the term
that maps back to an edge from the output to the input node. In an N−node network (x1,X −

2, · · · , xN as the concentration of the 1st, 2nd, · · · , Nth node respectively), if the concentration of
the input node is considered as the first node (concentration x1) and the kth node as output with the
respective concentration expressed as xk, then according to (23), the

Ã := minor(A1k) = minor

(

∂ẋ1

∂xk

)
∣

∣

∣

∣

x∗
= 0

. For the system matrix A ∈ RN×N there are N! number of terms present in the determinant 640

expression in which A1kÃ involves (N − 1)! number of terms. From combinatorial matrix theory, 641

it is well known that ( [35]) each term in the determinant expression of any diagraph matrix can 642

be expressed as the product of the diagonal entries and loops with no mutual nodes. Following this, 643

it can be said that each term of Ã contains exactly one forward path from the input to the output 644

node. It is to be noted that each of the (N− 1)! terms in the expression of Ã contains N− 1 elements. 645

In terms which refer to the forward paths with less than N−1 number of edges, the remaining entries 646

are composed of the diagonal and the loop elements. It is obvious that there are two ways in which 647

all the terms of Ã sum up to zero 648

1. All the terms are zero individually. 649

2. There exist terms with equal and opposing actions. 650

As discussed earlier Ã contains (N− 1)! terms. Each term contains exactly one forward path from the 651

input to the output node. One option can be to have a network without any forward path but this 652

leads to uncontrollability of the output node. So the only other option is to make all the forward 653

paths with N− 1 edges absent along with at least one of of the diagonal elements to be zero such that 654

all the terms are individually zero. This is exactly what is referred as the opposer module in [30] 655

In the second case, the non-zero terms can be grouped in to three classes. In this context, let us 656

define certain notations and functions that shall be helpful in putting things in perspectives. Suppose 657

set NPL contains all the forward paths and loops of the network, set V contains all the nodes. Also, 658
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N : NPL → D ⊂ V returns all the nodes involved in a given forward path P ∈ N. Then, cardinality 659

of the set N(P) provides the number of nodes involved in the forward path P. AP∈S refers to the 660

component of the A matrix that represents P. Since, A acts as the diagraph matrix this is a ono-to- 661

one mapping. Therefore, P and AP shall be used interchangeably to reduce the abundant notations. 662

i) Let us consider two forward paths F1 ∈ NPL with f1 nodes, F2 ∈ NPL with f2 nodes and a loop
L involving p nodes such that N(L ∩ (F1 ∪ F2)) = Φ. Σf1 is the permutation set of all diagonals
(N− f1−p− 1) except the ones situated in N(L)∪N(F1) similar notations are also invoked for F2. For
this case, the expression of Ã concerning the aforementioned loops. forward paths can be written as

Ã = (−1)f1+p−1
∑

Σf1

F1LDσN+f1−p−1

+ (−1)f2+p−1
∑

Σf2

F2LDσN+f2−p−1

+ (−1)f1−1
∑

Σf1D

F1LDσN−f1−1

+ (−1)f2−1
∑

Σf2D

F1LDσN+f2−p−1

=⇒ (−1)N−2L

(

∑

Σf1

F1|DσN+f1−p−1 |+
∑

Σf2

F2|DσN+f2−p−1 |

)

+ (−1)N−1

(

∑

Σf1D

F1|DσN−f1−1 |+
∑

Σf2D

F1|DσN+f2−p−1 |

)

Now, the only way to achieve Ã = 0 while ensuring stability ((35)) is to have sign(F1) = (−1)sign(F2) 663

ii) Let us consider two forward paths F1 ∈ NPL with f1 nodes, F2 ∈ NPL with f2 nodes and two 664

loops L1, L2 involving p1 and p2 nodes such that N(L1) ∩ N(F2) = Nj , N(L2) ∩ N(F1) = Nk and 665

N(L1) ∩ N(L2) = Nl. It is to be noted that in this case, apart from F1 and F2 there exist two other 666

forward paths 1) From the input node (denote as node 1) to the Nth
k node via F1, then from Nth

k to 667

the Nth
l node via L2 and lastly from Nth

l to the Nth
j via L1 and from Nth

j to output node (denote as 668

kth node) via F2. Let us call this as F12 2) From the input node (denote as node 1) to the Nth
j node 669

via F2, then from Nth
j to the Nth

l node via L1 and lastly from Nth
l to the Nth

k via L2 and from Nth
k 670

to output node via F1. Let us denote this as F21 In this case as well the terms in the expression of 671

Ã shall be similar to the previous case except an addition of two forward paths F1 and F2. Now, 672

the only way to mutually cancel the terms in Ã concerning the forward path F1 and F2, assuming 673

F1 and F2 are of the same sign is to have sgn(L1) = (−1)sgn(L2) in that case it can be seen that 674

sgn(F12F21) = sgn(L1L2) = −1. This means the forward paths F12 and F21 are of the opposite sign. 675

iii) Let us consider two forward paths F1 ∈ NPL with f1 nodes, F2 ∈ NPL with f2 nodes and two
loops L1, L2 involving p1 and p2 nodes such that N(L1) ∩ N(F2) = Nj , N(L2) ∩ N(F1) = Nk and
N(L1) ∩ N(L2) = Φ. The corresponding expression for Ã can be written as

Ã = (−1)f1+p1−1F1LDσN−f1−p1−1

+ (−1)f1−1F1DσN−f1−1

+ (−1)f2+p2−1F2LDσN−f2−p2−1

+ (−1)f2−1F1DσN+f2−1

=⇒ (−1)f1F1DσN−f1−p1−1

(

(−1)p1−1L1 + F1Dσp1

)

︸ ︷︷ ︸
DL1

+ (−1)f2F2DσN−f2−p2−1

(

(−1)p2−1 + F1Dσp2

)

︸ ︷︷ ︸
DL1

=⇒ (−1)p1F1|DσN−f1−p1−1 |DL1

+ (−1)p2F2|DσN−f2−p2−1 |DL1
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Assume F1 and F2 are of the same sign then

=⇒ (−1)p1DL1 + (−1)p2DL1 = 0 (11)

Again, for stability, we know

sgn

(

DN−p1−p2DL1DL2

)

= (−1)N (12)

sgn

(

DL1DL2

)

= (−1)p1+p2 (13)

The only way to satisfy (11) sign
(

DL1

)

= (−1)p1+2m+1, sign
(

DL2

)

= (−1)p2+2m or sign
(

DL1

)

= 676

(−1)p1+2m, sign
(

DL2

)

= (−1)p2+2m+1 where, m ∈ I+. In both the cases sign
(

DL2DL1

)

= 677

(−1)p1+p2+2m+1
=⇒ (−1)p1+p2+1

678

This again is the violation of the stability condition depicted in (13). Therefore the only way to 679

drive Ã to zero is to have incoherrent feedforward paths considering all the diagonal elements are 680

non-zero and negative. 681

It has already been established in the main text that in order for the network to be able to provide 682

adaptation, it has to be controllable with respect to the external disturbance. In the following theo- 683

rem, we argue that there exists at least one forward path from the input to the output node for the 684

system to be controllable. 685

Theorem 1. For an N−node network with different input and output nodes, considering the states as the 686

concentration of the proteins the resultant state space system is output controllable if there exists at least one 687

forward path from the input to the output node. 688

Proof. In order to prove the above theorem, we have to show that the system is not output control- 689

lable if there exists no forward path from the input node to the output node. 690

Without any loss of generality, let us denote the input node as the first node with concentration x1
and the same for the kth node (xk) is considered as the output. Assume, there are p nodes which
are connected with the input node in such a way that there exists at least one forward path from
the input node to all of the P nodes. None of the remaining N − P nodes can be reached from the
input node. Using the property that the system matrix A for the linearised state space system acts as
a digraph matrix for the network,

A =

[

A1 A12

A21 A2

]

(14)

where, A1 ∈ RP×P captures the inter connections among the P nodes reachable from the input
node, A12 ∈ RP×N−P contains the connections from the N − P nodes to the first P nodes, A12 ∈

RN−p×P contains the connections from the first P nodes to the remaining N − P nodes, and A2 ∈

RN−P×N−P reflects the interconnections among the last N− P nodes. Since there exists no froward
path from the input node to any of the N− P nodes A21 is a zero matrix. The actuator matrix B can
be written as

B =
[

β 0 · · · 0
]T

=
[

B1 0
]T

(15)

where, B1 ∈ R1×P is an elementary vector with the first element being non-zero (β) as the input
node is considered as the first node. Given the pair (A,B) the controllability matrix (Γc) can be
written as

A =

[

A1 A12

A21 A2

]

, B =
[

B1 0
]T

(16)

Γc =

[

BT
1 A1BT

1 · · · AN−1
1 BT

1

0 0 · · · 0

]

(17)

=⇒ dim(Im(Γc)) 6 dim(Im(A1)) < N (18)

where Im(.) denotes the column space of a matrix and dim(.) calculates the dimension of a given 691

vector space. From (18) it is clear that the Kalman rank condition can not be achieved in this case. 692

693
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3.2 Hurwitz stability of Negative feedback loops and IFFLP 694

The Hurwitz condition in systems theory guarantees the exponential asymptotic stability of the
linearised system. Further, the Hartman-Grobman theorem ensures the stability of the correspond-
ing non-linear system if its linearised counter part is exponentially stable. Therefore, to comment
on the stability of the actual non linear system, we first investigate whether the system matrix A of
the linearised system is Hurwitz. For any matrix A ∈ RN×N to be Hurwitz, one of the necessary
conditions is the following

N∑

k=1

Mi
Ak > 0∀i = 1(i)N (19)

where, Mi
Ak is the all possible ith principal minors of A. It is evident from (19), there are N condi-

tions that need to be satisfied for any N×N matrix to be Hurwitz. As established before, the linearised
system matrix A can be considered as the diagraph matrix of the associated network structure. In
this scenario, the sum of all possible ith principal minors can be expressed as all possible i−node
loops present in the network structure, loops with less than i nodes and diagonals. To illustrate fur-
ther, assume the network has two loops L1 and L2 containing N1 and N2 number of nodes. Further,
assume there exists no common nodes in L1 and L2. In that case, the expression for the sum of all ith

(i > N1 +N2) principal minor can be written as

N∑

k=1

Mi
Ak = (−1)i

(

∑
σDi

+ (−1)N1−1σD(i−N1)|L1
(20)

+(−1)N1−1σD(i−N2)|L2
+ (−1)N1+N2−2σD(i−N1−N2)|L1,L2

)

(21)

where, σi|t is the permutation operator that chooses k diagonals from the set of N (A is N × N) 695

diagonal elements, the subscript t means the choice of i diagonal elements should be such that it 696

does not have any common co-ordinate with the elements in t. For a network with a single loop 697

(Lp) of p1 nodes and cumulative sign being negative the sum of all the principal minors of order i 698

can be written as 699

N∑

k=1

Mi
Ak =






(−1)i
(

∑
σDi

)

i < p1

(−1)i
(

(−1)p1−1σD(i−p1)|Lp
+
∑

σDi

)

i > p1

It can be seen in both the scenarios (i < p1, i > p1) the sign of the sum of ith order minor is always 700

positive given the diagonals and the L1 is of negative sign. Hence presence of negative feedback 701

loop satisfies the Hurwitz condition for exponential stability. 702

In the case of feedforward networks without any loop the sum of the ith principal minors shall 703

always be sum of the combination of i diagonal elements chosen from N diagonals in which case, 704

the sum of the principal minors shall always be positive ∀i given the diagonal elements are negative. 705

This also guarantees the Hurwitz property of the networks with only feedforward paths. 706

For an N × N matrix there are N! number of terms present in the determinant expression. It can 707

be proved that every term in the expression contains at least one loop except the product term of 708

the diagonals. The elements which carried a single loop were discussed in the main text and it was 709

shown that the elementary motif associated with one of these terms need to be of negative feedback 710

type i,e the loop sign should be negative. The elements containing multiple non-overlapping loops 711

can not provide adaptation for the associated network becomes uncontrollable. For these networks 712

it can be shown that if the cumulative sign of all the loops are positive then also it can satisfy the 713

determinant condition i,e, the sign of the determinant becomes (−1)N. These networks along 714

with another link/loop (to make the network controllable) leads to Hurwitz instability by making 715

at least one of eigenvalues positive. Following is an illustration of a four node network. Assume a 716

five node network which has two loops one involving A, B, C and the other with D and E. The 717

concentration states of A, B, C, D, E are represented as x1, x2, x3, x4, x5 respectively. Input (I) is 718

applied on A and the concentration of E is considered as output. 719

From the network structure in S2, it can be seen that there are two loops involved in the network. 720

One is engaging A and B, another with C,D,E nodes. Both the feedback schemes are positive in 721
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EB

C
D

A
Output

Disturbance

Fig S2. Proposed five node network which can not provide adaptation albeit satisfying
the weaker condition for stability

nature. From the structure it can be intuitively seen that the network is controllable for any non- 722

zero strength of the edge from B to C. This can also be proved mathematically by evaluating the 723

rank of the associated controllability matrix. 724

For this network to provide adaptation, the corresponding system matrix A after linearisation can
be of the structure

A =













αaa αab 0 0 0
αba αbb 0 0 0
0 0 αcc 0 αce

0 0 αdc αdd 0
αea 0 0 αed αee













(22)

Note, if there is no edge from A to E, the network would be uncontrollable. The condition to
be met for this five node network to provide adaptation is the following |Ã| = 0, where Ã =








αba αbb 0 0 0
0 0 αcc 0 αce

0 0 αdc αdd 0
αea 0 0 αed αee









So, for |Ã| to be zero αcc has to be zero. The next condition is

concerning the stability of A. With αbb = 0 the determinant of A can be written as

|A| = −αabαbaαbbαccαee − αabαbaαceαdcαed (23)

Now, for the system to be Hurwitz stable, the determinant of A is necessarily of the sign (−1)5=-
1. This can be achieved in two ways 1) both the terms are negative or 2) Either one of them is
negative with magnitude greater than that of the positive term. The first case leads to at least one
negative feedback, preferably between A and B. In the second case, if both the loops are of positive
feedback and if

|αabαbaαbbαccαee| < αabαbaαceαdcαed

then the necessary condition for the Hurwitz stability of A is satisfied. But on a careful introspec- 725

tion, it can be seen that at least one of the eigenvalues of A is positive which goes to violate the 726

Hurwitz stability condition for A thereby leading to instability. So, the above network structure 727

can be ruled out. 728

This can be understood from the A matrix for these cases. To make the network controllable and 729

able to provide adaptation, it is necessary to add an edge from the input to the output node. Al- 730

though the addition of an element changes the spectrum of the overall matrix, the spectrum of the 731

block matrices containing the loops other except one will not be changed. If all the loops are pos- 732

itive at least one of the eigenvalues of the block matrices will be positive leading to instability for 733

the overall matrix. In the example of S2 the addition of an edge from A to E has changed the spec- 734

trum of A without changing the spectra of the block matrix
[

α11 α12

α21 α22

]

. With A and B in positive 735

feedback, one of the eigenvalues can be verified as positive, which leads to the violation of Hurwitz 736

property of A. 737
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N/W Structure A matrix (Given N node n/w B =
[

β ON−1×1
]T
) Condition I Condition II Conclusion

C

A

B

Output

Disturbance





a11(−1) 0 0
a21(+1) a22(−1) 0
a31(+1) a32(−1) a33(−1)



 (||S||0 : S := {a31,a21a32}) > 1 a31a22 − a21a32 = 0 ✓

C

A

B

Output

Disturbance





a11(−1) 0 0
a21(−1) a22(−1) 0
a31(+1) a32(−1) a33(−1)



 (||S||0 := {a31,a21a32}) > 1 a31a22 − a21a32 = 0 ✗

EB

C
D

A
Output

Disturbance













a11(−1) a12(+1) 0 0 0
a21(+1) a22(−1) 0 0 0

0 0 a33(−1) 0 a35(−1)
0 0 a43(+1) a44(−1) 0
a51 0 0 a54(−1) a55(−1)













(||S||0 := {a51}) 6= 0 a22 = 0, Re(spec(A)) < 0 ✗(Unstable)

EB

C
D

A
Output

Disturbance













a11(−1) a12(−1) 0 0 0
a21(+1) a22(−1) 0 0 0

0 0 a33(−1) 0 a35(+1)
0 0 a43(+1) a44(−1) 0

a51(+1) 0 0 a54(−1) a55(−1)













(||S||0 := {a51}) 6= 0 a22 = 0, Re(spec(A)) < 0 ✓

C

A

B

Output

Disturbance





a11(−1) a12(+1) 0
a21(−1) a22(−1) 0
a31(+1) 0 a33(−1)



 (||S||0 : S := {a31}) = 1 a22 = 0,Re(spec(A)) < 0 ✓

Table S1. Demonstration of the algorithm. ||.||0 : S → R refers to the number of non-zero
elements in the set S.

4 Equations for simulation 738

Two node network 739

ẋ1 = 107
1− x1

106 + (1− x1)
− 12× 103x2

x1

103 + x1
(24)

ẋ2 = 8x1
1− x2

10−6 + (1− x1)
− 2x2

x2

10−5 + x2
(25)

Voltage gated Na ion channel 740

ẋ1 = 1.8I(1− x1 − x2) − x1 (26)

ẋ2 = x1 (27)
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IFFLP 741

ẋ1 = I
1− x1

(0.0001+ (1− x1))
− 2x1 (28)

ẋ2 = 10x1
1− x2

(0.0001+ (1− x2))
− 200x2x3 (29)

ẋ3 = 0.1x2(1− x3)/(1.001− x3) − x3 (30)

NFBLB 742

ẋ1 = I
1− x1

(0.0001+ [1− x1])
− 2x1 (31)

ẋ2 = 350x1(1− x2) − 350x2x3 (32)

ẋ3 = 2x2
(1− x3)

(1.001− x3)
− x3/(0.001+ x3) (33)

IFFLP+NF 743

ẋ1 = 2I
1− x1

(0.0001+ (1− x1))
− x1 (34)

ẋ2 = 2x1
1− x2

(0.0001+ (1− x2))
− x2x3 (35)

ẋ3 = 3x1
(1− x3)

(1.001− x3)
− x3 (36)

IFFLP+NF 744

ẋ1 = 2I
1− x1

(0.0001+ (1− x1))
− x1 (37)

ẋ2 = 2x1
1− x2

(0.0001+ (1− x2))
− x2x3 (38)

ẋ3 = 3x1
(1− x3)

(1.001− x3)
− x3 (39)
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Mathematical representation of 

Protein network

Linearised representation of 

Protein network

𝒙· = 𝐟(𝐱, 𝐤, 𝑖)𝒚 = 𝐡(𝐱) 𝒙· = 𝑨𝐱 + 𝒃𝑖𝒚 = 𝑪𝐱 + 𝑫𝑖
Protein Network

Modeling

Condition on 𝐴
(Equations 7, 8, 21)

Condition violated?
Change the output 

node

Derive admissible motifs

(Theorems 3, 4, 5)

No

Yes

Input Output
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