
 Open access Journal Article DOI:10.1057/JOS.2012.26

A generic testing framework for agent-based simulation models — Source link

Önder Gürcan, Oguz Dikenelli, Carole Bernon

Institutions: Ege University

Published on: 25 Jan 2013 - Journal of Simulation (Palgrave Macmillan UK)

Topics: Verification and validation of computer simulation models, Verification and validation, Discrete event simulation
and Scenario testing

Related papers:

 Towards a generic testing framework for agent-based simulation models

 State space analysis for model plausibility validation in multi-agent system simulation of urban policies

 Research on Conceptual Framework for Agent-Based Modeling and Simulation

Building dynamic 3D visualizations through ontology-guided interactions with domain knowledge and simulation
models

 AOR Modelling and Simulation: Towards a General Architecture for Agent-Based Discrete Event Simulation *

Share this paper:

View more about this paper here: https://typeset.io/papers/a-generic-testing-framework-for-agent-based-simulation-
lwbjukmnld

https://typeset.io/
https://www.doi.org/10.1057/JOS.2012.26
https://typeset.io/papers/a-generic-testing-framework-for-agent-based-simulation-lwbjukmnld
https://typeset.io/authors/onder-gurcan-4wzlz9jag1
https://typeset.io/authors/oguz-dikenelli-wq53mwrs17
https://typeset.io/authors/carole-bernon-168rsyc68g
https://typeset.io/institutions/ege-university-13kdx9hi
https://typeset.io/journals/journal-of-simulation-265ab47p
https://typeset.io/topics/verification-and-validation-of-computer-simulation-models-354w34lx
https://typeset.io/topics/verification-and-validation-370l8pjp
https://typeset.io/topics/discrete-event-simulation-y5seq3gb
https://typeset.io/topics/scenario-testing-2sz5yym7
https://typeset.io/papers/towards-a-generic-testing-framework-for-agent-based-368khrtysh
https://typeset.io/papers/state-space-analysis-for-model-plausibility-validation-in-5bch3gdfko
https://typeset.io/papers/research-on-conceptual-framework-for-agent-based-modeling-3y4z51rmk8
https://typeset.io/papers/building-dynamic-3d-visualizations-through-ontology-guided-1xgnkjpau8
https://typeset.io/papers/aor-modelling-and-simulation-towards-a-general-architecture-2nh9vcl6g7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-generic-testing-framework-for-agent-based-simulation-lwbjukmnld
https://twitter.com/intent/tweet?text=A%20generic%20testing%20framework%20for%20agent-based%20simulation%20models&url=https://typeset.io/papers/a-generic-testing-framework-for-agent-based-simulation-lwbjukmnld
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-generic-testing-framework-for-agent-based-simulation-lwbjukmnld
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-generic-testing-framework-for-agent-based-simulation-lwbjukmnld
https://typeset.io/papers/a-generic-testing-framework-for-agent-based-simulation-lwbjukmnld

HAL Id: hal-01128680
https://hal.archives-ouvertes.fr/hal-01128680

Submitted on 10 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generic testing framework for agent-based simulation
models

Önder Gürcan, Oguz Dikenelli, Carole Bernon

To cite this version:
Önder Gürcan, Oguz Dikenelli, Carole Bernon. A generic testing framework for agent-based simulation
models. Journal of Simulation, Palgrave Macmillan, 2013, vol. 7, pp. 183-201. ฀10.1057/jos.2012.26฀.
฀hal-01128680฀

https://hal.archives-ouvertes.fr/hal-01128680
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12862

To link to this article : DOI :10.1057/jos.2012.26
URL : http://dx.doi.org/10.1057/jos.2012.26

To cite this version : Gürcan, Önder and Dikenelli, Oguz and Bernon,
Carole A generic testing framework for agent-based simulation models.

(2013) Journal of Simulation, vol. 7. pp. 183-201. ISSN 1747-7778

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12862/
http://dx.doi.org/10.1057/jos.2012.26
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A generic testing framework for agent-based
simulation models
Ö Gürcan1,2*, O Dikenelli1 and C Bernon2

1Ege University, Izmir, Turkey; 2Toulouse III University, Toulouse, France

Agent-based modelling and simulation (ABMS) had an increasing attention during the last decade. However, the weak
validation and verification of agent-based simulation models makes ABMS hard to trust. There is no comprehensive
tool set for verification and validation of agent-based simulation models, which demonstrates that inaccuracies exist
and/or reveals the existing errors in the model. Moreover, on the practical side, many ABMS frameworks are in use. In
this sense, we designed and developed a generic testing framework for agent-based simulation models to conduct
validation and verification of models. This paper presents our testing framework in detail and demonstrates its
effectiveness by showing its applicability on a realistic agent-based simulation case study.

Keywords: agent-based modelling and simulation; model testing; verification and validation

1. Introduction

Verification, validation and testing (VV&T) of simulation

models is one of the main dimensions of simulation research.

Model validation deals with building the right model, on the

other hand, model verification deals with building the model

right, as stated in Balci (1994). Model testing is a general

technique that can be conducted to perform validation and/

or verification of models. Model testing demonstrates that

inaccuracies exist in the model or reveals the existing errors

in the model. In model testing, test data or test cases are

subjected to the model to see if it functions properly (Balci,

1995).

Traditional techniques for VV&T (Sargent, 2005) cannot

be transferred easily to agent-based simulation. There are

some efforts (Terano, 2007; Klügl, 2008; Niazi et al, 2009;

Pengfei et al, 2011; Railsback and Grimm, 2011), but these

studies do not directly deal with model testing process and

there is no proposed model testing framework to conduct

validation and verification through the model testing pro-

cess. On the basis of this observation, our main motivation is

to build a testing framework for agent-based simulation

models in order to facilitate the model testing process. Such

a testing framework should focus on testing the implementa-

tion of the agent-based simulation models, since they are

mostly specified by their implementation unlike other multi-

agent system (MAS) models. Apparently, increasing the

confidence of agent-based simulation models with model

testing will contribute to transforming agent-based model-

ling and simulation (ABMS) from a potential modelling

revolution (Bankes, 2002) to an actual modelling revolution

with real-life implications.

Naturally, one has to define all the model testing require-

ments of ABMS to be able to develop a model testing frame-

work. To define these requirements, we first identify the

basic elements of ABMS that can be subject of a model test-

ing process. Then, we use a generic model testing process

(Balci, 1994) and elaborate on the requirements of the model

testing framework when it is used throughout this process.

Finally, we categorize requirements of model testing of

ABMS into micro-, meso- and macro-levels by an inspiration

from ABMS applications in sociology domain (Troitzsch,

1996). These levels describe a system considering its size, its

characteristics and an inclusion relation with other systems

or subsystems. In this categorization, the micro-level takes

the basic elements individually and defines the framework

requirements from the perspective of each basic element. The

meso-level considers a group of basic elements and assumes

that such a group has a well-defined model that needs to be

validated. Hence, the meso-level defines model testing

requirements of such groups. And the macro-level considers

the systems as a whole.

After having defined the requirements of the framework, a

conceptual model that includes the conceptual elements to

satisfy them is proposed. These elements are specified and

brougth together to conduct the model testing of any ABMS

application. Then, a generic architecture is introduced, which

realizes the conceptual elements. This architecture is exten-

sible in a sense that new functionalities based on domain

requirements might be easily included. Also, on the practical

side, since there are many agent-based simulation frameworks

in use (Nikolai and Madey, 2009), the proposed architecture

is generic enough to be customized for different frameworks.

*Correspondence: Ö Gürcan, Computer Engineering Department, Ege
University, Universite cad, Izmir, Bornova 35100, Turkey.
E-mail: onder.gurcan@ege.edu.tr

This paper is organized as follows. The next section

defines the testing requirements for ABMS. Section 3 then

describes the generic agent-based simulation testing frame-

work we propose. A case study that shows the effectiveness

of the proposed framework is studied in Section 4. After

discussing the proposal in Section 5, Sections 6 and 7

conclude the paper with an insight into some future work.

2. Testing requirements for agent-based simulation models

This section deals with the testing requirements for agent-

based simulation models by first identifying its basic elements.

2.1. Basic elements

The basic elements of agent-based simulations are agents,

the simulated environment and the simulation environment

(Klügl et al, 2005). Agents are active entities that try to fulfill

their goals by interacting with other agents and/or simulated

environments in which they are situated. They behave

autonomously depending on their knowledge base. More-

over, during an agent-based simulation, new agents may

enter the system and/or some agents may also disappear.

A simulated environment contains agents and non-agent

entities of the simulation model. This environment can also

carry some global state variables that affect all the agents

situated in it and can have its own dynamics like the creation

of a new agent. In an agent-based simulation model, there

must be at least one simulated environment. However, there

may also be various simulated environments with various

properties depending on the requirements and the complex-

ity of the model. Apart from explicitly specified behaviours

of these model elements (agent and simulated environments),

higher level behaviours can emerge from autonomous agent

behaviours and model element interactions (agent-to-agent

interactions and agent-to-simulated environment interac-

tions). As well as agent-to-agent interactions, a small change

in the simulated environment can also dramatically change

the nature, and even the occurence, of high-level behaviours

(Polack et al, 2010). As a result, simulated environments are

as important as agents in order to reach the purpose of the

simulation study.

The simulation environment (or infrastructure), on the

other hand, is an environment for executing agent-based

simulation models. Independent from a particular model, it

controls the specific simulation time advance and provides

message passing facilities or directory services. Unlike the

other basic elements, the simulation environment is unique

for every simulation model and does not affect the higher

level behaviours. However, it is not possible to trust totally

the simulation environment. In this sense, replicating the

simulation model on different simulation environments is

proposed as a solution in some studies (Sansores and Pavon,

2005; Wilensky and Rand, 2007).

2.2. Model testing

The basic elements are developed and brought together

following a development process to produce a simulation

model (Klügl, 2009). The overall simulation model is also

verified and validated in parallel with the development

process. Our aim is to develop a generic testing framework to

conduct model testing in agent-based simulations. In general,

model testing requires the execution of the model under test

and evaluating this model based on its observed execution

behaviour. Similarly, in the simulation domain this approach

is defined as dynamic validation, verification and testing

(VV&T) technique (see the classification of Balci in (Balci,

1995)). According to Balci, dynamic VV&T techniques are

conducted in three steps: model instrumentation, model execu-

tion and model evaluation. Below, we interpret those three

steps in terms of model testing of agent-based simulations to

be able to capture the requirements for the intended testing

framework:

1. Observation points for the programmed or experimental

model are defined (model instrumentation). An observa-

tion point is a probe to the executable model for the

purpose of collecting information about model behaviour

(Balci, 1995). Model testing requires observation of the

system under test using points of observation—this is a

strong design constraint on the test application and an

important testability criterion (Utting and Legeard, 2007).

In this sense, a model element is said to be testable if it is

possible to define observation points on that element.

From the perspective of ABMS, agents and simulated

environmentsmight be testable when it is possible to define

observation points for them. The simulation environment,

on the other hand, is not a testable element. However, it

can be used to facilitate the testing process.

2. The model is executed. As stated above, in agent-based

simulations, model execution is handled by the simulation

environment. During model execution, a model testing

framework can use the features of the simulation

environment (if any) to collect information through the

observation points.

3. The model output(s) obtained from the observation

point(s) are evaluated. Thus, for evaluating the model

outputs, a model testing framework should provide the

required evaluation mechanisms. Observed outputs are

evaluated by using reference data. Reference data could

be either empirical (data collected by observing the real

world), a statistical mean of several empirical data, or

they can be defined by the developer according to the

specification of the model.

However, execution-based software testing is usually

carried out at different levels (Burnstein, 2003) where at

each level there are specific testing requirements and goals.

Thus, apart from the model testing framework requirements

given in this subsection, to be able to design a well-structured

testing framework, we also need to identify the testing

requirements of testable elements in terms of testing levels.

In the following subsection, model testing levels for ABMS

are described and an orderly progression of these levels is

given.

2.3. Levels of testing

In traditional testing literature major phases of testing are

unit testing, integration testing, system testing and some type

of acceptance testing (Burnstein, 2003). Since the nature of

MAS demands different testing strategies, the MAS com-

munity interprets testing levels as unit, agent, integration

(or group), system (or society) and acceptance (Nguyen et al,

2011). They consider unit testing as testing all units that make

up an agent and they see agent testing as the integration of

these units. Their integration testing considers integration of

agents and their interactions with their environments, and

system testing considers a MAS running at a target operating

environment. The last level, acceptance testing, tests the MAS

in the customer’s execution environment.

However, the nature of ABMS is also slightly different

from the nature of MAS. Thus ABMS demands different

testing strategies. Unlike MAS, the developers of ABMS are

not just computer scientists and software engineers. There is

a wide variety of application domains of ABMS from

neuroscience (see, eg, Gürcan et al, 2012) to ecology (see, eg,

Grimm et al, 2005), from social sciences (see, eg, Epstein,

2007) to economy (see, eg, Windrum et al, 2007), etc and each

domain’s experts are trying to build their simulation models

by themselves. In this sense, the terminology used in testing of

ABMS needs to be more understandable and familiar for the

experts of these domains. Morever, the multi-level1 nature

of these domains has already been recognized long time

ago (Ghosh, 1986) and consecutively currently there is plenty

of work about multi-level simulations on these domains. From

the ABMS perspective, this was first realized by Uhrmacher

and Swartout (2003). They stated that agent-based simula-

tion models describe systems at two levels of organization:

micro-level and macro-level. However, in sociology the distinc-

tion between these levels is comparatively well established

(Troitzsch, 1996). The micro-level considers the model ele-

ments individually and their interactions from their perspec-

tives, while the macro-level considers the model elements as

one element, and focuses on the properties of this element

resulting from the activities at the micro-level. The same year,

in organizational behaviour domain, House et al (1995)

proposed the meso-level as a framework for the integration of

micro- and macro-levels.

The necessity of validating model elements at micro- and

macro-levels in simulation studies was first recognized by

Robinson (1997). He defined micro-check of the model as

white-box validation and macro-check of the operation of the

model as black-box validation. The white-box validation

examines whether each element of the model and its struc-

ture represents the real world (or the artificial world defined

by the developer) with sufficient accuracy. The black-box

validation, on the other hand, deals with the relationships

between the inputs and the outputs of the model, ignoring

the elements within this model. However, the micro- and the

macro-levels are not sufficient enough for testing agent-based

simulation models since they are pretty large and complex

(indeed, many modellers introduce an intermediate level to

reduce such complexity). As House et al (1995) stated:micro-

and macro-processes cannot be considered separately and

then added up to understand behaviour of organizations. In

this sense, the macro-level emergent behaviours of agent-

based simulation models are highly dependent on the beha-

viour of the groups or sub-societies of the elements. Thus, an

intermediate testing level (meso-level) to test model elements

as a group or sub-society is needed in order to increase the

confidence. A group or sub-society consists of model ele-

ments that are related, for example, they may cooperate to

support a required macro-level behaviour of the complete

system.

In this sense, we propose micro-, meso- and macro-level

testing for ABMS as major testing phases. Since generally

domain experts are developing their own agent-based

simulation models, we see acceptance test as an activity

performed at each level and we include unit testing as a sub-

phase of micro-level testing. It is worthwhile noting that the

chosen levels are not intended to be comprehensive. They

rather provide a useful framework to systematically organize

the testing requirements. In the following subsections,

depending on the characteristics of agent-based simulations,

we define the micro-, meso- and macro-level testing require-

ments of agent-based simulation models. The testing

objectives, subjects to test and activities of each level are

described progressively.

Micro-level testing. In this level, the testing requirements

of the basic elements alone and interactions from their

perspective are considered. The principal goal for micro-

level testing is to ensure that each individual testable

element is functioning according to its specification. In

other words the aim is to detect functional and structural

defects in a testable element.

In this sense, a micro-level test may require the following:

� Testing building blocks of agents like behaviours, knowl-

edge base and so forth and their integration inside agents.

� Testing building blocks of simulated environments like

non-agent entities, services and so forth and their integra-

tion inside simulated environments.

1The term level and the term scale are often used interchangeably. Here,
the term level is chosen since it situates the described system considering
its size, its characteristic evolution time or an inclusion relation with
other systems or subsystems. However, the term scale refers to a
dimension of analysis in which the system of interest can be measured.

� Testing the outputs of agents during their lifetime. An

output can be a log entry, a message to another agent or

to the simulated environment.

� Testing if an agent achieves something (reaching a state

or adapting something) in a considerable amount of time

(or before and/or after the occurrence of some specific

events) with different initial conditions.

� Testing the interactions between basic elements, commu-

nication protocols and semantics.

� Testing the quality properties of agents, such as their work-

load (number of behaviours scheduled at a specific time).

The testable elements should be tested by an independent

tester (someone different from the developer) if possible.

Meso-level testing. The meso-level, settled between the

micro- and macro-levels, deals with the model elements of an

intermediate level. Thus, the testing requirements of the

elements of agent-based simulations as groups or sub-societies

are considered. With a few minor exceptions, the meso-level

tests should only be performed on elements that have been

reviewed and successfully passed the micro-level testing. This

level has two major goals: (1) to detect defects that occur on

the communication protocols of testable elements and (2) to

assemble the individual elements into working sub-societies

and finally into a complete system that is ready for the macro-

level test. This process is driven by assembly of the ele-

ments into cooperating groups (the elements that may work

together). The cooperating groups of elements are tested as a

whole and then combined into higher-level groups.

� There is some simple testing of communication protocols

of the elements from their perspective in micro-level.

However, communication protocols are more adequately

tested during the meso-level testing when each element is

finally connected to a full and working implementation of

those communication protocols.

� Testing the organization of the agents (how they are

situated in a simulation environment or who is interacting

with who) during their lifetime. In this sense, the well-

known K-means algorithm (MacQueen, 1967) can be used

in order to discover and assess interacting groupings of

model elements2 as in Serrano et al (2009).

� Testing whether a group of basic elements exhibits the

same long-term behaviour (which could be emergent or

not) with different initial conditions.

� Testing whether a group of basic elements is capable of

producing some known output data for a given set of

input data.

� Testing the timing requirements of the meso-level beha-

viours of a group of basic elements.

� Testing the workload for the system as a whole (number

of agents, number of behaviours scheduled, number of

interactions etc).

When the meso-level tests are completed, an agent-based

simulation model has been assembled and its major sub-

societies have been tested. At this point, the developers/

testers begin to test the system as a whole.

Macro-level testing. The macro-level tests are performed

after all elements and sub-societies have been created and

tested (after the micro- and the meso-level tests are

performed). In this level, thorough end-to-end testing of

complete, integrated simulation models from an end-user’s

perspective is performed. The scope of the macro-level

testing is different from the meso-level one. Rather than

configuring and running relatively controlled, focused tests,

the macro-level tests have a broader perspective. The main

goal is to test the expected functionality as a whole. The

other goals are to evaluate performance, usability, relia-

bility and other quality-related requirements to increase the

confidence of the simulation model.

In this sense, a macro-level test may require the following:

� Testing whether the overall system is capable of producing

some known output data for a given set of legal input

data.3

� Testing whether the overall system is capable of remaining

available for a given set of illegal input data.

� Testing whether the overall system is capable of producing

some known output within given time constraints.

� Testing whether the overall system exhibits the same long-

term behaviour (which could be emergent or not) with

different initial conditions.4

� Testing the workload for the system as a whole (number

of agents, number of behaviours scheduled, number of

interactions etc).

� Testing the significance of the simulated data with respect

to reference data. This can be done by various data

comparison techniques such as cross-correlation analysis,

coherence analysis, goodness of fit tests etc.

� The communication protocols are tested in micro- and

meso-level testing levels from individual and group

perspectives. However, having a correct execution of

protocols does not imply the overall system is behaving

correctly. Hence, an agent can execute protocols and still

insist on collaborating with wrong agents. To detect such

situations, some post-mortem analysis might be required

as suggested by Serrano et al (2009). To be able to

2This algorithm arranges data points into clusters and it locates a
centroid in each cluster This centroid is the point at which the distance
from the rest of the points of the clusters is on average minimum.

3Law (2007) defines a simulation as a numerical technique that takes
input data and creates output data based upon a model of a system.
4For example, Wolfram (1994) defines four classifications into which
different Cellular Automata systems can be placed based on their long-
term behaviours. The first one is evolving to a homogeneous state, which
means that changes to the initial state have no impact on the final state.

conduct such an analysis, large amount of data should be

collected (and sorted) and intelligent data analysis

techniques must be performed.

� Stress testing of the overall system with a load that causes

it to allocate its resources in maximum amounts. The

objective of this test is to try to break the system by

finding the circumstances under which it will crash

(Burnstein, 2003).

� Testing the robustness to parameter alterations of the

overall system, in order to fully trust the results of the

simulation runs.

These tests may require many resources and long test

times. Thus, they must be performed by a team of testers (or

the entire development team).

In this section we have presented the testing requirements of

agent-based simulation models at different levels of abstrac-

tion. It should be noted that each testing level (1) focuses on a

specific level of abstraction of the agent-based model, (2) has a

set of specific objectives, (3) is useful for revealing different

types of defects, and (4) is useful for evaluating certain

functional and quality attributes of the model.

3. The generic agent-based simulation testing framework

To be able to satisfy the aforementioned requirements and to

perform testing effectively, developers/testers need an auto-

mated testing tool that supports model instrumentation.

In other words, the tool should allow defining observation

points for each testable element both individually and

as a group. Morever, this tool has to support collecting

information from these observation points while the model is

executed. And apparently, it has to provide evaluation

mechanisms for the assessment of the collected information.

3.1. The conceptual model

We designed a generic testing framework that provides special

mechanisms for model testing of ABMS. As we mentioned

before, testing requires the execution of the model under test.

In this context, each specific model designed for testing is

called a Test Scenario. A Test Scenario contains at least one

Model Element under test (depending on the level and the

need), one special agent to conduct the testing process (the

Tester Agent), the other required Model Elements, the data

sources these elements make use of and a special simulated

environment (the Test Environment) that contains all these

elements (see Figure 1). It can also include one or more fake

elements (elements that behave like real elements) to facilitate

the testing process. Each Test Scenario is defined for specific

requirement(s) and includes the required test cases, activities,

and their sequences and observation requirements. For exe-

cuting Test Scenarios, we designed another concept called

Scenario Executer. The Scenario Executer is able to execute

each Test Scenario with different initial conditions for pre-

defined durations.

The Tester Agent is responsible for instrumenting the

testable elements, collecting information from them and

evaluating these information in order to check if these

testable elements behave as expected. For the evaluation of

different conditions, the Tester Agent uses a set of Assertions.

The Tester Agent is able to access every basic element during

the execution of a Test Scenario. However, none of these basic

elements are aware of it. Therefore it does not affect the way

the other elements of the scenario behave. To be able to

supply this feature, we designed a special Simulated Environ-

ment called Test Environment. All the Model Elements of the

scenario, including the Tester Agent, are situated in this

environment. However, apart from the Tester Agent, none of

the other elements are aware of the Test Environment.

Another special mechanism introduced is the usage of

special elements called Fake Agents and Fake Environments

to facilitate the testing process. They are especially useful

when a real element is impractical or impossible to incor-

porate into a scenario execution. They allow developers to

discover whether the element(s) being tested respond(s)

appropriately to the wide variety of states such element(s)

may be in. For example, for amicro-level test aiming at testing

the interaction protocol of a model element, there is no need

to use the real implementation of the other model elements,

since the aim is to focus on the interaction protocol. In this

sense, Fake Agents mimic the behaviour of real agents in

controlled ways and they simply send pre-arranged messages

and return pre-arranged responses. Likewise, Fake Environ-

ments mimic the behaviour of real simulated environments in

controlled ways and they are used for testing agents indepen-

dently from their simulated environments. Although the term

‘mock’ can also be used in testing in MASs literature (Coelho

et al, 2006), we preferred using the term ‘fake’ rather than

‘mock’ for describing the non-real elements, since there is also

a distinction between ‘fake’ and ‘mock’ objects in object-

oriented programing. Fakes are the simpler of the two, simply

implementing the same interface as the objects that they repre-

sent and returning pre-arranged responses (Feathers, 2004).

Thus a fake object merely provides a set of method stubs.

Mocks, on the other hand, do a little more: their method

implementations contain assertions of their own.

Furthermore, model elements may use Data Generators

that generate data for the corresponding model element when

needed. Data generators can be simple tools that output a

fixed set of pre-defined patterns or they can be complex tools

that use statistical patterns to generate data (Burnstein, 2003)5.

The objective of this framework is to facilitate the model

testing process. In model testing, as mentioned above, the

inputs and the outputs of the systems are known. However,

5Burnstein (2003) refers data generators as load generators since load
generators are aimed at being used in system-level tests. However, we use
the term data generator since it can be used in all levels.

it is not always practical to evaluate the output with computer

programs. It can be time consuming as well as hard to imple-

ment. It is also a common practice to ask domain experts

about the system whether the model and/or its behaviour are

reasonable. This process is defined as ‘face validity’ by Sargent

(2005). Face validity also includes validating graphically

values of various performance measures as the model is

running. Moreover, one may also want to test the display

settings of the Simulation Environment visually (such as the

size of the space, and whether the space wraps in either the

horizontal or vertical dimension) (Railsback and Grimm,

2011). In this sense, we also included a visual testing mecha-

nism in this generic testing framework. Basically, the Tester

Agent is able to plot a visual output to the developer/tester

and asks him/her to validate or invalidate this visual output.

The next subsection explains the architecture of our

generic testing framework.

3.2. The architectural model

The architectural UML model6 of the generic testing

framework is given in Figure 2. When loaded, Scenario

Executer first initializes the given test scenario by using the

generic simulation runner interface (SimulationRunner)

that builds the scenario by using a builder (Scenario-

Builder). ScenarioExecuter uses its getScenarioDir()

method to retrieve the name of the directory in which the

required files of the scenario are located. After, Scenar-

ioExecuter executes the test scenario with different para-

meters by sweeping the provided file until the defined limit

for the test scenario is reached. To do so, the ScenarioEx-

ecuter class provides an executeTestScenario() method

that enables executing the same test scenario with different

initial conditions for different pre-defined durations. The

runner of the agent-based simulation framework is respon-

sible for loading ScenarioBuilder, which builds the

scenario by constructing the required model elements. It

thus builds TestEnvironment and TesterAgent internally

by using the buildTestElements() method. Other model

test elements (the SimulatedEnvironment and the Agent

elements)7, on the other hand, are built externally by using

the provided stub method buildElements().

TesterAgent is able to access all basic elements in order

to make model instrumentation. For accessing the simulated

Figure 1 An illustrative example for a test scenario. As represented in the figure, the basic ingredients for test scenarios are: the
tester agent, fake agents, the basic elements of agent-based simulation models (agents, simulated environment and simulation
environments) and the data they use/produce. The Tester Agent is able to collect information from all these elements. A test scenario
is executed by a scenario executor that is not shown in this figure.

6The Unified Modeling Language (UML) is a standard that can be used
‘for analysis, design, and implementation of software-based systems as
well as for modeling business and similar processes’. Thus, the UML is a
visual language that can be used to create software architectures.

7We do not address implementation issues on how to apply these
concepts in practice, as this is highly dependent upon the simulation
framework used and the objective of the simulation study.

environments and the agents, it uses TestEnvironment and

for accessing the simulation infrastructure it uses a special

interface (SimulationEnvironment) that provides utility

methods to gather information about the ongoing scenario

execution. For example, it can get the current value of the

simulation clock (getCurrentTick()), get the number of

actions scheduled at specific time points (getAction-

Count())8 and so on. TesterAgent is responsible for manag-

ing the testing process in a temporal manner. Basically, it

monitors the agents and the simulated environments through

the observation points (ObservationPoint) and performs

assertions (using the methods provided by Assert) depending

on the expected behaviour of the agent-based model under

test. However, if the ABMS framework provides pre-defined

features for defining observation points, it is not necessary to

use the ObservationPoint concept in the concrete model

testing framework. Since TesterAgent itself is also an agent,

all these aforementioned mechanisms can be defined as agent

actions (Action) that can be executed at specific time points

during the testing process. It can monitor and keep track

of the states of all the elements of the test scenario, or the

messages exchanged between them during the scenario

execution. As a result, TesterAgent is able to test the model

at specific time points by using instant or collected data, and

when there is a specific change in the model (when an event

occurs). If all the assertions pass until the specified time limit

for the test, the test is said to be successful, otherwise the test

is said to be failed.

Fake agents can be defined by using the same interface

(Agent) as the real agents they mimic, allowing a real agent

to remain unaware of whether it is interacting with a real

agent or a fake agent. Similarly, fake environments can also

be defined by using the same interface (SimulatedEnviron-

ment) as the real interfaces they mimic.

Data generators are defined by the DataGenerator inter-

face. They are responsible for generating data that can be

retrieved by using the getNextValue() method step by step.

All assertion methods are defined in Assertion, including

visual ones. These methods basically check whether a given

condition is true or not. The assertions can also be visual in

order to conduct visual tests. In this case, they take Graphic

parameters. A Graphic parameter can be generated by the

developer/tester or it can be retrieved from Simulation-

Environment by using the getDisplay() method. This

method returns the current diplay from SimulationEnvir-

onment.

3.3. Implementation

The generic framework defines only the required generic

elements. For implementation, some of these elements can

be removed or combined, or some new elements can be

added depending on the architectural design of the simula-

tion environment. The generic framework does not affect the

software architecture of the simulation environment, it is

pluggable. Rather, it uses the constructs provided by the

simulation environment to specialize itself for that frame-

work.

The generic testing framework has been successfully

implemented for Repast Symphony 2.0 Beta9 (Figure 3)

and MASON Version 1510 (Figure 4).

Repast implementation. Repast is an agent-based simula-

tion framework written in Java (North et al, 2006).

Figure 2 The architectural UML model for the generic testing framework.

8Since many agent-based simulators use a global scheduler, such
information can be retrieved from the scheduler of the simulation
infrastructure.

9http://repast.sourceforge.net/, latest accessed 13 July 2012.
10http://cs.gmu.edu/eclab/projects/mason/, latest accessed 13 July 2012.

It provides pre-defined classes for building agent-based

simulation models as well as for accessing the Repast simul-

ation infrastructure during runtime. Since Repast is written

in Java, the implementation of the framework is based on

the Junit11 testing framework, which is a simple framework

to write repeatable tests for Java applications. Basically, the

test runner of JUnit (TestRunner) runs test cases and prints

a trace as the tests are executed followed by a summary

at the end. Using the JUnit infrastructure, the scenario

executer (ScenarioExecuter) is defined as a test case of

JUnit. Consequently, by using the existing mechanisms and

graphical user interfaces of JUnit, test scenarios of Repast

can easily be executed. Then, a simulation runner (Repast-

Runner) is defined by extending the AbstractRunner class

provided by Repast. Since Repast uses the ContextBuilder

interface for building simulations, our ScenarioBuilder imple-

ments this interface. Then, a class for representing the Repast

simulation infrastructure (RepastEnvironment) is defined.

This class uses the methods provided by the RunEnvironment

class of Repast for accessing the Repast simulation infra-

structure as defined in the SimulationEnvironment interface,

apart from the getDisplay()method. For getting the display

from the Repast infrastructure, RepastEnvironment creates a

DisplayProducer by using a DisplayDescriptor. Then by

using this DisplayProducer, RepastEnvironment creates a

display (IDisplay) and returns its panel (getPanel()).

TestEnvironment is made real by implementing the Con-

text interface provided by Repast, since it is the core concept

and object in Repast that provides a data structure to

organize model elements. The ObservationPoint concept is

removed here, since Repast provides a special mechanism

called Watcher that can be used for model instrumentation.

Basically, a Watcher allows an agent to be notified of a state

change in another agent and it schedules an event to occur as

a result. The watcher is set up using an annotation @Watch.

Finally, the actions of agents are implemented as a subclass of

IAction provided by Repast.

In order to write tests in Repast, the developer/tester first

needs to extend ScenarioBuilder to define the elements of

the test scenario and the initial parameters. Then TesterAgent

needs to be designed together with its monitoring and testing

actions for the testing process. For performing assertions,

TesterAgent uses the Assert class provided by JUnit.

However, the assertion methods provided by JUnit do not

allow making visual assertions. To provide this ability, a

dialogue window12 (AssertionPane) that asks for validation

of a given visual graphic (or a comparison of two visual

graphics) is implemented (there are just two buttons: validate

and invalidate). The methods of AssertionPane return true

when the developer/tester presses the validate button and false

when the he/she presses the invalidate button. Then this

return value can be controlled by using the assertTrue()

method provided by the Assert class. Finally, ScenarioEx-

ecuter should be extended for defining the different initial

conditions and time limits for each scenario execution.

MASON implementation. MASON is an extensible

multi-agent simulation toolkit in Java (Luke et al, 2005).

It provides pre-defined classes for building agent-based

simulation models as well as for accessing the MASON

simulation infrastructure during runtime. Since MASON is

Figure 3 The UML class model for the repast implementation of the generic testing framework.

11JUnit, http://www.junit.org/

12A Dialog window (in Java) is an independent subwindow meant to
carry temporary notice apart from the main Swing Application
Window. Most Dialogs present an error message or warning to a user,
but Dialogs can present images, directory trees, or just about anything
compatible with the main Swing Application that manages them.

also written in Java, like Repast, its scenario executer is

implemented in a similar manner. Afterwards, first, the

MasonScenarioBuilder class is defined for running and

building simulation models by extending the SimState

class provided by MASON. Then, a class for representing

the MASON simulation infrastructure (MasonEnviron-

ment) is defined. This class uses the methods provided by

the SimState and the Schedule classes of MASON for

accessing the MASON simulation infrastructure as defined

in the SimulationEnvironment interface. And after,

TestEnvironment is realized by extending the Sparse-

Field class provided by MASON, since it is the core

concept and object in MASON that provides a data

structure to organize model elements. Finally, the actions

of agents are defined by implementing Steppable and

Stoppable provided by MASON.

Writing tests in MASON is quite similar to writing tests in

Repast. The developer/tester first needs to extend MASONSce-

narioBuilder to define the elements of the test scenario and

the initial parameters. During this definition process, the

TesterAgent should be registered to the observable elements.

Then the TesterAgent needs to be designed together with its

monitoring and testing actions for the testing process. Finally,

ScenarioExecuter should be extended for defining the

different initial conditions and time limits for each scenario

execution.

4. Case study: agent-based simulation of synaptic

connectivity

To demonstrate the effectiveness of our testing framework,

we show its applicability on a micro-level, a meso-level and a

macro-level testing example. For the case study, we have

chosen one of our ongoing agent-based simulation projects.

In this project, we are developing a self-organized agent-

based simulation model for exploration of synaptic con-

nectivity of the human nervous system (Gürcan et al, 2010).

All the tests of this project are conducted by the Repast

implementation of the testing framework, and the initial

results of this project have just been published (Gürcan et al,

2012).

In an organism, the nervous system is a network of

specialized cells (including neurons) that communicate infor-

mation about the organism and its surroundings. A neuron is

an excitable cell in the nervous system that processes and

transmits information by electrochemical signalling through

links called axons. Neurons emit spikes when their mem-

brane potential crosses a certain threshold (firing threshold).

When this threshold is crossed, a spike is delivered to the

other neurons through the axons of that neuron. The very

end of an axon, which makes a junction to the other neuron,

is called a synapse. When a spike transmitted by a neuron

through one of its axons reaches a synapse, this latter

transmits the spike to the other neuron (post-synaptic neuron)

after a certain amount of time (depending on the length of

the axon), which is called an axonal delay. After emitting the

spike, the neuron membrane potential is reset to a certain

lower value (resting membrane potential). According to their

activation, neurons are of two types: (1) if a neuron is a

resting one, it emits a spike when the total synaptic input

is sufficient to exceed the firing threshold, or (2) if a neuron is

a tonic firing one (eg, motoneurons, proprospinal neurons), it

emits a spike when the membrane potential constantly rises

to the firing threshold (Figure 5).

Figure 4 The UML class model for the MASON implementation of the generic testing framework. For model instrumentation, the
Observer design pattern (Larman, 2004) is used. In this sense, all observable (testable) elements are registered to TesterAgent by
MasonScenarioBuilder.

To study synaptic connectivity in human subjects, it has

been customary to use stimulus evoked changes in the activity

of one or more motor units13 in response to stimulation of a

set of peripheral afferents or cortico-spinal fibers (reflex path-

ways14). These effects are often assessed by compiling a peristi-

mulus frequency-gram (PSF) that plots the instantaneous

discharge frequency values against the time of the stimulus

(Türker and Powers, 2005). Figure 6 is an example of a PSF

diagram for the human soleus muscle15 single motor unit dis-

charge frequencies. Here, the time of stimulus is represented as

time 0 and the effect of the situmulus is apparently seen from

the change of the frequency values after the stimulus.

The ability to record the motor activity in human subjects

has provided a wealth of information about the neural con-

trol of motoneurons (Türker and Miles, 1991). Besides, the

reflex pathways of motor units are less complex and involves

less neurons compared to the cortical pathways in the brain.

Thus, in our project we are focused on simulating the

synaptic connectivity of reflex pathways. We developed and

brought together the basic elements of our agent-based

simulation model. To design the self-organized dynamics of

the simulation model, the adaptive multi-agent systems

(AMAS) theory (Capera et al, 2003) is used. According to

the AMAS theory, agents constantly try to help to the most

critical agent in order to be cooperative. Thanks to this

cooperation ability, the agent-based model self-organizes in

an acceptable neural pathway. An acceptable neural path-

way is an artificial neural network, composed of realistic

neuron agents, whose macro-level behaviour is very similar

to the behaviour of the real reflex pathway. To verify and

validate the model, various test scenarios for micro-, meso-

and macro-levels are designed and implemented.

In order to demonstrate how the testing framework can be

used, for each level one testing scenario is chosen.

4.1. Micro-level testing example: tonic firing of a

motoneuron

In this scenario, the aim is to test one of the micro-level

behaviours of motoneurons: the constant emission of spikes

(since motoneurons are tonically active). For tonic firing,

Motoneuron agents use the experimental data recorded from

single motor units of human subjects in Ege University

labs.16 Thus, the expected tonic firing behaviour of this agent

is to generate spikes similar to the real motoneurons.

Figure 7 is an illustrative diagram for the selected test

scenario. The basic element under test is the Motoneuron

agent. In order to be able to test this micro-level behaviour,

the Motoneuron agent is connected to a FakeNeuron agent

with a synaptic link. The FakeNeuron agent imitates a

resting neuron and it is just responsible for receiving the

incoming spikes. The synaptic link is responsible for conduc-

ting a given spike to the FakeNeuron agent after a pre-

defined axonal delay. During the scenario execution, the

Motoneuron agent constantly emits spontaneous spikes and

these spikes are be delivered to the FakeNeuron agent. Each

Figure 5 Tonic firing of a neuron. During tonic firing, a neuron’s membrane potential continuously rises to the firing threshold and
makes the neuron fire spontaneous spikes. The time interval between consecutive spikes are called inter-spike intervals (ISI).

Figure 6 An example peristimulus frequencygram (PSF
diagram) for the soleus muscle single motor unit pathway.
The frequency values before the stimulation (time 0) show the
normal behaviour of the motor unit. However, there are
significant changes after the stimulation.

13Motor units are composed of one or more motoneurons and all of the
muscle fibres they innervate.
14A reflex pathway is a type of neural pathway involved in the mediation
of a reflex. Reflexes are involuntary reactions that occur in response to
stimuli. They often bypass the brain altogether, allowing them to occur
very quickly, although the brain receives information about the reflex as
it happens.
15The soleus is a powerful muscle in the back part of the lower leg (the
calf). It runs from just below the knee to the heel, and is involved in
standing and walking.

16Ege University Center for Brain Research, http://www.eubam.ege.e-
du.tr/.

time the FakeNeuron agent receives a spike, its membrane

potential rises a little for a while and then goes back to the

resting membrane potential. In order to test the tonic firing

behaviour of the Motoneuron agent, the Tester agent

observes the activity of both the Motoneuron agent and the

FakeNeuron agent for the given amount of time (for each

scenario execution this amount may differ). At the end of this

time limit, the Tester agent conducts tests using the informa-

tion it collected during the scenario execution.

For implementing this scenario, first a test builder

(TonicFiringScenario) needs to be created by extending

the ScenarioBuilder class (Algorithm 1). Within this class,

the construction of the basic elements of the test scenario

(the Motoneuron agent and the FakeNeuron agent) is done.

Then, the Tester agent (TonicFiringTester) is implemen-

ted together with its behaviours by extending the Tester

Agent class for the testing process (Algorithm 2 and

Algorithm 3). As shown in Algorithm 2, TonicFiring

Tester monitors the activities of the Motoneuron and the

FakeNeuron agents by observing their membrane potentials.

For defining the observation points, the watch mechanism

(the @Watch annotation) provided by the Repast infra-

structure is used (Algorithm 2, lines 17–21 and 27–31). The

resting membrane potential is defined as –55mV and the

firing threshold is defined as –45mV in our simulation

model, based on many intracellular studies of tonically

active motoneurons (eg Calvin and Schwindt, 1972;

Schwindt and Crill, 1982). Thus, when the membrane

potential of the Motoneuron agent becomes higher than –

45mV, the Tester agent records the time of occurrence in a

list to keep track of the activities of the Motoneuron agent

during the simulation (monitorMotoneuronActivity()).

Likewise, when the membrane potential of the FakeNeuron

agent becomes higher than –55 mV, the Tester agent records

the time of occurrence to keep track of the activity of

FakeNeuron (monitorFakeNeuronActivity()).

Figure 7 An illustrative diagram for the ‘tonic firing of a
motoneuron’ micro-level testing scenario. In this scenario, there
is a motoneuron (MN) that fires constantly by using the
reference data R. MN is connected to a fake neuron (FN)
through a synaptic link. During the test, the Tester agent both
monitors the firing behaviours of MN and FN. Then using the
monitored data, the Tester agent checks if the firing behaviour
of MN is acceptable according to R.

Algorithm 1 Source code for the TonicFiringScenario class.

Algorithm 2 Source code for the TonicFiringTester class.
Summarized for a better representation of the model instru-
mentation.

As shown in Algorithm 3, TonicFiringTester executes

two actions for testing the micro-level behaviour of the

Motoneuron agent at the end of each scenario execution

(ScheduleParameters.END)17. For defining the test cases,

the schedule mechanism (the @ScheduleMethod annota-

tion) provided by the Repast infrastructure is used

(Algorithm 3, lines 20 and 48). One of the test cases

(testTonicFiringOfMotorNeuron()) checks whether the

generated spikes of the Motoneuron agent have similar

characteristics with the real data or not. In order to be able

to test the tonic firing of the Motoneuron agent, this test case

first tests if the Motoneuron agent generated some spikes

(Algorithm 3, line 23). And after, it tests if the simulated

data generated by the Motoneuron agent have similar

statistical characteristics: they should represent the same

statistical distribution whose alpha and gamma parameters

are nearly the same. To do so, first the class names of both

distributions are compared (Algorithm 3, lines 34 and 35),

then the alpha and gamma parameters of both distributions

are, respectively, compared (Algorithm 3, lines 42 and 46).

The second test case (testConductionOfSpikes()) is

designed to test if the spikes generated by the Motoneuron

agent are properly received by the FakeNeuron agent. To

do so, this test examines if all the delays between the

consecutive activities of the Motoneuron agent and the

FakeNeuron agent are exactly the same and are equal to

10.0 (Algorithm 3, line 53).

Finally, in order to execute the test scenario (with various

criteria), the basic class that the JUnit runner will use

(TonicFiringExecuter) is implemented by extending the

ScenarioExecuter class (Algorithm 4). In this class, to

execute this test scenario with different time limits, the

executeTestScenario() method is called twice with

different runUntil parameters (Algorithm 4, lines 8 and 9).

4.2. Meso-level testing example: creation of a new

synapse for helping an inactive neuron

In this scenario, one meso-level behaviour of self-organizing

neurons is considered: the creation of a new synapse for

helping an inactive neuron. The test scenario is composed of

a group of cooperative neuron agents. The aim of the test is

to evaluate if these agents behave cooperatively for helping

each other. However, before delving into this scenario, it

should be noted that the micro-level tests concerning basic

agent interactions have already been performed and passed.

The initial setting of the test scenario is shown in

Figure 8a. There are three neuron agents: Neuron-1,

Neuron-2 and Neuron-3. Neuron-1 has a synapse with

Neuron-2 and Neuron-2 has a synapse with Neuron-3.

Although the synapse between Neuron-1 and Neuron-2 is

Algorithm 3 Source code for the TonicFiringTester class.
Summarized for a better representation of the test cases.

Algorithm 4 Source code for the TonicFiringExecuter class

17The time for the end of the scenario execution may change at each
execution, according to the values given by the developer for
ScenarioExecuter. See Algorithm 8.

strong enough to activate (fire) Neuron-2, the other synapse

is not strong enough to activate Neuron-3.

The developer/tester designed this scenario to verify

that the expected behaviour of this sub-society is to create

a synapse between Neuron-1 and Neuron-3. When this

scenario is executed, Neuron-3 begins to continuously

ask for some help from its direct neighbour (Neuron-2).

However, since Neuron-2 has already a synaptic link with

Neuron-3 and is unable to create another synapse for

helping Neuron-3, Neuron-2 forwards the help call to the

most reasonable neighbour neuron agent, which is from

its point of view, Neuron-1 (Figure 8b). If Neuron-1

receives too many help calls from Neuron-3, in order to

help this latter, it creates a synaptic link between them as

shown in Figure 8c.

For implementing this scenario, first a test builder

(NewSynapseCreationScenario) needs to be created by

extending the ScenarioBuilder class (Algorithm 5). Within

this class, the construction of the basic elements of the test

scenario (neuron agents) is done. Then, the Tester agent

(NewSynapseCreationTester) is implemented together with

its behaviours by extending the TesterAgent class for the

testing process (Algorithm 6).

NewSynapseCreationTester first examines the initial

organization of the scenario (testInitialOrganization()).

There must be three neurons with the following organiza-

tional characteristics: Neuron-1, which has no pre-synapse

and one post-synapse, Neuron-2, which has one pre-synapse

and one post-synapse, and Neuron-3, which has one pre-

synapse and no post-synapse. After a pre-defined amount of

time, given by the developer/tester, NewSynapseCreation

Tester tests whether there is a new synapse in the organiza-

tion or not (testCreationOfANewSynapse()). To do so,

it checks if Neuron-1 has one more post-synapse and if

Neuron-3 has one more pre-synapse.

Finally, in order to execute the test scenario the executor

class that the JUnit runner will use (NewSynapseCreation

Executer) is implemented by extending the Scenario

Executer class (Algorithm 7).

4.3. Macro-level testing example: self-organization of

reflex pathways

After the micro- and the meso-level tests are performed for

our project, we developed the macro-level testing scenarios.

One of these scenarios is about producing the known output

data for a given legal input data. In this scenario, the aim is

to test, given experimental data for a reflex pathway (legal

input data), whether the developed agent-based model self-

organizes in an acceptable neural network and produces

legal output data. In this sense, to be able to test this macro-

level behaviour, the significance of the simulated data with

respect to the reference data is evaluated by cross-correlation

analysis.

The initial setting of the test scenario is shown in Figure 9.

Initially there are one WiringViewer agent, two Neuron

agents and one Muscle agent. The AfferentNeuron agent

has a synapse with the Motoneuron agent, and the

Motoneuron agent has a synapse with the Muscle agent.

The Motoneuron agent is a tonic firing neuron agent that

represents a single motor unit.

When this scenario is executed, the Motoneuron agent

begins to continuously generate spikes. Meanwhile, the

Figure 8 An illustrative diagram that shows the creation of a new synapse by a second level neighbour for helping an inactive neuron.
Initially three neuron agents are considered: Neuron-1 (N1), Neuron-2 (N2) and Neuron-3 (N3). Although the synapse between
Neuron-1 and Neuron-2 is strong enough to activate (fire) Neuron-2, the synapse between Neuron-2 and Neuron-3 is not strong enough
to activate Neuron-3. In this sense, the expected behaviour of this sub-society is to create a synapse between Neuron-1 and Neuron-3.

Algorithm 5 Source code for the NewSynapseCreationSce-nario
class.

WiringViewer agent periodically innervates the Afferent-

Neuron agent and monitors the discharges of the Moto-

neuron agent through the Musle agent (just like in the

biological experimental setting). When the AfferentNeuron

agent is innervated, it generates and sends spikes to

the Motoneuron agent. These spikes evoke changes on the

behaviour of the Motoneuron agent. According to the

monitored discharges, the WiringViewer agent calculates an

instant frequency and compares it to the reference instant

frequencies (Figure 6) observed at the same point of time.

Then the WiringViewer agent sends feedbacks to the

Motoneuron agent about its firing behaviour. The Moto-

neuron agent evaluates these feedbacks and propagates them

to other neurons if it cannot tackle the problem itself. As a

result of this mechanism, the system self-organizes in a

network (by creating new neurons and synapses) until the

desired motoneuron discharging behaviour (the macro-level

behaviour) is achieved. At the end of the scenario execution,

the Tester agent gathers the stimulation data and the

motoneuron discharges data from the WiringViewer agent

and conducts tests using these data.

For implementing this scenario, first a test builder

(SoleusPathwayScenario) needs to be created by extending

the ScenarioBuilder class (Algorithm 8). Within this class,

the construction of the basic elements of the test scenario

is done. Then, the Tester agent (SoleusPathwayTester) is

implemented together with its behaviours by extending the

TesterAgent class for the testing process (Algorithm 9).

After a pre-defined amount of time, the simulation ends.

Then SoleusPathwayTester analyses the results in order to

ensure that the generated network is realistic. To calculate

the relationship between the real behaviour and the simula-

ted behaviour of the system, the Tester agent gets both

reference and simulated data from the WiringViewer

agent, performs a Pearson-correlation analysis between the

experimental reference PSF-CUSUM and the simulated

Algorithm 6 Source code for the NewSynapseCreationTester
class.

Algorithm 7 Source code for the NewSynapseExecuter class.

Figure 9 An illustrative diagram for the ‘self-organization of
reflex pathways’ macro-level testing scenario. Initially there are
four agents: an Afferent-Neuron agent (AN), a Motoneuron
agent (MN), a Muscle agent (MU) and a WiringViewer agent
(WV). The Motoneuron agent uses the reference experimental
data (R) to calibrate its tonic firing behaviour. The Wiring-
Viewer uses the same data to compare the simulated behaviour
of the system to the real system.

PSF-CUSUM at time 0.0 and at time 200.0 (Figure 10). This

analysis shows the degree of functional equivalence between

the simulated network and the experimental reference net-

work. The result of this function may vary from –1.0 to 1.0.

These time values are chosen because reflex pathways are

relatively short and the effects of stimulation after 200.0ms

are said to be effects coming from cortical pathways. There-

fore, the times considered are between 0ms (stimulation) and

200.0ms (last plausible effect). According to this test, the

acceptable correlation is set to 0.90 by the human tester, so

the Tester agent checks whether the correlation is greater

than 0.90 or not.

Finally, in order to execute the test scenario the base class

that the JUnit runner will use (SoleusPathwayExecuter) is

implemented by extending the ScenarioExecuter class

(Algorithm 10).

5. Related work

Although there is a considerable amount of work about

testing in MASs in the literature (for a review see Nguyen

et al, 2011)18, there is not much work on model testing in

ABMS.

Here we need to make a distinction between ABMS and

MAS in terms of testing. In ABMS, since it is simula-

tion, there is always a global simulation clock that makes

monitoring and controlling the actions and the events of the

model elements easier. However in MAS, there is no global

clock and all the elements execute in real-time. The local

time recorded in each element is potentially different.

Therefore a testing framework for MAS needs additional

mechanisms to be able to properly sort the different events

independently from the computer local clock. A way of

achieving this independence is, for example, by using logical

clocks (Lamport, 1978); this was used in Serrano and Botia

(2009).

In terms of ABMS, there is more work on validation.

Some of these works are related to the definition of con-

ceptual processes for ABMS validation. Klügl (2008), for

instance, proposes a validation process for agent-based simu-

lation models combining face validation, sensitivity analysis,

calibration and statistical validation. She then defines the

main problem in validation as the missing availability of

empirical data. Cooley and Solano (2011) describe the use of

Algorithm 9 Source code for the SoleusPathwayTester class.Algorithm 8 Source code for the SoleusPathwayScenario class.

18In this article, testing methods and techniques with respect to the MAS
properties they are able to address are extensively reviewed. But none of
the reviewed studies focus on ABMS.

validation methods in model building. They discuss the stages

of simulating an agent-based simulation model and present

six specific validation approaches. However, they do not

define the connection between the basic elements of agent-

based simulation models and their approach. These works

define validation techniques and their usage within a valida-

tion process for ABMS. In other words, they are more

focused on ‘how’ agent-based simulation models could be

validated, rather than what should be validated. On the

contrary, our approach focuses on ‘what’ should be validated

in ABMS by clearly defining testing (verification and/or

validation) levels and requirements. Moreover, we propose a

generic framework for the automated execution of these

requirements defined at each level. As a result, the proposed

framework can also be used in any validation process.

Railsback and Grimm have a recent study (Railsback and

Grimm, 2011) about testing agent-based simulation models.

In this study, they define 10 important techniques for finding

and fixing software errors: syntax checking, visual testing,

print statements, spot tests with ‘agent monitors’, stress tests,

test procedures, test programmes, code analysis, statistical

analysis of file output and independent reimplementation of

submodels. However, the approaches they propose are far

from automating the model testing process, since they do not

have an architectural perspective about how these solutions

could be integratively constructed and conducted. Moreover,

some of their solutions are not generic and depend on the

NetLogo simulation framework (Sklar, 2007). They do not

give any idea about how these solutions can be applied to

different simulation frameworks in a generic manner. Apart

from that, they are also aware of the deficiency of conduct-

ing tests on the micro- and the macro-levels (they call these

levels the individual- and the system-level, respectively) and

they claim that tests on the submodel-level should also be

performed in order to control uncertainty. They define a

submodel as an independent model that has its own distinct

inputs and outputs. As a result of this definition, their

submodel-level tests are black-box tests. However, to better

control uncertainty, one also needs to make white-box tests

in this level19.

Some other works focus on data validation in agent-based

simulation models. As defined by Robinson (1997), data

validation is needed to determine whether the data used

are sufficently accurate. Windrum et al (2007) examine a set

of methodological problems in the emprical validation of

agent-based economics models. Pengfei et al (2011) pro-

pose validation of agent-based simulation through human

computation as a means of collecting large amounts of con-

textual behavioural data. Data validation is a critical sub-

process for ABMS validation. In our case, data validation is

a process that should be conducted before model testing

of ABMS.

Figure 10 PSF-CUSUM diagrams for both reference and simulated data. The PSF-CUSUM of reference data (on the top) is
calculated by using the soleus muscle single motor unit PSF values given in Figure 6. The PSF-CUSUM of simulated data (in the
bottom) is calculated by using the motoneuron agent’s latest discharge.

Algorithm 10 Source code for the SoleusPathwayExecuter class.

19The meso-level testing example given in this paper (Section 4.2) is a
good example of white-box testing. In this test, the behaviour of a
sub-society in order to handle a problem in certain conditions is
tested by controlling its internal organization. The same sub-society,
in another condition, may behave differently to handle the same
problem. For example, rather than creating a new synapse, the sub-
society may create a new neuron agent. This kind of solution may
also satisfy this sub-society and make it produce the same output.
However, the internal organization will be totally different. There-
fore, only testing inputs and outputs in order to control uncertainty
is not enough.

In the literature only a few works focus on designing and

implementing tools for model testing of ABMS. Niazi

et al (2009) present a technique that allows for flexible

validation of agent-based simulation models. They use an

overlay on the top of agent-based simulation models that

contains various types of agents that report the generation

of any extraordinary values or violations of invariants and/

or reports the activities of agents during simulation. Our

approach is similar to theirs in the sense that they use special

agents where the agents undergo tests they are not aware of.

However, instead of using various types of special agents,

we only use one. Actually, we use a single agent for testing,

since at every test our aim is to test one single use case of

the system (Beck, 2003). Besides, they define an architecture

but since they begin without defining the requirements it is

not quite possible to understand ‘what’ they are testing.

Montanola-Sales et al (2011) present the verification and

validation of an agent-based demographic simulation model

implemented using a parallel demographic simulation tool

(Yades) using white-box validation methods described by

Pidd (2004). In this sense, Montanola-Sales et al divide their

model into smaller components and test the correctness of

each component.

None of the tools and practical works in the literature are

well-structured (their authors do not give internal details)

and they are not pluggable to any existing ABMS frame-

work. Unlike our framework, they are more suitable for

manual testing, rather than automated testing. These works

also do not take into account all basic elements of agent-

based simulation models (agents, simulated environments

and the simulation environment). We actually think that all

these elements need to be involved in the model testing

process since they are main ingredients of agent-based

simulation models.

6. Conclusions

This body of work presents the design of a novel generic

framework for the automated model testing of agent-based

simulation models. The basic elements for testing are identi-

fied as agents and simulated environments. For testing each

use case for these elements, a test scenario needs to be desi-

gned. In our active testing approach, for each test scenario,

there is a special agent that observes the model elements

under test, and executes tests that check whether these ele-

ments perform the desired behaviours or not. The frame-

work also provides generic interfaces for accessing both the

simulation environment and the simulated environments.

Moreover, the framework allows for visual test in order to

increase the confidence.

To demonstrate the applicability of the framework, it was

implemented for two well-known agent-based simulation

frameworks written in Java: Repast and MASON. For

model instrumentation in Repast, the @Watch annotation

provided by Repast is used. However, for model instru-

mentation in MASON, since it does not provide any mec-

hanism facilitating the definition of observation points, the

Observer design pattern (Larman, 2004) is used. Besides,

to show the suitability of the proposed generic framework

in case of the adoption of frameworks written in other

languages, implementation for other frameworks is being

planned.

Moreover, we integrated these implementations into JUnit,

which is a framework to write repeatable tests for Java

applications. Such an integration facilitates the automated

execution of test scenarios for ABMS. As a result, performing

regression tests for an agent-based simulation model becomes

feasible. Apart from that, such an automated execution also

provides a tool that enables empirical calibration. There are

three well-known empirical validation approaches (Windrum

et al, 2007): the indirect calibration approach, the Werker-

Brenner approach and the history-friendly approach. The

indirect calibration approach, as its name suggests, first

performs validation, and then indirectly calibrates the model

by focusing on the parameters that are consistent with output

validation (Dosi et al, 2006). Such a process can be easily

performed once the output validation tests for the model have

been implemented by re-executing all the test scenarios after

each parameter modification. The Werker-Brenner approach

(Werker and Brenner, 2004) and the history-friendly

approach (Malerba et al, 1999), on the other hand, first

focus on calibration and then perform validation. These pro-

cesses can also be performed by using the proposed frame-

work but they cannot benefit from the regression test

capability of the tool.

7. Future work

As a future work, we are planning to focus on testing of

more complex simulated environment(s). In the current

version, the SimulatedEnvironment interface worked well

for our case study and other experimental systems. But,

testing of more complex simulated environments may

require more work to face particular modelling and

implementation situations such as management of time

and space in the simulation, considering, for instance, the

complexity of a robotic simulated environment as described

in Helleboogh et al (2007). In this sense, we first want to

adapt the proposed generic framework to the GAMA

platform (Taillandier et al, 2012), which has ability to use

complex GIS data as an environment for the agents. Then,

we plan to conduct more complex case studies to improve

our environment interface.

Developing an agent-based simulation requires a closer

working relationship between domain experts and devel-

opers, just like in agile development (Polack et al, 2010).

Thus, testing is meaningful when it is involved in an agile

development methodology. In this sense, we are planning to

define a test-driven process based on the testable elements

and the generic framework defined in this paper. Moreover,

we are also planning to show how our generic testing tool

can be used for testing self-organizing MASs. The metrics

for self-organization and emergence mechanisms for achiev-

ing self-*properties are given in recent works (Kaddoum

et al, 2009 and Raibulet and Masciadri, 2009). We believe

that the capabilities of our framework will be able to test and

validate all the metrics given in these studies.

Acknowledgements—The authors thank Kemal S. Türker and S. Utku
Yavuz from Ege University Center for Brain Research for supplying
scientific data about the activity of motoneurons. The work described
here was partially supported by Ege University under the BAP 10-
MUH-004 project. Önder Gürcan is supported by the Turkish
Scientific and Technical Research Council (TUBITAK) through a
domestic PhD scholarship program (BAYG-2211) and by the French
Government through the co-tutelle scholarship program.

References

Balci O (1994). Validation, verification, and testing techniques

throughout the life cycle of a simulation study. In: Proceedings

of the 26th Conference on Winter simulation, WSC’94, Society

for Computer Simulation International: San Diego, CA,

pp 215–220.

Balci O (1995). Principles and techniques of simulation validation,

verification, and testing. In: Proceedings of the 27th Conference

on Winter simulation, WSC’ 95, IEEE Comp. Soc.: Arlington,

VA, pp 147–154.

Bankes SC (2002). Agent-based modeling: A revolution? Proceed-

ings of the National Academy of Sciences of the United States of

America 99(3): 7199–7200.

Beck K (2003). Test-driven Development: By Example. Addison-

Wesley: Boston.

Burnstein I (2003). Practical Software Testing. Springer: New York.

Calvin W and Schwindt P (1972). Steps in production of

motoneuron spikes during rhytmic firing. Journal of Neuro-

physiology 35(3): 297–310.

Capera D, Georgé J, Gleizes M and Glize P (2003). The AMAS

theory for complex problem solving based on self-organizing

cooperative agents. In: WETICE ’03: Proceedings of the Twelfth

International Workshop on Enabling Technologies, IEEE Com-

puter Society: Washington, DC, p 383.

Coelho R, Kulesza U, von Staa A and Lucena C (2006). Unit

testing in multi-agent systems using mock agents and aspects. In:

Proceedings of the 2006 Int. Workshop on Software eng. for large-

scale multi-agent systems, SELMAS’06, ACM: New York, NY,

pp 83–90.

Cooley P and Solano E (2011). Agent-based model (ABM)

validation considerations. In: Proceedings of the Third Interna-

tional Conference on Advances in System Simulation (SIMUL

2011), IARIA, Barcelona, Spain, pp 134–139.

Dosi G, Fagiolo G and Roventini A (2006). An evolutionary model

of endogenous business cycles. Computational Economics 27(1):

3–34.

Epstein JM (2007). Agent-based computational models and

generative social science. In: Generative Social Science Studies

in Agent-based Computational Modeling, Introductory Chapters.

Princeton University Press, Santa Fe, NM.

Feathers M (2004). Working Effectively with Legacy Code. Prentice

Hall PTR: Upper Saddle River, NJ.

Ghosh S (1986). On the concept of dynamic multi-level simulation.

In: Proceedings of the 19th annual symposium on Simulation,

ANSS ‘86, IEEE Computer Society Press: Los Alamitos, CA,

pp 201–205.

Grimm V et al (2005). Pattern-oriented modeling of agent-based

complex systems: Lessons from ecology. Science 310(5750):

987–991.

Gürcan Ö et al (2012). Simulating human single motor units using

self-organizing agents. In: Sixth International IEEE Conference

on Self-Adaptive and Self-Organizing Systems (SASO’2012),

IEEE Computer Society: Lyon, France, pp 11–20.

Gürcan Ö, Dikenelli O and Türker KS (2010). Agent-based

exploration of wiring of biological neural networks: Position

paper. In: Trumph R (ed), 20th European Meeting on Cyber-

netics and Systems Research (EMCSR 2010. Austrian Society

for Cybernetic Studies: Vienna, Austria, EU, pp 509–514.

Helleboogh A, Vizzari G, Uhrmacher A and Michel F (2007).

Modeling dynamic environments in multi-agent simulation.

Autonomous Agents and Multi-agent Systems 14(1): 87–116.

House R, Rousseau DM and Thomas-Hunt M (1995). The meso

paradigm: A framework for the integration of micro and macro

organizational behavior. Review of Organization Behavior 17:

71–114.

Kaddoum E, Gleizes M-P, Georgé J-P and Picard G (2009).

Characterizing and evaluating problem solving self-*systems

(regular paper). (regular paper) In: The First Inter. Conference on

Adaptive and Self-adaptive Systems and Applications (ADAP-

TIVE 2009), Athens, Greece, 15–20 November, CPS Produc-

tion—IEEE Computer Society, page (electronic medium).

Klügl F (2008). A validation methodology for agent-based simula-

tions. In: Proceedings of the 2008 ACM symposium on Applied

computing, SAC¡08, ACM: New York, NY, pp 39–43.

Klügl F (2009). Multiagent simulation model design strategies.

In: MAS&S @ MALLOW’09, Turin, Vol. 494, CEUR Work-

shop Proceedings, page (on line).

Klügl F, Fehler M and Herrler R (2005). About the role of the

environment in multi-agent simulations. In: Weyns D, Van

Dyke Parunak H and Michel F (eds). Environments for Multi-

agent Systems, Vol. 3374 of LNCS. Springer: Berlin/Heidelberg,

pp 127–149.

Lamport L (1978). Time, clocks, and the ordering of events in

a distributed system. Communications of the ACM 21(7):

558–565.

Larman C (2004). Applying UML and Patterns: An Introduction to

Object-oriented Analysis and Design and Iterative Development,

3rd edn. Prentice Hall PTR: Upper Saddle River, NJ.

Law AM (2007). Simulation, Modeling and Analysis, 4th edn.

McGraw Hill: New York.

Luke S et al (2005). MASON: A multiagent simulation environ-

ment. Simulation 81(7): 517–527.

MacQueen JB (1967). Some methods for classification and analysis

of multivariate observations. In: Cam LML and Neyman J

(eds). Proceedinges of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, Vol 1. University of

California Press, Berkeley, CA, pp 281–297.

Malerba F, Nelson R, Orsenigo L and Winter S (1999). ‘History-

friendly’ models of industry evolution: The computer industry.

Industrial and Corporate Change 8(1): 3–40.

Montanola-Sales C, Onggo BSS and Casanovas-Garcia J (2011).

Agent-based simulation validation: A case study in demographic

simulation. In: Proceedings of the Third International Conference

on Advances in System Simulation (SIMUL 2011), Barcelona,

Spain, pp 109–115.

Nguyen C et al (2011). Testing in multi-agent systems. In: Gleizes M-P

and Gomez-Sanz J (eds). Agent-oriented Software Engineering

X Vol. 6038 of Lecture Notes in Computer Science. Springer:

Berlin/Heidelberg, pp 180–190.

Niazi MA, Hussain A and Kolberg M (2009). Verification and

validation of agent-based simulation using the VOMAS

approach. In:MAS&S@MALLOW’09, Turin, Vol. 494, CEUR

Workshop Proceedings, page (online).

Nikolai C and Madey G (2009). Tools of the trade: A survey of

various agent based modeling platforms. Journal of Artificial

Societies and Social Simulation 12(2): 2.

North M, Collier N and Vos J (2006). Experiences creating

three implementations of the repast agent modeling toolkit.

ACM Transactions on Modeling and Computer Simulation 16(1):

1–25.

Pengfei X, Lees M Nan H and Viswanthatn TV (2011). Validation

of agent-based simulation through human computation: An

example of crowd simulation. In: Multi-agent-based Simulation

XI pp 1–13.

Pidd M (2004). Computer Simulation in Management Science. John

Wiles & Sons Inc, Indianapolis, IN.

Polack FAC et al (2010). Reflections on the simulation of complex

systems for science. In: Proceedings of International Conference

on Computational Science (ICCS’2010), Oxford, UK, 22–26

March, pp 276–285.

Raibulet C and Masciadri L (2009). Towards evaluation mechan-

isms for runtime adaptivity: From case studies to metrics. In:

Proceedings of the 2009 Computation World: Future Computing,

Service Computation, Cognitive, Adaptive, Content, Patterns,

ComputationWorld’09, IEEE Comp. Soc: Washington, DC,

pp 146–152.

Railsback SF and Grimm V (2011). Agent-based and Individual-

based Modeling: A Practical Introduction. Princeton University

Press, Princeton, NJ.

Robinson S (1997). Simulation model verification and validation:

Increasing the users’ confidence. In: Proceedings of the 29th

Conference on Winter Simulation, WSC ‘97, IEEE Computer

Society: Washington, DC, pp 53–59.

Sansores C and Pavon J (2005). Agent-based simulation replication:

A model-driven architecture approach. In: 4th Mexican Inter-

national Conference on Artificial Intelligence (MICAI’2005),

Mexico, pp 244–253.

Sargent RG (2005). Verification and validation of simulation

models. In: Proceedings of the 37th Conference on Winter sim-

ulation, WSC’05, Winter Simulation Conference, Orlando, FL,

USA, 4–7 December, pp 130–143.

Schwindt P and Crill W (1982). Factors influencing motoneuron

rhytmic firing: Results from a voltage-clamp study. Journal of

Neurophysiology 48(4): 875–890.

Serrano E and Botia JA (2009). Programming multiagent systems.

Chapter Infrastructure for Forensic Analysis of Multi-agent

Systems, pp 168–183. Springer-Verlag: Berlin, Heidelberg.

Serrano E, Gómez-Sanz JJ, Botı́a JA and Pavón J (2009).

Intelligent data analysis applied to debug complex software

systems. Neurocomputing 72(13–15): 2785–2795.

Sklar E (2007). Netlogo, a multi-agent simulation environment.

Artificial Life 13(3): 303–311.

Taillandier P, Drogoul A, Vo D and Amouroux E (2012). Gama: A

simulation platform that integrates geographical information

data, agent-based modeling and multi-scale control. In: Desai N,

Liu A and Winikoff M (eds). The 13th International Conference

on Principles and Practices of Multi-agent Systems (PRIMA).

Kolkata, India, 12–15 November, Lecture Notes in Computer

Science, Vol.7057, Springer: Berling Heidelberg, pp 242–258.

Terano T (2007). Exploring the vast parameter space of multi-agent

based simulation. In: Antunes L and Takadama K (eds). Multi-

agent Based Simulation VII. Lecture Notes in Computer Science,

Vol. 4442, Springer: Berlin Heidelberg, pp 1–14.

Troitzsch KG (1996). Multilevel simulation. In: Klaus G et al

(eds). Social Science Microsimulation: Berlin: Springer-Verlag,

pp 107–122.

Türker KS and Miles TS (1991). Threshold depolarization measure-

ments in resting human motoneurons. Journal of Neuroscience

Methods 39(1): 103–107.

Türker KS and Powers RK (2005). Black box revisited: A technique

for estimating postsynaptic potentials in neurons. Trends in

Neurosciences 28(7): 379–386.

Uhrmacher A and Swartout W (2003). Agent-oriented Simulation.

Kluwer Academic Publishers: Norwell, MA, pp 215–239.

Utting M and Legeard B (2007). Practical Model-based Testing: A

Tools Approach. Morgan Kaufmann Publishers Inc.: San

Francisco, CA.

Werker C and Brenner T (2004). Empirical calibration of

simulation models. Papers on Economics and Evolution

2004-2010, Max Planck Institute of Economics, Evolution-

ary Economics Group.

Wilensky U and Rand W (2007). Making models match:

Replicating an agent-based model. Journal of Artificial Societies

and Social Simulation 10(4): 2.

Windrum P, Fagiolo G and Moneta A (2007). Empirical validation

of agent-based models: Alternatives and prospects. Journal of

Artificial Societies and Social Simulation 10(2): 8.

Wolfram S (1994). Cellular Automata and Complexity: Collected

Papers Advanced Book Program Addison-Wesley Pub. Co:

Indianapolis, IN.

