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Abstract

A new genetic algorithm for channel routing in the
physical design process of VLST circuils is presenied.
The algorithm is based on o problem specific represen-
tation scheme and problem specific genelie operalors.
The genelic encoding and our gemelic operalors are
described in detgil. The performance of the algorithm
is tested on different benchmarks end it is shown that
the resulls obiarned wsing the proposed algorithm are
either qualitatively similar o or belfer than the best
published resulls.

1 Introduction

In the physical design process of very large scale

integrated (VLS]) circuits the logical structure of a

circunit is transformed into its physical layout. Detailed
routing 19 one of the tasks in this process. A detailed
router connects pins of signal nets in a rectangular
region under a set of routing constraints, such as the
number of layers, the minimal space between wires and
the minimuim wire width. The quality of this detailed
routing has a strong influence on the performance and
production costs of the circuit.

The detailed routing in a rectangular region with
pins exclusively located on the upper or lower bound-
ary of the routing region is called channel routing.
Channel routing is one of the most commonly occur-
ring routing problems in VLSI circuits. A simple ex-
ample of a chanpel routing problem and a possible
routing solution is shown in Figure 1.

The channel routing problem is NP-complete {33]
and therefore, there is no known deterministic algo-
rithm to solve it in a polynomial time. Hence, al-
though many different algorithms have been proposed
(e.g. [12], [19], [28], [32], [34]), the problem of finding
the globally optimized solution for channel routing is
still open.
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Figure 1: An example of a channel routing problem (a)
and a possible routing solution (b). Solid lines repre-
sent interconnections on one layer, the poly layer; and
dashed lines represent interconnections on the other
layer, the metal layer.

New approaches are necessary to solve this prob-
lem. The evolution process in nature optimiges, for
example, the fitness of an individual in its environ-
ment and thus, can be used as a strategy for math-
ematical optimization. Genpetic algorithms are a new
class of heuristic search methods based on the biologi-
cal evolution model, During the last few vears, genetic
algorithms have been applied more and more success-
fully to find good heuristic solutions to NP-complete
optimization problems [13], {14].

The strength of a genetic algorithm results from
the ability to perform a fairly efficient search in the
search space even if the available knowledge is limited
to an evaluation procedure that can measure the qual-
ity of any point in the search space[16]. Consequently,
genetic algorithms belong to the category of the so-
called weak methods, i.e., problem solving methods
that make few assumptions about the problem do-
main; hence, they usually enjoy wide applicability.
However, as stated by many authors (e.g. [7], [26]),
these well-theorized, binary coded, pure genetic algo-



rithms cannot handle a lot of highly constrained prob-
lems. To solve this dilemma, many application-specific
variations of genetic algorithms have been developed.
These variations enhance the traditional genetic algo-
rithm by imcorpotating problem specific knowledge in
both appropriate coding schemes and genetic opera-
tors {e.g. [15}, [25], [26)).

We present a genetic algorithm for channel routing
that is based on such a problem specific representa-
tion scheme and problem specific genetic operators.
The algorithm starts by performing a random path
search to create different routing solutions of the chan-
nel. These non-optimized routing structures are seen
as individuals of an initial population. They are coded
in 3-dimensional chromosomes with integer represen-
tation. Based on certain quality factors, these routing
structures ace improved by genetic operators to even-
tually present a globally optimized routing result. It is
shown that the resulting routing structures are either
qualitatively similar to or better than the best resnlts
available in the literature.

2 Problem description

The channel routing preblem is defined as foilows.
Consider a rectangular routing region, called channel,
with a number of pins located either on the upper or
the lower boundary of the channel. The pins that be-
long ta the same net have to be connected, subject to
certain constraints and quality factors. The connec-
tton has to be made inside the channel on a symbolic
routing area consisting of horizontal rows and vertical
columns (see Figure 1 (b)).

The constraints for the interconnections include the
following:

¢ A net is to be routed using a Manhattan geome-
try, i.e., only horizontal and vertical net segments
are allowed.

* Two layers are available for routing (see Figure 1).

+ A net may change from one layer to another using
a contact window called a wvie.

¢ Different nets cannot cross each other on the same
layer and must respect a minimum distance rule.

# The perimeter of the channel is not used for rout-
ing.

Three quahty factors are used in this work to judge
the quality of the routing resuli:

+ Minimum routing area
The horizontal dimension of the channel along
which pins are located is fixed but the vertical
dimension which has no pins (expressed as the

number of rows of the channel) can vary depend-
ing on the area required for routing. 1t is desit-
able to use the least area, i.e., the least number
of rows.

s Net length
The shorter the length of the interconnection nets
the smaller the propagation delay.

« Number of vias
The introduction of a via between the two inter-
connection layers means longer propagation de-
lays and lower fabrication vield. Consequently,
the fewer the number of vias the better the rout-
ing quality.

3 Genetic algorithms in VLSI layout
design

Because of its complexity, the physical design pro-
cess of VLSI circuits is usually separated into four
consecutive phases, namely, partitioning, placement,
routing and compaction. In the following, we will give
a brief overview of genetic algorithms that have been
successfully applied in these major steps of VLSI lay-
out design.

Partitioning The task of partitioning is to divide
the components of a circuit into subsets to reduce the
problem size of the layout design.

In [17] and [18], different coding schemes for the
problem of circuit partitioning are investigated to find
the most suitable coding. The proposed genetic algo-
rithm is tailored for the partitioning of circuits with
complex bit-slice components using a special two-step
coding of partitions. The genetic algorithm in [6] is
based on a population structure that involves subpop-
ulations which have their isolated evolution occasion-
ally interrupted by inter-population communication.

Placement The placement procedure is responsible
for the assignment of the cireuit’s components to their
locations on the chip. According to variation in sizes
and locations of these components, placement algo-
rithms can be divided into algorithms for standard
cell layout, maero cell layout and gate-matrix layout.

After the pioneering work of Cohoon et al. [5], fur-
ther applications of genetic algorithms [29], [30] and
evolution strategies [20], [21], [35] for standard cell
placement have been presented. These approaches
preduce high quality placements at the cost of long
run times. In [24], the run time has heen reduced
significantly by using a parallel implementation of a
genetic algorithm.

‘We are aware of three papers in which genetic algo-
rithms for macro cell placement are discussed [3], [8],
[9]. The approach in [3] is based on a two-dimensional




bitmap representation of the macro cell placement
problem. Another representation scheme, a binary
tree, is applied in [8]. In [9], a combination of a ge-
netic algorithin with a simulated annealing strategy
is presented. The experimental results suggest that
a mixed strategy performs better than a pure genetic
algorithm for the macro cell placement problem.

An application of a genetic algorithm for the place-
ment of gate-matrix layouts has been published in [31].

Routing As already mentioned in Section 1, routing
is the process of connecting pins subject to a set of
routing constraints. VLSI routing is usually divided
into global routing (to assign nets into certain routing
regions) and detailed routing (to assign nets to exact
positions inside a routing region).

To our knowledge, only one evoluticnary algorithm
for global routing has been reported [4].

According to the position of the pins, detailed rout-
ing can be separated into channel routing (pins are
only located on two parallel sides of the routing area)
and switchbox routing (pins are placed on all four sides
of the routing area).

Three papers have been published in which strate-
gies derived from the concept of genetic algorithms
are applied to the channel routing problem [11], [23],
(27]. In (23}, a rip-up-and-rerouter is presented which
is based on a probabilistic rerouting of nets of one
routing structure. However, the routing is done by a
deterministic Lee algorithm [22] and main components
of genetic algorithms, such as the crossover of differ-
ent individuals, are not applied. The router in [11]
combines the so-called steepest descent method with
features of genetic algorithms. The crossover opera-
tor, however, is restricted to the exchange of entire
nets and the mutation procedure performs only the
creation of new initial individuals. The proposed al-
gorithm in [27] is limited to the restrictive channel
routing problem. Here, all vertical net segments are
located an one layer and all horizontal segments are
ptaced on the other. Furthermore, so-called doglegs!
are not allowed, i.e., the horizontal segments of each
net must be placed on only one horizontal row. Due
to these restrictions, this algorithm cannet be used for
routing structures with loops in the vertical constraint
graph, as is often the case in practice?. Moreover, the
resulting routing area is generally larger than neces-
sary.

1The term “dogleg” is used in VLSI literature to describe a
vertical net segment that connects two horizontal segments of
the same net located on different rows.

2 A vertical constraint graph it a directed graph with its
nodes representing the nets of the channel and its branches
representing the relative position of the horizontal parts of a
net from the top to the bottom of the channel. The forming of
the vertical coustraint graph is based on the assumption that
each met can have at most one horizontal segment, A laop in
ihe horizontal constraint graph indicates that a routing solution
cannot be achieved with this assumption, i.e., al least one net
has to be divided into different horizontal segments.

The algorithms m [11], [23] are alse applied to
switchbox routing.

Compaction Compaction is usually the final step in
the physical layout design of VLSI cireuits to trans-
form the symbolic layout to a mask layout with the
goal of minimizing the size of the resulting circuit lay-
out.

To the best of our knowledge, the only application
of a genetic algorithm for compaction has been ad-
vanced by Fourman [10]. He describes two prototypes
of genetic algorithms which perform compaction of a
symbolic circuit layout. Although his results are lim-
ited to very simple layout structures, he proposes a
new problem specific representation for layout design
that includes constraints of the compaction process.

4 Description of our algorithm
4.1 Survey

Genetic algorithms, in general, carry out optimiza-
tion by simulating biological evelutionary processes.
The environment in which individuals live affects their
ability to survive and the individual best suited for the
environment has the highest probability of survival
and reproduction, The descendants that inherit de-
sirable characteristics for survival in the environment
also have a high probability of survival and reproduc-
tion, while other, less fit individuals die out. This
principle is known as “the survival of the filtest” and
can be used in optimization [13].

In our channel routing problem an tadividual can
be defined as a channel routing result, i.e., a rout-
ing structure. The quality of this routing structure
according to the above mentioned quality factors can
be evaluated to produce a measurement of the indi-
vidual’s fitness. First, we generate an inilial popu-
lation of randomly created, and thus different, rout-
ing structures for a given channel routing problem.
This population is subjected to a simulated evolution
process consisting of three main components, namely,
selection, crossover and muiation. If the simulation
works, better and better evaluated individuals will
predominate in the population because they have a
higher probability of reproducing descendants which
can inherit the best characteristics of their predeces-
sots. These best evaluated individuals are the best
routing sclutions according to our quality factors.

An overview of the genetic algorithm presented in
this paper is shown in Figure 2. The number of in-
dividuals |P,| is kept constant throughout ali gener-
ations. Qur mutation operator is applied after the
reduction procedure, i.e., the modifications caused
by the mutation operator remain “unpunished” in
the population during the next mate selection and
crossover procedure. This separation of the crossover




and mutation procedures improves the ability of ocur
approach to overcome local optima. Siuce the mu-
tation operator has access to all individvals, the best
individual is saved in each generation before the muta-
tion operator is applied. At the end of the algorithm,
the best individual pj., that has ever existed under-
goes an optimization and then constitutes our final
routing solution.

create initial population (7.}
fitness_calculation (P.)
Prest = bESt-..iIldi\fldllal (p.:)
for generetion = 1 until maz_generation
'pn = B
for of fspring = 1 until mez_descendant
Pa = selection (P,
pp = selection ('Pc;
Pn = Py U crossover (Pa,ps)
endfor
fitness_calculation (P,)
P, = reduction (P, U Py)
Pbest = best_individual (ppeae U Pe)
mutation (P.)
fitness_calculation (P.)
endfor

opti.mize (Pbea:)

Figore 2: Qutline of the algorithm,

4.2 Genetic encoding scheme

In genetic algorithms, a distinction is made between
the genotype and the phenolype of an individual [13].
While the genotype is the coding of the information
of an individual, the phenotype is the physical ap-
pearance of the individual. Crossover and mutation
are cartied out on the genotype; Riness has to be ex-
pressed in terms of the phenotype.

‘We use for the genetic encoding of the routing struc-
tures a three-dimensional lattice-like chromosome (see
Figure 3). The length of the z-axis of the chromeo-
some ig two units in accordance with the number of
layers. Two horizontal adjacent chromosome positions
represent the minimal distance between two adjacent,
different routing connections on the phenotype.

Each individual is encoded in one chromosome. Ac-
cording to the position in the phenotype, chromosome
positions are occupled with coding numbers of the
routing connections and pins. The coding must dis-
tinguish between routing connections which can be
shifted or erased during the evolution process and
fixed pins. Thus, we choose the following encoding
scheme (see Figure 3):

Let (=, y, 2} be a chromosome position in the geno-
type, G(e,y, z) be the value of the chromosome posi-
tion and (z’, i, 2’) be the corresponding coordinate in
the phenotype.

Figure 3: Genetic encoding of the routing structure,

s If G{z,y,z) = 0, the phenotype is not occupied
at (', ¥, 2').

o If G{z,y,z) > 0, the phenotype is occupied with
a routing connection at {(z’,¥, z'}. This routing
connection can be shifted or erased. G(z,y,z)
represents the net number of the phenotype at

(=, ¢, #').

s If G(z,y, z) < 0, the phenotype is occupied with
a pin at (&', ¢/, #). This pin cannct be shifted or
erased.

We chose this three-dimensional encoding scheme
with integer representation after numerous experi-
ments with other genetic encoding schemes. For exam-
ple, parts of the routing structure with near-optimal
routing paths (termed as good “routing islands”) are
often scattered over the chromosome instead of being
represented in one compact building block when bi-
nary or integer string representations are used. This
leads to unsatisfactory convergence behavior of the ge-
netic algorithm. In another approach, the representa-
tion of the routing problem in a graph or tree requires
decoding of the genotype into its corresponding phe-
notype whenever a genetic operator is applied so as
to monitor the routing constraints. This results in an
unacceptable run time of the algorithm.

Qur three-dimensional encoding scheme ensures
that good “routing islands” in the routing structure
are preserved as compact high-fitness building blocks
in the chromosome. Consequently, these building
blocks have a high probability of being transformed
intact and recombined with other high-quality build-
ing blocks in the next generation. Furthermore, this
encoding scheme enables a simple monitoring of the
routing constraints directly in the chromosome.

For the sake of simplicity, we will describe the ge-
netic operators in terms of the representation of the
phenotype.




4.3 Creation of an initial population

The initial population is constructed from ran-
domly created individuals.

First, each of these individuals is assigned a random
initial number ying of rows with 2 * ymin < Zina <
4 % Ypin , Where Ynin represents the estimated number
of rows of the best individual expected at the end of
the algorithm.

Let § = {s1,...8,...9x} be the set of all pins of
the channel which are not connected yet and let T =
{t1,...t;,...t1} be the set of all pins having at least
one connection to another pin. Initially 7 = @. A
pin s; € S is chosen randomly among all elements in
S§. If T contains pins {ty,..25, .5} (with 1 < u <
v < I) of the same net, a pin ¢; is randomly selected
,among them. Otherwise a second pin of the same
net is randomly chosen from & and transferred into
7. Both pins (s;,1;) are connected with a so-called
“random routing”. Then s; is transferred into 7. The
process continues with the next randomn selection of
s €8 until $ = 0.

The random routing of (s;,t;) is done as follows.
A vertical line is extended from both s; and ¢; until
it reaches an obsiacle, e.g. the channel border or an
already routed net of different potential on the same
layer (see Figure 4 {a,b)). A position between the
start point and the end point of both lines is randomly
chosen. From these positions horizontal lines are ex-
tended in both directions (see Figure 4 (c}). The path
search continues by selecting random points on the two
horizontal lines and extending vertical lines at those
points in both directions (see Figure 4 (d)), and so on.

The layer of each extension line is chosen as follows.
Let each layer have a preferred routing direction and
7y be a random number between 0 and 1. If r, < 2/3,
the extension line is created with the layer associated
with the routing direction of the extension line. Oth-
erwise (Le., 2/3 < ry < 1) it is created with the layer
having a preferred routing direction opposite to the
direction of the extension line.

‘The extension is stopped when

¢ the extension lines of both points meet each other
on the same layer, or

e the extension lines of 5; touch a net point which is
already connected with t; as shown in Figure 4 (e)
(or vice versa).

In the latter case, t; (or 8;) is replaced with this
meeting point (see Figure 4 (f)).

If the creation of extension lines does not succeed
in one of these conditions within ¢ iterations, all ex-
tension lines are erased and the channel is extended
with an additional row on a random position yeq44 with
1 € Yadd < Yind (Yina = current number of rows of the
channel). After adjusting all previous routed nets to
this new row, s; and t; undergo a new attempt to
connect, them with randomly created extension lines.

P-Q-:F-.

- ww Connection on layer 1 (pin layer)
— Conncction on layer 2

|
o

~ Extension line on layer 1

Extension line on layer 2
Via
Layer change of extension lincs

Figure 4: Random routing of (s;, ;).




The maximum number of iterations i 1s calculated
according to

i={3%|2, — 2|} + Yina + 10 ()]

where z, = column position of s;,
zy = column position of ¢; and
Ying = current number of rows of the channel.

If 10 extensions of the channel also do not lead to a
connection, this individual is completely deleted and
the process to create a new individual is started again
right from the beginning,.

The routing process of (s;,%;) is finished by trac-
ing the shortest path on the extension lines from their
meeting point backwards to both s; and ¢; (see Fig-
ure 4 (f)). This backtracing avoids unnecessary loops
in the connection of (s;,¢;) without limiting the ran-
domness of the resuiting routing path.

The creation of the initial populaticn is finished
when the number of completely routed channels is
equal to the population size |P,]. As a consequence
of our strategy, these initial individuals are quite dif-
ferent from each other and scattered all over the search
space.

4.4 Calculation of fitness

The fitness F of each individual p € P is calcu-
lated to assess the quality of the individual’s routing
structure relative to the rest of the population P. The
selection of the mates for crossover and the selection
of individuals which are transferred into the next gen-
eration are based on these fitness values,

First, two functions F; and Fy are calculated for
each individual p € P according to Equations (2) and

).

Fi(p) = (2)
ind
where y;nq = number of rows of individual p.
1
Fa(p) = 57 (3)
> Uaceld) + a * lopp (£)) + b * ving

i=]

where lg.c(i) = net length of net i of net segments

according to the preferred direction of
the layer,

lopp (%) = net length of net i of net segments
opposite to the preferred direction of
the layer,

a = cost factor for the preferred direction,

ning = number of nets of individual p,

Vjnd = number of vias of individual p and
b = cost factor for vias.

In order to assure that the area minimization, i.e.,
the number of rows, predominates the net length and
the number of vias, the fitness F(p) is derived from
Fy(p) and Fy(p) as follows:

Assume that {p;, ...pz, ...p;) are individuals with the
same number y of rows, i.e., the same value Fi(p).
These individuals are arranged in an ascending order
according to Fy(p). Then p; is the individual with
the lowest value F3(p) in this group (“worst individual
with y rows”). Its fitness value F'(p;) is defined by

Fipi) = F1(pi)- (4)

The individual p; has the highest value Fa(p} in this
group (“best individual with y rows”). Let Fy(pj11)
be the Fj-value of the next (“better”)} group with y—1
rows. The fitness F(p;) is calculated as follows:

AF
F(p;) = Fi(pj+1) — Tt

where AFy = Fi(pj41) — Filp;).

®)

Now F{p;) of the remaining individuals of this
group can be calculated relative to their Fy-values be-
tween the lower bound F'(p;} and the upper bound

F(p;):

AF % (Fa(p;) — Falpz))
AT (6)

F(pg) = F(p;) -

where AF = F (p;} ~ F (p;}, and
AFy = Fa(p) — Fa(ps).

After the evaluation of F(p) for all individuals of
the population P these values are scaled linearly as
described in [13], in order to control the variance of
the fitness in the population.

4.5 Selection strategy

The selection strategy is responsible for choosing
the mates among the individuals of the population
P.. Because of its impact on the standard deviation
in the population, the selection strategy is crucial to
the performance of the algorithm.

Qur selection strategy is stochastic sampling with
replacement in accordance with the terminology in
[13]). That means any individual p; € P, is selected
with a probability

Fp:)
> Flp)
PEP:

The two mates needed for one crossover are chosen
independently of each other. An individual may be
selected any number of times in the same generation.




4.6 Crossover operator

During crossover, two individuals are combined to
create a descendant. Let p, and ps be copies of the
mates (Figure 5 (a,b}) and p, be their descendant.

First, a cut column =z, i1s randomly selected with
1 € z. < Tipna, where ;g represents the number of
columns of the individuals.

The individual p, transfers its routing structure to
py which is

s located on (&4,¥a,2) With 1 < x4, < 2,
1 € Yo £ UYinda (Yinda = number of rows
of pe), 1 €z <2and

¢ not cut by the cut column x,.

Accordingly, ps transfers to p, the uncut connec-
tions located on (rg,ys,2) with 2, < #s < Zjnq,
1 € yg < Yinapandl < z < 2(see Figure 5 {c,d)).

Note that connections of p, and pg cut by z. are
traced until their next Steiner point or pin is reached
and not transferred into p,.

Assume that the part of py (or pg) which has to be
transferred into p, contains rows not occupied by any
horizontal segments. Then the number of rows yin4y
of po (OF Yingg of pa) is decremented by deleting this
unoccupied row until no empty row is left.

The initial number of rows gingy of py 18 equal to the
maximum of (¥inde, Yinag). The mate which now con-
tains fewer rows than p, is extended with additional
row(s) at random position(s) before transferring its
routing structure to p..

The routing of the remaining open connections in
p~ is done as follows: Let M, be the set of all Steiner
points or pins which are end points of a cut segment
in po. Accordingly, let g be the set of these points
in ps. H Ay contains mere than one point of the
same net, these points are connected with each other
in a random order by our random routing strategy (see
Section 4.3). Except for one randomly chosen point,
all points of this net in A, are now deleted. The
same “inner routing” in Ny is performed. As a result,
No and N do not contain more than one point per
net. These points in N, are now selected randomly
and compared with all points in M. If a point of the
same net is found in A, both peints are connected by
means of our random routing (see Figure 5 (¢,f)).

If the random routing of two points does not lead
to a connection within ¢ extension lines per point (see
Equation (1)}, the extension lines are deleted and the
channel is extended at a random position y,4¢ with
} < Yadd < WYindy- U j extensions of the channe] also
do not enable a connection (j = inétial number of rows
of py), py is deleted entirely and the crossover process
starts again with a new random cut column z. applied
to pe and pgs.

The crossover process of creating p, is finished with
deleting all rows in p, that are not used for any hori-
zontal reuting segment.
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Figure 5: Crossover of (pa,pg) to py.




4.7 Reduction strategy

Because the population size of a genetic algorithm
should be constant, a reduction strategy 1s necessary
to decide which individuals among the current popu-
lation P, and the set of descendants P, should survive
for the next generation.

We use a deterministic reduction strategy which
guarantees that high quality individuals survive in as
many generations as they are superior. Our reduction
strategy simply chooses the |P,] fittest individuals of
(P. U Ppn) to survive as P, into the next generation.
This strategy, which is the same as that usually ap-
plied in evolution strategies [1}, is derived from the
characteristic of our crossover operator that a high
quality mate does not necessarily produce a high gual-
ity descendant, and in such a case, the mate should
survive rather than the descendant.

4.8 Mutation operators

Mutation operators perform random modifications
on an individual. The purpose is to overcome local
optima and to exploit new regions of the search space.

We have designed four types of mutation operators
which are applied in a random order with a certain mu-
tation probability to each of the individuals p; € P..

mut_1l Define a surronnding rectangle with random
sizes (x,, y») around a random center position (=, y, z).
All routing structures inside this rectangle are deleted.
The remaining net points on the edges of this rectangle
are now connected again in a random order with our
random routing strategy.

mut_2 Define a random number of nets n, with
1 < 1, < find (Ning = number of nets of p;). Select
A, nets randomly, delete them and route them again
in a random order by means of the random routing.

mut_3 Add at a random row position yaq4, with
1 € Yadd € Vind (Yina = number of rows of p;}, an
additional row, select randomly net segments from the
“neighbor row(s)” and place them on gg44.

mut_4 Remove a row at a random row position yg.;
with 1 < Ydet < Ping. Affected net segments are traced
until their next Sieiner point or pin i1s reached and
rerouted by our random routing strategy.

If any of these mutations are not feasible, the mu-
tation operator tries new random changes of the same
type until either a successful mutation is performed or
no feasible mutation of this type is possible within 30
iterations.

4.9 Optimization of the best individual

Since genetic algorithms are more focused on global
optimization of the overall population rather than per-
forming finely tuned local search, it is preferable to
implement a local optimization of the best individual
at the end of the evolution process.

In this local optimization, all types of mutations de-
scribed in Section 4.8 are applied sequentially to the
best individual, py.,¢, which has ever existed through-
out the evolution process. Only improvements to ppe,:
are accepted. The final ps.q¢ constitutes the routing
solution to our specific channel routing problem.

5 Implementation and experimental
results

The algorithm has been implemented in FOR-
TRAN on a SPARC workstation. The approximate
size of the source code is 8000 lines.

We have collected a number of well-known bench-
marks for channel routing from the literature. In the
following, we present our results using these bench-
marks and compare the quality of these routing results
with other approaches. We also conducted an exper-
iment to study how the initialization of the random
number generator affects these results.

5.1 Measurement conditions

The routing results of the benchmarks, presented
later, are the best results obtained in 10 consecutive
executions of the algorithm for each benchmark. All
executions are based on an arbitrary initialization of
the random number generator. We always stopped the
executions after 150 generations.

The values of the other parameters are as follows:

[Pe| = 50

maz_descendant = 30

a = 1.001 {Equation (3)}

b = 2.000 (Equation (3))

Mutation probability mut.l = 0.001
mut_2 = 0.002

mut_3/4 = 0.01

The same parameter setting is used for all bench-
marks.

We have investigated different mutation probabili-
ties for each of the mutation types. We achieved the
best convergence towards high fitness of the best in-
dividual with the above mentioned values. If one of
these mutation probabilities is increased, the frequent
mutations turn the evolution process into a random
walk. On the other hand, reduced mutation proba-
bilities often lead to convergence in a local optimum
only.




[ Benchmark [ System

| Col. Rows Netlength Vias|

Yoshimura- | Yosh.-Kuh {34[| 12 5 75 21
Kuh Weaver [19] 12 4 67 12
channel Monreale [11] | 12 4 72 1t
Our work 12 4 70 11
Joo612 | Weaver [19] | 12 4 79 14
Packer {12] 12 4 82 18
Monreale [11] | 12 4 84 13
Our work 12 4 79 14
JooB_13 Greedy [28 18 8 194 38
Weaver [19 18 7 169 29
Silk {23] 18 6 171 28
Packer [12] 18 6 167 25
Our work 18 6 165 25
Joo6_16 Weaver [19] 11 8 131 23
Weaver® [19] 1 7 121 21
Monreale [11] | 11 7 120 19
Our work 11 6 116 15
Burstein’s | Mighty [32] 13° 4 83 8
difficult | Packer [12] 12 4 82 10
channel Monreale [11] | 12 4 82 10
Our work 12 4 82 8

% interactively
b additional column in the middle of the channel

Table 1: Benchmark results.

5.2 Channel routing results

The performance of the algorithm has been tested
on different benchmarks. The results obtained are pre-
sented in Table 1. It can be seen that our results are
either as good as or better than the best known re-
sults from popular channel ronters published for these
benchmarks.

In [19, Fig. 6-16], Joobbani was able to route the
so-called channel Joo6.18 which could not be routed
by the Greedy algorithm [28]. This was accomplished
by using his Weaver algorithm interactively and non-
interactively. As is evident from Table 1, our algo-
rithm yields better results than the Weaver algorithm
even when the latter is used interactively. Figure 6
shows our routing solution.

The layout of Burstein’s difficult channel achieved
with our algorithm is depicted in Figure 7.

The CPU-times of the executions that obtained the
results of Table 1 in 150 generations were:

Yoshimura-Kuh channel 5.6 min
Joo6_12 : 13.4 min
Joo6.13 : 94.2 min
Joo6_16 : 48,9 min
Burstein’s difficnlt channel : 9.6 min

Due to the inherent parallelism in genetic algo-
rithms we are optimistic about reducing the runtime

TG T EH
S I A
e

25 47 5414 3 86

Figure 6: Our routing solution of Joo6_16.

122 458109 9 673

Figure 7: Our routing layout of Burstein’s difficult
channel.

through the implementation of a parallel version of
our algorithim.

5.3 Diversity within the population

We investigated the degree of diversity within the
population during the convergence process because the
population diversity is cructal to the ability of a ge-
netic algorithm to guarantee a sufficient exploration
of the search space.

Figure 8 shows the convergence behavior of the
best, the average and the worst individual in the pop-
ulation for Burstein’s difficult channel.

Similar graphs were achieved using the other bench-
marks.

From these investigations we conclude that our ge-
netic algorithm ensures sufficient diversity within the
population even in an advanced stage of the evolution
process.

5.4 Effect of random number generator

Since the methodology of our algorithm is proba-
bilistic, it is important to investigate the effect of the
initialization of the random number generator on the
routing results.




Fp)
028 |-

0.24 |-
0.20 |-
0.16 §-

0.12 |-

0.08 |

004 |-

0 20 40 60 80 100 120 Geaerations

Figure 8: Average convergence behavior of the indi-
viduals for Burstein’s difficult channel in 10 program
executions.

An experiment was conducted to study how the ini-
tial seed of the random number generator affects the
number of generations needed to reach the best rout-
ing results presented in Table 1. We executed our
program 1000 times with different initializations of the
random number generator to route Burstein’s difficult
channel. Figure 9 shows the number of generations
necessary to reach our best result for this channel. For
example, between 88 and 112 generations were needed
in 187 of the 1000 executions to achieve the result of
Table 1. In one case, this result was reached after only
36 generations, in the worst case, 755 generations were
necessary. On average, 197 generations are needed to
obtain the result of Burstein’s difficult channel as pre-
sented in Table i.

Similar results were reached using the other bench-
marks of Table 1. At this point we noticed a direcs re-
lationship between the complexity of the channel rout-
ing problem and the shape of the curve: The more
complex the routing structure, the flatter is the curve
and the more the curve is shifted towards a higher
number of generations.

From the experiment we conclude that the initial-
ization of the random number generator affects only
the run time. Qur routing results can be achieved with
any initial seed of the random number generator.

6 Final remarks and conclusions

A new genetic algorithm for the channel routing
problem of VLSI circuits has been presented. The al-
gorithm is based on problem specific representation

30 |-

Fal 0

0 100 200 300 400 500 600 700 Generations

Figure 9: Distribution of the number of generations
needed to achieve the best result of Burstein’s difficult
channel.

scheme and genetic operators. It has been shown that
the results obtained using our algorithm are either
qualitatively stmilar to or better than the best pub-
lished results for channel routing benchmarks.

In developing this algorithm, the following conclu-
sions have been reached:

¢ The representation scheme of a layout problem in
a genetic algorithm should be a problem specific,
three-dimensional representation rather than a
one-dimensional string. Qur scheme ensures that
high quality parts of the layout structure are pre-
served as high-fitness building blocks and trans-
ferred intact with an increased probability in the
next generation.

¢ The genetic operators of a genetic algorithm in
a YLSI layout design should be adapted to the
specific layout problem rather than selecting an
unnatural representation that would allow the use
of traditional genetic operators.

¢ The ability to overcome local optima is improved
by separation of the crossover and mutation pro-
cedures.

* From our results we believe that genetic algo-
rithms are promising tools for solving the channel
routing problem and other optimization problems
in the physical design process of VLSI circuits.

Our future work will concentrate on implementing
a parallel version of the proposed algorithm in order
to make it more efficient in terms of the run time.




Furthermore, additional studies are needed to in-
vestigate the effect of the genetic algorithm design
on our results. For example, adopting Baker’s selec-
tion algorithm [2] could lead to a more stable selec-
tion. Consequently, our reduction strategy could be
changed to a probabilistic one or even be totally elim-
inated by replacing the current population with the
population of the descendants.

Additional investigations are also needed to mea-
sure the performance of the algorithm as the size of
the channel routing problem increases. Preliminary
studies suggest that an exponential relationship exists
between the CPU run time and the size of the channel
routing problem. Further experiments are needed in
this direction.
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