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Abstract -    Load balancing is a crucial issue in parallel 
and distributed systems to ensure fast processing and 
optimum utilization of computing resources. Load 
balancing strategies try to ensure that every processor in 
the system does almost the same amount of work at any 
point of time. This paper investigates dynamic load-
balancing algorithm for heterogeneous distributed systems 
where half of the processors have double the speed of the 
others. Two job classes are considered for the study, the 
jobs of first class are dedicated to fast processors. While 
second job classes are generic in the sense they can be 
allocated to any processor. The performance of the 
scheduler has been verified under scalability. Some 
simulation results are presented to show the effectiveness of 
genetic algorithms for dynamic load balancing. 

Keywords: Heterogeneous distributed system, dynamic 
load balancing, makespan, genetic algorithm.  

1 Introduction 
 Distributed heterogeneous computing is being widely 
applied to a variety of large size computational problems. 
These computational environments are consists of multiple 
heterogeneous computing modules, these modules interact 
with each other to solve the problem. In a Heterogeneous 
distributed computing system (HDCS), processing loads 
arrive from many users at random time instants. A proper 
scheduling policy attempts to assign these loads to available 
computing nodes so as to complete the processing of all 
loads in the shortest possible time. 

The resource manager schedules the processes in a 
distributed system to make use of the system resources in 
such a manner that resource usage, response time, network 
congestion, and scheduling overhead are optimized. There 
are number of techniques and methodologies for scheduling 
processes of a distributed system. These are task 
assignment, load-balancing, load-sharing approaches [7, 9, 
10]. Due to heterogeneity of computing nodes, jobs 

encounter different execution times on different processors.  
Therefore, research should address scheduling in 
heterogeneous environment. 

In task assignment approach, each process submitted by a 
user for processing is viewed as a collection of related tasks 
and these tasks are scheduled to suitable nodes so as to 
improve performance. In load sharing approach simply 
attempts to conserve the ability of the system to perform 
work by assuring that no node is idle while processes wait 
for being processed. In load balancing approach, processes 
submitted by the users are distributed among the nodes of 
the system so as to equalize the workload among the nodes 
at any point of time. Processes might have to be migrated 
from one machine to another even in the middle of 
execution to ensure equal workload. Load balancing 
strategies may be static or dynamic [1, 3, 7]. 

To improve the utilization of the processors, parallel 
computations require that processes be distributed to 
processors in such a way that the computational load is 
spread among the processors. Dynamic load distribution 
(also called load balancing, load sharing, or load migration) 
can be applied to restore balance [7]. In general, load-
balancing algorithms can be broadly categorized as 
centralized or decentralized, dynamic or static, periodic or 
non-periodic, and those with thresholds or without 
thresholds [3, 7, 11]. We have used a centralized load-
balancing algorithm framework as it imposes fewer 
overheads on the system than the decentralized algorithm 

 The load-balancing problem, aim to compute the 
assignment with smallest possible makespan (i.e. the 
completion time at the maximum loaded computing node). 
The load distribution problem is known to be NP-hard [4, 5] 
in most cases and therefore intractable with number of tasks 
and/or the computing node exceeds few units.  Here, the 
load balancing is a job scheduling policy which takes a job 
as a whole and assign it to a computing node [2].This paper 
considers the problem of finding an optimal solution for 



load balancing in heterogeneous distributed system. The rest 
of the paper is organized as follows.  The next section 
discusses Heterogeneous distributed computing system 
(HDCS) structure and the load-balancing problem.  Section 
3 describes the different dynamic load distribution 
algorithms. We have simulated the behavior of different 
load balancing algorithm with our simulator developed 
using Matlab, where each task ti is with the expected 
execution time eij and expected completion time cij, on 
machine Mj. The results of the simulation with scalability of 
computing nodes and tasks are presented in Section 4. 
Finally, conclusions and directions for future research are 
discussed in Section 5. 

2  System and problem model 
2.1 Heterogeneous distributed computing 

system  
 Heterogeneous distributed computing system (HDCS) 
utilizes a distributed suite of different high-performance 
machines, interconnected with high-speed links, to perform 
different computationally intensive applications that have 
diverse computational requirements. Distributed computing 
provides the capability for the utilization of remote 
computing resources and allows for increased levels of 
flexibility, reliability, and modularity. In heterogeneous 
distributed computing system the computational power of 
the computing entities are possibly different for each 
processor as shown in figure 1[1, 3, 4]. A large 
heterogeneous distributed computing system (HDCS) 
consists of potentially millions of heterogeneous computing 
nodes connected by the global Internet. The applicability 
and strength of HDCS are derived from their ability to meet 
computing needs to appropriate resources [2, 3, 9].  

 Resource management sub systems of the HDCS are 
designated to schedule the execution of the tasks that arrive 
for the service.  HDCS environments are well suited to meet 
the computational demands of large, diverse groups of 
tasks. The problem of optimally mapping also defined as 
matching and scheduling. 

 

 
 
 
 
 
 

 

Figure: 1 Distributed Computing System 

 

We consider a heterogeneous distributed computing 
system (HDCS) consists of a set of m {M1, M2, … Mm}   
independent heterogeneous, uniquely addressable computing 
entity (computing  nodes). Let there are n number of jobs 
with each job j has a processing time tj are to be processed in 
the HDCS with m nodes. Hence the generalized load-
balancing problem is to assign each job to one of the node 
Mi so that the loads placed on all machine are as “balanced” 
as possible [5].  

 
2.2 Mathematical model for load balancing 
 This section presents a mathematical model for load 
balancing problem based on minmax criterion. Objective of 
this formulation is to minimize the load at the maximum 
loaded processor.  Let A(i) be the set of jobs assigned to 
machine Mi; hence the machine Mi needs total computing 
time ∑

∈

=
)(iAj

ji tT , which is otherwise known as (Li) 

load on machine Mi. The basic objective of load balancing 
is to minimize makespan[11]; which is defined as  
maximum loads on any machine ( T = maxi Ti). This 
problem can be expressed as linear programming problem, 
with the objective to Minimize L (load of the corresponding 
assignment) 

Minimize L 

∑ =
i

jij tx , for all j ∈ A(i) 
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j

ij Lx  for all  i∈ M 

xij ∈ {0, tj}  
{ }jij tx ,0= , for all j ∈ A(i) , i∈ Mj 

 
0=ijx , for all j ∈ A(i) , i∉ Mj 

 
Where Mj ⊆ M; set of machines to which the job j can be 
assigned. 

The problem of finding an assignment of minimum 
makespan is NP-hard [5]. The solutions to this can be 
obtained using a dynamic programming algorithm Ο(n Lm), 
where L is the minimum makespan.  
 

Due to the complexity of load balancing problem, most 
of researchers proposed heuristic algorithms, while optimal 
algorithm are developed for only restricted cases or  for 
small problems[4]. Genetic algorithms (GAs) are 
evolutionary optimization approaches which are an 
alternative to traditional optimization methods. GA is most 
appropriate for complex non-linear models where location 
of the global optimum is a difficult task. Hence genetic 
algorithms have been used to solve hard optimization 
problem.  In this paper we have analyze the performance 
HDCS where half the total processors have double speed 
than others. 
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3 System Model and Methodology 
3.1 System and Workload Models 
Typically, a load distributing algorithm has four 
components: (i) a transfer policy that determines whether a 
node is in a suitable state to participate in a task transfer, (ii) 
a selection policy that determines which task should be 
transferred, (iii) a location policy that determines to which 
node a task selected for transfer should be sent, and (iv) an 
information policy which is responsible for triggering the 
collection of system state information [1, 3, 7, 13]. When a 
new job arrives at the node (Figure 3.1) the transfer policy 
looks at the node’s job queue length. The job is allowed to 
execute at the node if the job queue length is less than a 
predetermined threshold. Otherwise Job is assigned to the 
central scheduler. 

 

 

 

 

 

 

 

Figure: 3.1 Job flow at computing node 
 
Scheduling of tasks in a load balancing distributed system 
involves deciding not only when to execute a process, but 
also where to execute it. Accordingly, scheduling in a 
distributed system is accomplished by two components: the 
allocator and the scheduler. The allocator decides where a 
job will execute and the scheduler decides when a job gets 
its share of the computing resource at the node.  In this 
paper we have used the computing resource model as 
discussed in [6 ] 

 
Figure 3.2:  Central scheduler Queuing Model 

Each heterogeneous computing node is multitasking, can 
accommodate maximum K no of jobs for some acceptable 
QoS. The heterogeneous distributed computing system 
addressed here can be  expressed by Kendall notation[14] 
like M/M/m/K/n, where: (i) First M: represents exponential 
inter arrival times between jobs(tasks) distribution (Poisson 
process), (ii) Second M: represents exponential execution 
time of jobs  distribution, (iii) m: represents number of 
heterogeneous  computing nodes,(iv)  K: represents 
maximum number of tasks that can be in a computing Node 
under the multitasking, and (v) n: represents number of jobs 
.   Let λi  be the arrival rate of jobs at computing node i , 
Hence the arrival rate at resource manager is λ, where 

( ) mmλλλλλ ++++= Λ321  
We have assume that the service rate of all m heterogeneous 
computing nodes are different, i.e. μj ≠ μi  for any two 
computing node.   

 
In this paper we have use a heterogeneous distributed 

computing system, with two different type of computing 
nodes connected via a high-speed network as shown in 
figure 1. Half of the computing nodes (nodes) execute at 
double the speed of the others. The jobs assigned for the 
execution are assumed to be highly independent. That means 
when a job is scheduled for execution, no job ever ideally 
waits for communication with any other jobs. This system 
can be modeled as an open queuing network [1,6]. Let MF 
and Ms be the number of fast or slow computing nodes 
(machine), so that MF = Ms = m/2.  We have assumed that 
the jobs are classified into types as dedicated and generic 
jobs with inter-arrival time λG, and λD respectively. The jobs 
of first class are dedicated to fast processors and second 
class jobs are generic in the sense that can be allocated to 
any processor. There is one arrival stream for dedicated jobs 
and one for generic jobs. Model of the system is shown in 
figure 3.2.  The generic jobs arrive at a rate λG, and can 
process by any of the computing node. We shall assume that 
all arrival streams are Poisson process. All jobs have 
identically distributed service requirements. One allocated to 
a particular computing node, a job can not be reassigned and 
must be process to completion by that node.  The dedicated 
jobs are mostly the local loads of the computing nodes; if a 
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computing node is loaded above a threshold it is not 
available for generics jobs for a period of time. 
 
3.2 Dynamic load distribution algorithms 
 A dynamic load distribution algorithm must be 
general, adaptive, stable, fault tolerant and transparent to 
applications.  Load balancing algorithms can be classified as 
(i) global vs. local, (ii) centralized vs. decentralized, (iii) 
Non-cooperative vs. cooperative, and  (iv) adaptive vs. non-
adaptive[7,13]. In this paper we have used centralized load 
balancing algorithm, a central node collects the load 
information from the other computing nodes in HDCS. 
Central node communicates the assimilated information to 
all individual computing nodes, so that the nodes get 
updated about the system state. This updated information 
enables the nodes to deicide whether to migrate their 
process or accept new process for computation. The 
computing nodes may depend upon the information 
available with central node for all allocation decision.  

The scheduling policies can be probabilistic, deterministic 
and adaptive. In probabilistic case, the dedicated jobs are 
dispatched randomly to the first processor with equal 
probability while the generic jobs are randomly dispatched 
to the slow processors. 

In deterministic case the routing decision is based on system 
state. Two different policies are examined for this case. In 
both policies, the dedicated jobs join the shortest of the fast 
processor queues. However, the first policy requires the 
generic jobs join the shortest queue of the slow processors 
while the second policy assigns generic jobs to the (slow or 
fast) processor expected to offer the least job response time. 
However, when a generic job is assigned to a fast processor, 
job start time depends on an aging factor. In adaptive case, 
job migration from slow to fast processors employed. This 
is a receiver-initiated load sharing method employed to 
improve the performance of generic jobs. The policy is 
initiated when a generic job is queued on a slow processor 
and a fast processor becomes idle. Only the migration of 
non-executing jobs is considered. Executing jobs are not 
eligible for transfer because of complexity issues. When a 
job is transferred from a slow to fast processor for remote 
processing, the job incurs additional communication cost. 
Only jobs that are waiting in the queues are transferred. The 
benefit of migration depends on migration cost[6,13]. 

We have referred the workload model that is characterized 
by three parameters:  

 The distribution of job arrival 

 The distribution of processor service time 

 The distribution of the migration overhead. 

3.3 Job Scheduling Policies 
Here we examined only the non-preemptive scheduling 
policies only with a assumption that the scheduler has 
perfect information on (i) The length of all processor queue, 
qnd (ii) The queuing time of dedicated jobs in the fast 
processor queues. We have used the scheduling strategy 
used by Karatza et al.[6]. The scheduling strategies used for 
load balancing decision are  

 Least expected response time for generic jobs 
maximum wait for dedicated jobs (LERT-MW) 

 LERT-MW with migration having idea about 
execution times  

LERT-MW: In this policy also dedicated jobs are 
dispatched to the fast processor which is having the least 
queue length, and generic job will sent to either fast or slow 
processor expected to offer  the least job response time. The 
minimum job response time (makespan) is based on the 
user’s view of how to improve performance. This algorithm 
needs global information on queue lengths for the generic 
and dedicated jobs, and also it requires additional 
information about the time-dedicated jobs waiting in a 
queue.  

LERT-MWM: In the above method we don’t have priori 
knowledge about the execution times. So, we can’t evenly 
distribute the load among all the nodes. The results some 
processors remain idle, while others are overloaded. This 
requires the migration of jobs form overloaded processors to 
idle processors. By this process migration overhead may be 
more for small jobs & results lower processors utilization. 
So we are going for GA, which will use the LERT-MW in 
the phase of scheduling. 

3.4 GA based Load Balancing Method 
 In this section, we detail our scheduling algorithm 
which utilizes GA for load balancing in HDCS. Genetic 
algorithms work with a population of the potential solutions 
of the candidate problem represented in the form of 
chromosomes. Each chromosome is composed of variables 
called genes. Each chromosome (genotype) maps to a 
fitness value (phenotype) on the basis of the objective 
function of the candidate problem. The algorithm we have 
developed us based upon one developed by Zomalya et 
al.[11, 12].  Jobs arrive at unknown intervals for processing 
and are placed in the queue of unscheduled tasks from 
which tasks are assigned to processors. Each task is having 
a task number and a size. 

GA follows the concept of solution evolution by 
stochastically developing generations of solution 
populations using a given fitness statistic. They are 
particularly applicable to problems which are large, non-



linear and possibly discrete in nature, features that 
traditionally add to the degree of complexity of solution. 
Due to the probabilistic development of the solution, GA do 
not guarantee optimality even when it may be reached. 
However, they are likely to be close to the global optimum. 
This probabilistic nature of the solution is also the reason 
they are not contained by local optima. The proposed 
algorithm for load balancing is presented in figure 3.3.  

A fixed number of tasks, each having a task number and a 
size, is randomly generated and placed in a central task pool 
from which tasks are assigned to different computing nodes 
(processors). As load balancing is performed by the 
centralized GA-based method, the first thing to do is to 
initialize a population of possible solutions [11, 12]. This 
can be achieved using the sliding window technique. The 
window size is fixed, with the number of elements in each 
string equal to the size of the window. 

As load-balancing is performed by the centralized GA-
based method, the first thing to do is to initialize a 
population of possible solutions. Every time when a job 
arrived at queue of unscheduled tasks (task pool), the job is 
scheduled by using LERT-MW method and placed in 
corresponding queue. After a interval of time we will apply 
GA and apply the jobs to the corresponding processors. If 
we apply GA at every arrival of task the overhead will be 
more. So that we applying GA after a random interval of 
time. Now the jobs in the corresponding queues will be 
appeared as a two dimensional array, to facilitate the cross 
over operation the task with size is represented as one 
dimensional array. The initial population is created by 
swapping the tasks order randomly for some fixed number 
of times. Here we are generating 6 populations for our 
problem. After generating the population we have to 
perform the selection operation. This operation can be 
performed by using fitness function.. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3: Genetic algorithm framework for load 
balancing 

An objective function is the most important component of 
any optimization method, including a GA, as it is used to 
evaluate the quality of the solutions. The objective function 
here is to arrive at task assignments that will achieve 
minimum execution time, maximum processor utilization, 
and a well-balanced load across all processors. Then, the 
objective function is incorporated into the fitness function 
of the GA. This fitness function will then be used to 
measure the performance of the strings in relation to the 
objectives of the algorithm.  

The first objective function for the proposed algorithm is the 
makespan as described in section 2.2. Considering the fact 
that a computing node Mi may not always be idle, The total 
task completion time can be  expressed as  sum of current 
load of Mi (CLi)  and new load of Mi (NLi).  

iii NLCLT +=   

For simplicity the computing nodes are referred as single 
processor, however a single node may have more than one 
processor as dedicated computing unit.  We have use 
average node (processor) utilization as one of metric to 
study the performance of load balancing algorithm. As high 
average processor utilization implies that the load is well 
balanced across all nodes(processors). By keeping the 
processors highly utilized, the total execution time should 
be reduced. The expected utilization of each processor 
based on the given task assignment must be calculated. This 
is achieved by dividing the task completion times of each 
processor by the makespan value. The utilization of the 
individual processors ( UMi) can be given by: 

makespanTUM ii =  

The overall task assignment being evaluated may have a 
small makespan and high average processor utilization.. 
However, assigning these tasks to the processors may still 
overload some of the processors. Therefore, the third 
objective is to optimize the number of acceptable node 
queues. Each node queue is checked individually to see if 
assigning all the tasks on the node queues will overload or 
under-load the processors. Whether a processor queue is 
acceptable or not is determined by the light and heavy 
thresholds used [12].  

Low Threshold: Average Load * 0.8 

High Threshold: Average Load * 1.2 

To facilitate the design of genetic algorithm for load 
balancing, the three objectives discussed above are 
incorporated into a single fitness function and given by the 
following equation: 

ALGORITHM: GA_Loadbalancing 
[1] Initialization() 
[2] Load cheking() 
[3] Repeat through step 6 until task queue 

is empty. 
[4] String_evaluation() 
[5] Genetic_operation 

a. Mutation() 
b. Reproduction() 
c. Crossover() 

[6]          request_message_evaluation() 
[7]          End 
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The fitness function is used to evaluate the quality of the task 
assignments using string_evaluation() as shown in figure 3.3. 

Instead of waiting for the GA to converge, it will be allowed 
to run for a fixed number of k cycles (k=10 in this paper). 
The decision was made because solutions generated in less 
than k generations may not be good enough. On the other 
hand, running the GA for more than k generations may not 
be very feasible, as too much time will be devoted to genetic 
operations. When the GA is terminated after k cycles, the 
fittest string in the pool will be decoded and used as the task 
schedule. We have analyzed the centralized dynamic load-
balncing mechanism using a discrete event simulator 
developed by us using Matlab 6.0. 

4 Performance analysis  
The following results summarize the overall model 
performance. Here we are simulating the model by using the 
metrics like throughput, number tasks waiting in the queue 
with in interval. We have used the M/M/m/K/n queuing 
model for the simulation. From the results in figure: 4.1, it 
concludes that the LERT-MWM with execution times 
method is best when compared to LERT-MW which is not 
having the priori information about the execution time of 
the jobs. So if we know the execution times of all the jobs 
we can effectively distribute the load that can be showed in 
figure 4.1. 

The next experiment compares the LERT-MWM and 
Genetic Algorithm using the LERT-MW method in 
scheduling phase. These comparisons are shown in the 
below Figures 4.2 and 4.3. The test runs were based on a set 
of default values: number of iterations: 500, number of 
processors: 50, number of generation cycles: 3, population 
size: 6, maximum size of each task: 100, High Threshold 
multiplier: 1.2, and Low Threshold multiplier: 0.8. The 
performance comparisons were done in two types.  

 

 

 

Figure 4.1: Comparison of LERT-MWM and LERT- 
MW with and with out knowing the execution times. 

4.1 Changing the Number of Tasks: 
Default values were used for all the parameters except for 
the number of tasks to be assigned. The number of tasks 
was varied from 500-2000 and the effects on the total 
completion time and throughput are given below. 

The Figure: 4.2 show that the total time taken for all three 
algorithms increased linearly as the number of tasks was 
increased. It was also noted that the GA performed better 
among the three algorithms. When comparing the results of 
the GA and the LERT-MWM algorithm, one can observe 
that the gap between these two curves was widening as the 
number of tasks was increased. This shows that the GA 
actually reduced the total completion time by a considerable 
amount (greater speedup) in comparison to the LERT-
MWM algorithm as the number of tasks increased. This also 
indicates reliable performance of the GA_loadbalancing  
when the number of tasks increases. Again we compared 
our GA with another GA technique using normal 
scheduling, means assigning jobs sequentially(First Come 
First Serve) to the processors one by one. For all the cases 
the proposed GA shows better performance. 

 
 
Figure 4.2: Comparison of GA, With Normal Scheduling 
and LART-MWM by Fixing the Number of Processors. 
 
 
4.2 Changing the Number of processors: 
 Here we have studied the performance of load 
balancing algorithms against the scalability of computing 
nodes (processors). In simulation the number of processors 
was varied from 10-160 and the effects on the total 
completion time and throughput are shown in figure 4.3.  

 



 
 
Figure 4.3: Comparison of GA, GA with Normal 
Scheduling and LART-MWM by Fixing the Number of 
Time Units 
The total jobs completed with in an interval by varying the 
total number of processors increased linearly first and after 
that it stabilizes at some point. In most cases, the GA out 
performed the other two algorithms in terms of processor 
utilization. Hence if we know the execution times of the 
jobs we can effectively balance the loads among all the 
nodes.  

5 Conclusions 
 This paper studies performance of genetic algorithm 
based approach to solve dynamic load balancing in 
heterogeneous computing system. Simulation results 
indicate that the performance of best method depends on 
system load. We analyzed the system performance and 
scalability of computing nodes with load balancing. The 
simulation result shows   GA based algorithm works better 
when the numbers of tasks are large. As distributed systems 
continue to grow in scale, in heterogeneity, and in diverse 
networking technology, they are presenting challenges that 
need to be addressed to meet the increasing demands of 
better performance and services for various distributed 
application. 
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