
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2008, Las Vegas, Nevada, USA, July 14-17, 2008,
2 Volumes. CSREA Press 2008, ISBN 1-60132-084-1

A Genetic Algorithm Based Dynamic Load Balancing
Scheme for Heterogeneous Distributed Systems

Bibhudatta Sahoo1, Sudipta Mohapatra2, and Sanjay Kumar Jena 1

1Department of Computer Science & Engineering, NIT Rourkela, Orissa, India
2 Department of Electronics & Electrical Communication Engineering, IIT Karagpur, India

Abstract - Load balancing is a crucial issue in parallel
and distributed systems to ensure fast processing and
optimum utilization of computing resources. Load
balancing strategies try to ensure that every processor in
the system does almost the same amount of work at any
point of time. This paper investigates dynamic load-
balancing algorithm for heterogeneous distributed systems
where half of the processors have double the speed of the
others. Two job classes are considered for the study, the
jobs of first class are dedicated to fast processors. While
second job classes are generic in the sense they can be
allocated to any processor. The performance of the
scheduler has been verified under scalability. Some
simulation results are presented to show the effectiveness of
genetic algorithms for dynamic load balancing.

Keywords: Heterogeneous distributed system, dynamic
load balancing, makespan, genetic algorithm.

1 Introduction
 Distributed heterogeneous computing is being widely
applied to a variety of large size computational problems.
These computational environments are consists of multiple
heterogeneous computing modules, these modules interact
with each other to solve the problem. In a Heterogeneous
distributed computing system (HDCS), processing loads
arrive from many users at random time instants. A proper
scheduling policy attempts to assign these loads to available
computing nodes so as to complete the processing of all
loads in the shortest possible time.

The resource manager schedules the processes in a
distributed system to make use of the system resources in
such a manner that resource usage, response time, network
congestion, and scheduling overhead are optimized. There
are number of techniques and methodologies for scheduling
processes of a distributed system. These are task
assignment, load-balancing, load-sharing approaches [7, 9,
10]. Due to heterogeneity of computing nodes, jobs

encounter different execution times on different processors.
Therefore, research should address scheduling in
heterogeneous environment.

In task assignment approach, each process submitted by a
user for processing is viewed as a collection of related tasks
and these tasks are scheduled to suitable nodes so as to
improve performance. In load sharing approach simply
attempts to conserve the ability of the system to perform
work by assuring that no node is idle while processes wait
for being processed. In load balancing approach, processes
submitted by the users are distributed among the nodes of
the system so as to equalize the workload among the nodes
at any point of time. Processes might have to be migrated
from one machine to another even in the middle of
execution to ensure equal workload. Load balancing
strategies may be static or dynamic [1, 3, 7].

To improve the utilization of the processors, parallel
computations require that processes be distributed to
processors in such a way that the computational load is
spread among the processors. Dynamic load distribution
(also called load balancing, load sharing, or load migration)
can be applied to restore balance [7]. In general, load-
balancing algorithms can be broadly categorized as
centralized or decentralized, dynamic or static, periodic or
non-periodic, and those with thresholds or without
thresholds [3, 7, 11]. We have used a centralized load-
balancing algorithm framework as it imposes fewer
overheads on the system than the decentralized algorithm

 The load-balancing problem, aim to compute the
assignment with smallest possible makespan (i.e. the
completion time at the maximum loaded computing node).
The load distribution problem is known to be NP-hard [4, 5]
in most cases and therefore intractable with number of tasks
and/or the computing node exceeds few units. Here, the
load balancing is a job scheduling policy which takes a job
as a whole and assign it to a computing node [2].This paper
considers the problem of finding an optimal solution for

load balancing in heterogeneous distributed system. The rest
of the paper is organized as follows. The next section
discusses Heterogeneous distributed computing system
(HDCS) structure and the load-balancing problem. Section
3 describes the different dynamic load distribution
algorithms. We have simulated the behavior of different
load balancing algorithm with our simulator developed
using Matlab, where each task ti is with the expected
execution time eij and expected completion time cij, on
machine Mj. The results of the simulation with scalability of
computing nodes and tasks are presented in Section 4.
Finally, conclusions and directions for future research are
discussed in Section 5.

2 System and problem model
2.1 Heterogeneous distributed computing

system
 Heterogeneous distributed computing system (HDCS)
utilizes a distributed suite of different high-performance
machines, interconnected with high-speed links, to perform
different computationally intensive applications that have
diverse computational requirements. Distributed computing
provides the capability for the utilization of remote
computing resources and allows for increased levels of
flexibility, reliability, and modularity. In heterogeneous
distributed computing system the computational power of
the computing entities are possibly different for each
processor as shown in figure 1[1, 3, 4]. A large
heterogeneous distributed computing system (HDCS)
consists of potentially millions of heterogeneous computing
nodes connected by the global Internet. The applicability
and strength of HDCS are derived from their ability to meet
computing needs to appropriate resources [2, 3, 9].

 Resource management sub systems of the HDCS are
designated to schedule the execution of the tasks that arrive
for the service. HDCS environments are well suited to meet
the computational demands of large, diverse groups of
tasks. The problem of optimally mapping also defined as
matching and scheduling.

Figure: 1 Distributed Computing System

We consider a heterogeneous distributed computing
system (HDCS) consists of a set of m {M1, M2, … Mm}
independent heterogeneous, uniquely addressable computing
entity (computing nodes). Let there are n number of jobs
with each job j has a processing time tj are to be processed in
the HDCS with m nodes. Hence the generalized load-
balancing problem is to assign each job to one of the node
Mi so that the loads placed on all machine are as “balanced”
as possible [5].

2.2 Mathematical model for load balancing
 This section presents a mathematical model for load
balancing problem based on minmax criterion. Objective of
this formulation is to minimize the load at the maximum
loaded processor. Let A(i) be the set of jobs assigned to
machine Mi; hence the machine Mi needs total computing
time ∑

∈

=
)(iAj

ji tT , which is otherwise known as (Li)

load on machine Mi. The basic objective of load balancing
is to minimize makespan[11]; which is defined as
maximum loads on any machine (T = maxi Ti). This
problem can be expressed as linear programming problem,
with the objective to Minimize L (load of the corresponding
assignment)

Minimize L

∑ =
i

jij tx , for all j ∈ A(i)

,∑ ≤
j

ij Lx for all i∈ M

xij ∈ {0, tj}
{ }jij tx ,0= , for all j ∈ A(i) , i∈ Mj

0=ijx , for all j ∈ A(i) , i∉ Mj

Where Mj ⊆ M; set of machines to which the job j can be
assigned.

The problem of finding an assignment of minimum
makespan is NP-hard [5]. The solutions to this can be
obtained using a dynamic programming algorithm Ο(n Lm),
where L is the minimum makespan.

Due to the complexity of load balancing problem, most
of researchers proposed heuristic algorithms, while optimal
algorithm are developed for only restricted cases or for
small problems[4]. Genetic algorithms (GAs) are
evolutionary optimization approaches which are an
alternative to traditional optimization methods. GA is most
appropriate for complex non-linear models where location
of the global optimum is a difficult task. Hence genetic
algorithms have been used to solve hard optimization
problem. In this paper we have analyze the performance
HDCS where half the total processors have double speed
than others.

Job arrivals

Resource
Manager

λ

µ1

µ2

µm

•
•
•

3 System Model and Methodology
3.1 System and Workload Models
Typically, a load distributing algorithm has four
components: (i) a transfer policy that determines whether a
node is in a suitable state to participate in a task transfer, (ii)
a selection policy that determines which task should be
transferred, (iii) a location policy that determines to which
node a task selected for transfer should be sent, and (iv) an
information policy which is responsible for triggering the
collection of system state information [1, 3, 7, 13]. When a
new job arrives at the node (Figure 3.1) the transfer policy
looks at the node’s job queue length. The job is allowed to
execute at the node if the job queue length is less than a
predetermined threshold. Otherwise Job is assigned to the
central scheduler.

Figure: 3.1 Job flow at computing node

Scheduling of tasks in a load balancing distributed system
involves deciding not only when to execute a process, but
also where to execute it. Accordingly, scheduling in a
distributed system is accomplished by two components: the
allocator and the scheduler. The allocator decides where a
job will execute and the scheduler decides when a job gets
its share of the computing resource at the node. In this
paper we have used the computing resource model as
discussed in [6]

Figure 3.2: Central scheduler Queuing Model

Each heterogeneous computing node is multitasking, can
accommodate maximum K no of jobs for some acceptable
QoS. The heterogeneous distributed computing system
addressed here can be expressed by Kendall notation[14]
like M/M/m/K/n, where: (i) First M: represents exponential
inter arrival times between jobs(tasks) distribution (Poisson
process), (ii) Second M: represents exponential execution
time of jobs distribution, (iii) m: represents number of
heterogeneous computing nodes,(iv) K: represents
maximum number of tasks that can be in a computing Node
under the multitasking, and (v) n: represents number of jobs
. Let λi be the arrival rate of jobs at computing node i ,
Hence the arrival rate at resource manager is λ, where

() mmλλλλλ ++++= Λ321
We have assume that the service rate of all m heterogeneous
computing nodes are different, i.e. μj ≠ μi for any two
computing node.

In this paper we have use a heterogeneous distributed

computing system, with two different type of computing
nodes connected via a high-speed network as shown in
figure 1. Half of the computing nodes (nodes) execute at
double the speed of the others. The jobs assigned for the
execution are assumed to be highly independent. That means
when a job is scheduled for execution, no job ever ideally
waits for communication with any other jobs. This system
can be modeled as an open queuing network [1,6]. Let MF
and Ms be the number of fast or slow computing nodes
(machine), so that MF = Ms = m/2. We have assumed that
the jobs are classified into types as dedicated and generic
jobs with inter-arrival time λG, and λD respectively. The jobs
of first class are dedicated to fast processors and second
class jobs are generic in the sense that can be allocated to
any processor. There is one arrival stream for dedicated jobs
and one for generic jobs. Model of the system is shown in
figure 3.2. The generic jobs arrive at a rate λG, and can
process by any of the computing node. We shall assume that
all arrival streams are Poisson process. All jobs have
identically distributed service requirements. One allocated to
a particular computing node, a job can not be reassigned and
must be process to completion by that node. The dedicated
jobs are mostly the local loads of the computing nodes; if a

Job arrivals

Job
completed

Job transferred to
other nodes

Computing
node

i

Job transferred
from other nodes

computing node is loaded above a threshold it is not
available for generics jobs for a period of time.

3.2 Dynamic load distribution algorithms
 A dynamic load distribution algorithm must be
general, adaptive, stable, fault tolerant and transparent to
applications. Load balancing algorithms can be classified as
(i) global vs. local, (ii) centralized vs. decentralized, (iii)
Non-cooperative vs. cooperative, and (iv) adaptive vs. non-
adaptive[7,13]. In this paper we have used centralized load
balancing algorithm, a central node collects the load
information from the other computing nodes in HDCS.
Central node communicates the assimilated information to
all individual computing nodes, so that the nodes get
updated about the system state. This updated information
enables the nodes to deicide whether to migrate their
process or accept new process for computation. The
computing nodes may depend upon the information
available with central node for all allocation decision.

The scheduling policies can be probabilistic, deterministic
and adaptive. In probabilistic case, the dedicated jobs are
dispatched randomly to the first processor with equal
probability while the generic jobs are randomly dispatched
to the slow processors.

In deterministic case the routing decision is based on system
state. Two different policies are examined for this case. In
both policies, the dedicated jobs join the shortest of the fast
processor queues. However, the first policy requires the
generic jobs join the shortest queue of the slow processors
while the second policy assigns generic jobs to the (slow or
fast) processor expected to offer the least job response time.
However, when a generic job is assigned to a fast processor,
job start time depends on an aging factor. In adaptive case,
job migration from slow to fast processors employed. This
is a receiver-initiated load sharing method employed to
improve the performance of generic jobs. The policy is
initiated when a generic job is queued on a slow processor
and a fast processor becomes idle. Only the migration of
non-executing jobs is considered. Executing jobs are not
eligible for transfer because of complexity issues. When a
job is transferred from a slow to fast processor for remote
processing, the job incurs additional communication cost.
Only jobs that are waiting in the queues are transferred. The
benefit of migration depends on migration cost[6,13].

We have referred the workload model that is characterized
by three parameters:

 The distribution of job arrival

 The distribution of processor service time

 The distribution of the migration overhead.

3.3 Job Scheduling Policies
Here we examined only the non-preemptive scheduling
policies only with a assumption that the scheduler has
perfect information on (i) The length of all processor queue,
qnd (ii) The queuing time of dedicated jobs in the fast
processor queues. We have used the scheduling strategy
used by Karatza et al.[6]. The scheduling strategies used for
load balancing decision are

 Least expected response time for generic jobs
maximum wait for dedicated jobs (LERT-MW)

 LERT-MW with migration having idea about
execution times

LERT-MW: In this policy also dedicated jobs are
dispatched to the fast processor which is having the least
queue length, and generic job will sent to either fast or slow
processor expected to offer the least job response time. The
minimum job response time (makespan) is based on the
user’s view of how to improve performance. This algorithm
needs global information on queue lengths for the generic
and dedicated jobs, and also it requires additional
information about the time-dedicated jobs waiting in a
queue.

LERT-MWM: In the above method we don’t have priori
knowledge about the execution times. So, we can’t evenly
distribute the load among all the nodes. The results some
processors remain idle, while others are overloaded. This
requires the migration of jobs form overloaded processors to
idle processors. By this process migration overhead may be
more for small jobs & results lower processors utilization.
So we are going for GA, which will use the LERT-MW in
the phase of scheduling.

3.4 GA based Load Balancing Method
 In this section, we detail our scheduling algorithm
which utilizes GA for load balancing in HDCS. Genetic
algorithms work with a population of the potential solutions
of the candidate problem represented in the form of
chromosomes. Each chromosome is composed of variables
called genes. Each chromosome (genotype) maps to a
fitness value (phenotype) on the basis of the objective
function of the candidate problem. The algorithm we have
developed us based upon one developed by Zomalya et
al.[11, 12]. Jobs arrive at unknown intervals for processing
and are placed in the queue of unscheduled tasks from
which tasks are assigned to processors. Each task is having
a task number and a size.

GA follows the concept of solution evolution by
stochastically developing generations of solution
populations using a given fitness statistic. They are
particularly applicable to problems which are large, non-

linear and possibly discrete in nature, features that
traditionally add to the degree of complexity of solution.
Due to the probabilistic development of the solution, GA do
not guarantee optimality even when it may be reached.
However, they are likely to be close to the global optimum.
This probabilistic nature of the solution is also the reason
they are not contained by local optima. The proposed
algorithm for load balancing is presented in figure 3.3.

A fixed number of tasks, each having a task number and a
size, is randomly generated and placed in a central task pool
from which tasks are assigned to different computing nodes
(processors). As load balancing is performed by the
centralized GA-based method, the first thing to do is to
initialize a population of possible solutions [11, 12]. This
can be achieved using the sliding window technique. The
window size is fixed, with the number of elements in each
string equal to the size of the window.

As load-balancing is performed by the centralized GA-
based method, the first thing to do is to initialize a
population of possible solutions. Every time when a job
arrived at queue of unscheduled tasks (task pool), the job is
scheduled by using LERT-MW method and placed in
corresponding queue. After a interval of time we will apply
GA and apply the jobs to the corresponding processors. If
we apply GA at every arrival of task the overhead will be
more. So that we applying GA after a random interval of
time. Now the jobs in the corresponding queues will be
appeared as a two dimensional array, to facilitate the cross
over operation the task with size is represented as one
dimensional array. The initial population is created by
swapping the tasks order randomly for some fixed number
of times. Here we are generating 6 populations for our
problem. After generating the population we have to
perform the selection operation. This operation can be
performed by using fitness function..

Figure 3.3: Genetic algorithm framework for load
balancing

An objective function is the most important component of
any optimization method, including a GA, as it is used to
evaluate the quality of the solutions. The objective function
here is to arrive at task assignments that will achieve
minimum execution time, maximum processor utilization,
and a well-balanced load across all processors. Then, the
objective function is incorporated into the fitness function
of the GA. This fitness function will then be used to
measure the performance of the strings in relation to the
objectives of the algorithm.

The first objective function for the proposed algorithm is the
makespan as described in section 2.2. Considering the fact
that a computing node Mi may not always be idle, The total
task completion time can be expressed as sum of current
load of Mi (CLi) and new load of Mi (NLi).

iii NLCLT +=

For simplicity the computing nodes are referred as single
processor, however a single node may have more than one
processor as dedicated computing unit. We have use
average node (processor) utilization as one of metric to
study the performance of load balancing algorithm. As high
average processor utilization implies that the load is well
balanced across all nodes(processors). By keeping the
processors highly utilized, the total execution time should
be reduced. The expected utilization of each processor
based on the given task assignment must be calculated. This
is achieved by dividing the task completion times of each
processor by the makespan value. The utilization of the
individual processors (UMi) can be given by:

makespanTUM ii =

The overall task assignment being evaluated may have a
small makespan and high average processor utilization..
However, assigning these tasks to the processors may still
overload some of the processors. Therefore, the third
objective is to optimize the number of acceptable node
queues. Each node queue is checked individually to see if
assigning all the tasks on the node queues will overload or
under-load the processors. Whether a processor queue is
acceptable or not is determined by the light and heavy
thresholds used [12].

Low Threshold: Average Load * 0.8

High Threshold: Average Load * 1.2

To facilitate the design of genetic algorithm for load
balancing, the three objectives discussed above are
incorporated into a single fitness function and given by the
following equation:

ALGORITHM: GA_Loadbalancing
[1] Initialization()
[2] Load cheking()
[3] Repeat through step 6 until task queue

is empty.
[4] String_evaluation()
[5] Genetic_operation

a. Mutation()
b. Reproduction()
c. Crossover()

[6] request_message_evaluation()
[7] End

Fitness = ⎟
⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞⎜

⎝
⎛×

m
sizequeueacceptable

m
UM

makespan
i __1

The fitness function is used to evaluate the quality of the task
assignments using string_evaluation() as shown in figure 3.3.

Instead of waiting for the GA to converge, it will be allowed
to run for a fixed number of k cycles (k=10 in this paper).
The decision was made because solutions generated in less
than k generations may not be good enough. On the other
hand, running the GA for more than k generations may not
be very feasible, as too much time will be devoted to genetic
operations. When the GA is terminated after k cycles, the
fittest string in the pool will be decoded and used as the task
schedule. We have analyzed the centralized dynamic load-
balncing mechanism using a discrete event simulator
developed by us using Matlab 6.0.

4 Performance analysis
The following results summarize the overall model
performance. Here we are simulating the model by using the
metrics like throughput, number tasks waiting in the queue
with in interval. We have used the M/M/m/K/n queuing
model for the simulation. From the results in figure: 4.1, it
concludes that the LERT-MWM with execution times
method is best when compared to LERT-MW which is not
having the priori information about the execution time of
the jobs. So if we know the execution times of all the jobs
we can effectively distribute the load that can be showed in
figure 4.1.

The next experiment compares the LERT-MWM and
Genetic Algorithm using the LERT-MW method in
scheduling phase. These comparisons are shown in the
below Figures 4.2 and 4.3. The test runs were based on a set
of default values: number of iterations: 500, number of
processors: 50, number of generation cycles: 3, population
size: 6, maximum size of each task: 100, High Threshold
multiplier: 1.2, and Low Threshold multiplier: 0.8. The
performance comparisons were done in two types.

Figure 4.1: Comparison of LERT-MWM and LERT-
MW with and with out knowing the execution times.

4.1 Changing the Number of Tasks:
Default values were used for all the parameters except for
the number of tasks to be assigned. The number of tasks
was varied from 500-2000 and the effects on the total
completion time and throughput are given below.

The Figure: 4.2 show that the total time taken for all three
algorithms increased linearly as the number of tasks was
increased. It was also noted that the GA performed better
among the three algorithms. When comparing the results of
the GA and the LERT-MWM algorithm, one can observe
that the gap between these two curves was widening as the
number of tasks was increased. This shows that the GA
actually reduced the total completion time by a considerable
amount (greater speedup) in comparison to the LERT-
MWM algorithm as the number of tasks increased. This also
indicates reliable performance of the GA_loadbalancing
when the number of tasks increases. Again we compared
our GA with another GA technique using normal
scheduling, means assigning jobs sequentially(First Come
First Serve) to the processors one by one. For all the cases
the proposed GA shows better performance.

Figure 4.2: Comparison of GA, With Normal Scheduling
and LART-MWM by Fixing the Number of Processors.

4.2 Changing the Number of processors:
 Here we have studied the performance of load
balancing algorithms against the scalability of computing
nodes (processors). In simulation the number of processors
was varied from 10-160 and the effects on the total
completion time and throughput are shown in figure 4.3.

Figure 4.3: Comparison of GA, GA with Normal
Scheduling and LART-MWM by Fixing the Number of
Time Units
The total jobs completed with in an interval by varying the
total number of processors increased linearly first and after
that it stabilizes at some point. In most cases, the GA out
performed the other two algorithms in terms of processor
utilization. Hence if we know the execution times of the
jobs we can effectively balance the loads among all the
nodes.

5 Conclusions
 This paper studies performance of genetic algorithm
based approach to solve dynamic load balancing in
heterogeneous computing system. Simulation results
indicate that the performance of best method depends on
system load. We analyzed the system performance and
scalability of computing nodes with load balancing. The
simulation result shows GA based algorithm works better
when the numbers of tasks are large. As distributed systems
continue to grow in scale, in heterogeneity, and in diverse
networking technology, they are presenting challenges that
need to be addressed to meet the increasing demands of
better performance and services for various distributed
application.

6 References
[1] Sivarama P. Dandamudi, Sensitivity evaluation of
dynamic load sharing in distributed systems, IEEE
Concurrency,6(3), 1998, 62-72.

[2] Jie Li, & Hisao Kameda, Load balancing problems for
multiclass jobs in distributed/parallel computer systems,
IEEE Transactions on Computers, 47(3), 1998, 322-332.

[3] Veeravalli Bharadwaj, Debasish Ghose, Venkataraman
Mani, & Thomas G. Robertazzi, Scheduling Divisible Loads
in Parallel and Distributed Systems (Wiley-IEEE Computer
Society Press, 1996).

[4] Gamal Attiya & Yskandar Hamam, Two phase
algorithm for load balancing in heterogeneous distributed
systems, Proc. 12th IEEE EUROMICRO conference on
Parallel, Distributed and Network-based processing,
Coruna, Spain 2004, 434-439.

[5] Jon Kleinberg & Eva Tardos, Algorithm Design
(Pearson Education Inc. 2006).

[6] Helen D. Karatza, & Ralph C. Hilzer, Load sharing in
heterogeneous distributed systems, Proceedings of the
Winter Simulation Conference, 1, San Diego California,
2002 Page(s): 2002, 489 – 496.

[7] Jie Wu, Distributed system design,(CRC press, 1999)

[8] Y.Zhang, H.Kameda & S.L.Hung, Comparison of
dynamic and static load-balancing strategies in
heterogeneous distributed systems, IEE proceedings in
Computer and Digital Techniques,144(2), 1997, 100-106.

[9] Bora Ucar, Cevdet Aykanat, Kamer Kaya, & Murat
Ikinci, Task assignment in heterogeneous computing
system, Journal of parallel and Distributed Computing, 66,
2006, 32-46.

[10] Marta Beltran, Antonio Guzman, & Jose Luis Bosque,
Dealing with heterogeneity in load balancing algorithm,
Proc. 5th IEEE International Symposium on Parallel and
Distributed Computing, Timisoara, Romania, 2006, 123-
132.

[11] A. Y. Zomaya, C. Ward, & B. Macey, Genetic
Scheduling for Parallel Processor Systems: Comparative
Studies and Performance Issues, IEEE Transaction Parallel
and Distributed Systems, 10(8), 1999, 795-812.

[12] A. Y. Zomaya, & Y. H. Teh, Observations on using
genetic algorithms for dynamic load-balancing, IEEE
Transactions on Parallel and Distributed Systems, 12(9),
2001, 899-911.

[13] B. A. Shirazi, A. R. Hurson, & K. M. Kavi,
Scheduling and load balancing in parallel and distributed
systems, CS press, 1995.

[14] K. S. Trivedi, Probability and statistics with reliability,
queuing and computer science applications, Prentice Hall of
India, 2001.

