

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Genetic Algorithm for Computing the k-Error Linear

Complexity of Cryptographic Sequences

A. Alecu and A. M. Salagean

Abstract— Some cryptographical applications use pseudoran-
dom sequences and require that the sequences are secure in
the sense that they cannot be recovered by only knowing a
small amount of consecutive terms. Such sequences should
therefore have a large linear complexity and also a large k-error
linear complexity. Efficient algorithms for computing the k-
error linear complexity of a sequence over a finite field only exist
for sequences of period equal to a power of the characteristic
of the field. It is therefore useful to find a general and efficient
algorithm to compute a good approximation of the k-error
linear complexity. In this paper we investigate the design of a
genetic algorithm to approximate the k-error linear complexity
of a sequence. Our preliminary experiments show that the
genetic algorithm approach is suitable to the problem and that
a good scheme would use a medium sized population, an elitist
type of selection, a special design of the two point random
crossover and a standard random mutation. The algorithm
outputs an approximative value of the k-error linear complexity
which is on average only 19.5% higher than the exact value.
This paper intends to be a proof of concept that the genetic
algorithm technique is suitable for the problem in hand and
future research will further refine the choice of parameters.

I. INTRODUCTION

The k-error linear complexity of a sequence is a gen-

eralisation of the notion of linear complexity. While the

linear complexity of a sequence is defined as the length

of the smallest linear recurrence relation which generates

that sequence, the k-error linear complexity is the length

of the smallest linear recurrence relation which generates a

sequence which differs from the original sequence in at most

k positions.

When designing a stream cipher, the keystream sequence

has to have a large linear complexity. Using the Berlekamp-

Massey Algorithm, a sequence can be efficiently recovered

by knowing a number of consecutive terms equal to twice

its linear complexity. Sequences with low linear complexity

would therefore be vulnerable to known plaintext attacks.

Similarly, sequences with low k-error linear complexity for

small values of k could also be vulnerable if the correspond-

ing linear recurrence relation was found.

An exact algorithm to compute the k-error linear com-

plexity only exists for periodic sequences over a finite field

GF (pm) and with period a power of p, p being prime and

m ≥ 1 (see Stamp and Martin [13], Lauder and Paterson [8]

for p = 2 and Kaida, Uehara and Imamura [7] for an arbitrary

p). These algorithms are based on the algorithms of Games

and Chan([4]) and Ding, Xiao, Shan [3] for computing the

A. Alecu and A. M. Sălăgean are with the Department of Computer
Science, Loughborough University, LE11 3TU, Loughborough, UK (contact
email: {a.alecu, a.m.salagean}@lboro.ac.uk).

linear complexity of such sequences, and they work only

when a full period of the sequence is known, i.e. the whole

sequence is known, which is not the case in cryptanalysis

applications.

We propose and investigate a genetic algorithm for com-

puting the k-error linear complexity focusing on the choice

of parameters (population size, number of generations, tech-

nique of selection, crossover or mutation, mutation probabil-

ity, crossover probability) some of them depending on the

size of the input sequence and the number of errors k and

also how to choose the evaluation function.

II. BACKGROUND

We will first introduce some of the background regard-

ing the linear complexity and k-error linear complexity of

cryptographical sequences and also about the evolutionary

techniques we used.

A. Linear complexity and k-error linear complexity

Stream ciphers are symmetric ciphers in which the plain

text bits are encrypted one at a time by XORing them with

a bit from the secret key stream. Often the key stream is

generated using a certain combination of Linear Feedback

Shift Registers (LFSRs) which expands a short key shared

by the sender and receiver into a longer pseudorandom

sequence. However, any recurrent sequence over a finite field

is linearly recurrent and can therefore be generated by one

single (usually much larger) LFSR.

A sequence generated by a LFSR can be defined by a

linear recurrence relation or, equivalently, by a characteristic

polynomial.

Definition 2.1: Given an infinite sequence s = s0, s1, . . .

(or a finite sequence s = s0, s1, . . . , st−1) with elements in

a field K, we say that s is a linear recurrent sequence if it

satisfies a relation of the form

sj + cL−1sj−1 + . . . + c1sj−L+1 + c0sj−L = 0 (1)

for all j = L,L + 1, . . . (or for all j = L,L + 1, . . . t − 1,

respectively), where c0, c1, . . . , cL−1 ∈ K are constants.

The equation (1) is called a homogeneous linear recurrence

relation of order L and we associate to it a characteristic

polynomial C(X) = XL + cL−1X
L−1 + . . . + c1X + c0.

If L is minimal for the given sequence, we call L the

linear complexity of s, denoted L(s). A recurrence relation

of minimal order is called a minimal recurrence relation and

a characteristic polynomial of minimal degree is called a

minimal characteristic polynomial.

3569

1-4244-1340-0/07$25.00 c©2007 IEEE

More details about linear recurrent sequences and terminol-

ogy can be found for example in Lidl and Niederreiter [9].

If a sequence has linear complexity L, the minimal lin-

ear recurrence relation that generates the sequence can be

determined knowing 2L consecutive terms of the sequence.

This can be done by solving the system of linear equations

obtained by writing equation (1) for j = L,L+1, . . . , 2L−1.

A more efficient method is given by the Berlekamp-Massey

Algorithm.

A sequence which is used as a key stream for a stream

cipher needs therefore to have a high linear complexity, in

order to make it hard for an intruder to be able to find

the whole sequence by only intercepting a short number of

consecutive terms.

The notion of linear complexity has been generalised

to k-error linear complexity, which is the minimal linear

complexity of the sequence in which at most k positions are

changed. The concept was first outlined by Ding, Xiao, Shan

([3]) under the name of weight complexity, and defined under

the name of k-error linear complexity by Stamp and Martin

([13]). Note that the 0-error linear complexity coincides with

the linear complexity.

Definition 2.2: Given an infinite sequence s = s0, s1, . . .

of period N , with elements in a field K and a fixed integer k,

0 ≤ k ≤ wH((s0, . . . , sN−1)), the k-error linear complexity

of the sequence s is defined as

Lk(s) = min{L(s + e)| e is a sequence of period N over K,

wH((e0, e1, . . . , eN−1)) ≤ k}
For a given finite sequence s = s0, s1, . . . , st−1 with ele-

ments in a field K and for a fixed integer k, 0 ≤ k ≤ wH(s),
the k-error linear complexity of the sequence s is defined as

Lk(s) = min{L(s + e)|e ∈ Kt, wH(e) ≤ k} (2)

The sequences e are called error sequences or error patterns.

The k-error linear complexity profile of the sequence is

defined as being the set of pairs (k, Lk(s)), for all k with

0 ≤ k ≤ wH(s). We denote k-error linear complexity

profile of order k0, the set of pairs (k, Lk(s)), for all k with

0 ≤ k ≤ max {k0, wH(s)}. (wH(s) denotes the Hamming

weight i.e. the number of non-zero entries of s.)

Property 2.1: Given a (finite or infinite) sequence s with

elements in a finite field GF (q), we have Li(s) ≥ Lj(s),
for all i < j.

If the k-error linear complexity of a sequence is very

low for small values of k (e.g., k less than 10% of the

length of the sequence), then that sequence is likely to be

easily recovered when only knowing a short segment of the

sequence. This is why it would not be secure to use it as a

key stream for a stream cipher.

By extending the Games-Chan Algorithm ([4]), which

computes the linear complexity of a periodic binary sequence

with the period a power of 2, Stamp and Martin ([13]) have

devised an algorithm to efficiently (in linear time and space)

compute the k-error linear complexity of a periodic binary

sequence with the period a power of 2. The Stamp-Martin

Algorithm was further extended to compute the whole k-

error linear complexity profile by Lauder and Paterson [8].

Algorithms for computing the linear complexity and the k-

error linear complexity of a sequence, for periodic sequences

which have as period a power of the characteristic of the field

have been given by Ding, Xiao, Shan [3], Kaida, Uehara,

Imamura [7], Kaida [6]. All these algorithms, unlike the

Berlekamp-Massey Algorithm, need a whole period as input,

which means that the whole sequence is already known,

which would not be the case in cryptanalysis applications.

There is no general algorithm to compute the k-error linear

complexity profile of an arbitrary sequence over an arbitrary

finite field, other than the exhaustive search.

B. Genetic Algorithms

Evolutionary computing techniques are inspired by the

natural evolution observable in species and the process which

allows them to survive by continuously adapting to the

changes in their environment. The main principles imple-

mented by evolutionary computing are natural selection, or

’survival of the fittest’, and inheritance ([5]).

Genetic algorithms have proven to be useful in solving a

big variety of problems. They have been successfully applied

on famous NP-complete problems like Travelling Salesman

Problem, Knapsack Problem, Prisoner’s Dilemma etc.

A genetic algorithm is a probabilistic algorithm which

maintains a population of potential solutions for the problem

in hand, by evolving it throughout a number of generations

using genetic operators like selection and combination. At

each iteration, the quality of each possible solution is mea-

sured using a fitness function and then a new population

is created by selecting the most fit individuals on that

basis (same individual can be duplicated in a population,

the order of duplication being usually direct proportional

to its fitness). Some members of the new population un-

dergo transformations in order to create new solutions. The

transformations can be unary (mutation), which create new

individuals by slightly changing single solutions or of higher

order (crossover), which combine a number of solutions to

create a new individual. After a number of generations the

algorithm converges and it is hoped that the best individual

which has been found represents a reasonable solution ([11]).

It is still a challange and much research is invested

into finding the optimum values for the parameters in-

volved (population size, number of generations, selection

and crossover technique, probability of crossover, mutation

technique, probability of mutation) so that the algorithm is

efficient (i.e. fast) and accurate (i.e. finds a good approxima-

tion of the exact solution).

C. Berlekamp-Massey Algorithm

The Berlekamp-Massey Algorithm ([1],[10]) computes the

characteristic polynomial and the linear complexity of a

sequence over a field. Besides being general in that it applies

to a sequence over an arbitrary field, the Berlekamp-Massey

Algorithm has another advantage: if the linear complexity

of the sequence is L, the algorithm will determine the

3570 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

characteristic polynomial and the linear complexity after

processing 2L terms of the sequence. The algorithm runs

in quadratic time.

The algorithm is iteratively taking each term of a finite

sequence s0, s1, . . . , st−1 and processes it one by one, ad-

justing the characteristic polynomial if necessary. At each

step of the algorithm the current characteristic polynomial

C(n)(X) generates the n sequence terms s0, s1, . . . , sn−1

processed so far. Therefore, after all the terms are processed,

the characteristic polynomial of the input sequence is ob-

tained. The linear complexity is the degree of the resulting

characteristic polynomial.

At each step, in addition to the current characteristic poly-

nomial C(n)(X), the last characteristic polynomial C(m)(X)
of degree strictly smaller than the degree of C(n)(X) is

also stored. We denote L(i) = deg(C(i)). By calculating the

discrepancy d(n), where

d(n) = sn +

L(n)
−1∑

i=0

c
(n)
i si+n−L(n) (3)

which represents the difference between the term which is

expected using the current polynomial and the actual term sn

which is currently processed, 3 possible cases are identified:

1. If d(n) �= 0 then sn cannot be generated using C(n)(X)

a) If 2L(n) > n then the new characteristic polyno-

mial is computed as C(n+1)(X) ← C(n)(X) −
d(n)

d(m) ·X(m−L(m))−(n−L(n)) ·C(m)(X) and it has

the same degree as the previous one;

b) If 2L(n) ≤ n then the new characteris-

tic polynomial is computed as C(n+1)(X) ←
X(n−L(n))−(m−L(m)) ·C(n)(X)− d(n)

d(m) ·C(m)(X)
and it has a higher degree than the previous one,

namely L(n+1) = n + 1 − L(n); m is updated to

n.

2. If d(n) = 0 then sn can be generated using C(n)(X),
so the characteristic polynomial stays unchanged

C(n+1)(X) = C(n)(X).

For initialisation, the first non-zero term in the sequence,

say sj is detected, the characteristic polynomials are set

to C(i)(X) ← 1 for i = 0, . . . , j, C(j+1)(X) ← Xj+1,

and m ← j. At the end of the algorithm, L(t) is the

linear complexity of the sequence and C(t)(X) is a minimal

characteristic polynomial (which is unique if 2L(t) ≤ t,

otherwise it may not be unique).

III. A GENETIC ALGORITHM FOR COMPUTING THE

k-ERROR LINEAR COMPLEXITY OF A SEQUENCE

In this section we will describe our investigations and

findings in designing a genetic algorithm for computing the

k-error linear complexity of a sequence s of size t with

elements in a finite field GF (q), where q is a prime power.

Since this is an optimisation problem with a well defined

search space (see definition 2.2), a genetic algorithm is very

well suited.

Algorithm 1 Genetic Algorithm for computing the k-error

linear complexity - A Schematic View

Input: A finite sequence s = s0, s1, . . . , st−1; k0

Output: The approximate k0-error linear complexity

Initialise population POP (0) of size PS

Evaluate POP (0)
gen ← 0
while gen < NOGEN do

Select new POP (gen + 1) from POP (gen)
Crossover in POP (gen + 1) with probability pX

Mutate in POP (gen + 1) with probability pM

Report statistics for the current generation

Evaluate POP (gen + 1)
gen ← gen + 1

end while

The input of the algorithm is the sequence s and a value

k0, the order of the k-error linear complexity which is

to be computed. The output of the algorithm will be an

approximation of the k0-error linear complexity. See listing 1

for a schematic view on the algorithm.

The algorithm holds a global solution which is updated

whenever necessary (i.e. when an individual improves the

current global solution).

In the following, we will expand on the different types of

implementations and schemes that we considered.

A. Chromosomes

Since we are dealing with sequences over finite fields, it is

natural to use a haploid string encoding for the chromosomes.

We define a chromosome to be any possible error pattern

e ∈ GF (q)t, e = (e0, e1, . . . , et−1) of weight at most k0

(i.e. wH(e) ≤ k0).

The best chromosomes are the error patterns which inflict

smaller linear complexity on the input sequence s. The search

space size depends on the size of the sequence t, the order of

the finite field q and the number of errors, k0. We denote the

set Ek = {e|e ∈ GF (q)t, wH(e) ≤ k}, therefore the search

space size, SS, is given by the formula

SS = �(Ek0) =

k0∑
i=0

(
n

i

)
(q − 1)i (4)

The initial population is randomly generated. The random

number generator used is the C rand() linear congurential

generator function. The algorithm 2 describes the method

used in generating the individuals, error patterns of size t

with elements in GF (q) and weight less than k0.

We denote the size of the population to be PS and we will

experiment in order to find the best choice of value. Some

papers show that a moderate population size is leading to

fitter populations faster (e.g. [12]). Since we desire to make

sure we adjust the population size and number of generations

depending on the size of the search space we will use a

population size of the following form and we will try to find

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3571

Algorithm 2 Generate a random sequence e of size t and

weight at most k0

for i = 0, 1, . . . , t − 1 do

ei ← 0
end for

k′ ← a random number less than or equal to k0

for i = 0, 1, . . . , k′ − 1 do

pos ← a random position between 0 and t − 1
val ← a random value in GF (q)
epos ← val

end for

the optimum choice for the coefficient c (c > 0).

PS = ck0�ln (qt)	 = ck0�t ln q	 (5)

B. The fitness function

The quality of each individual is evaluated using the fitness

function. Our goal is to find the element e in Ek0
which

minimizes the linear complexity of the sum1 s + e.

Within our search space all possible error patterns, e, of

Hamming weigt up to k0 are comparable using the linear

complexity of the sum s + e, so this is a natural choice

for the fitness function. However, since traditionally genetic

algorithms are maximizing and not minimizing the fitness

function we will choose the fitness function to be, for each

error pattern, the reverse of the linear complexity of the

sequence onto which we applied that error pattern.

We define the fitness function f by

f : Ek0 → Z, where f(e) = −L(s + e)

We use the Berlekamp-Massey Algorithm (section II-C)

to compute the fitness function for each element of the

population. The computational complexity of the evaluation

is therefore at most O(PS · t2).
Experiments show that the search space is fragmented

and there are many local minima and maxima. This is a

challange for the genetic algorithm. Due to the discrete nature

of the linear complexity of the sequence when summed with

different error patterns from the search space we are not

able to directly pinpoint the elements in the domain Ek0

of function f which correspond to the minimum or the

maximum values.

Example 3.1: Figure 1 shows the shape of the distribution

of linear complexities for a given binary sequence s =
1011110011010110 of size 16 when taking all the possible

error patterns in the full space GF (2)16. The x and y axis

are corresponding to each possible weight from 0 to 16 and

each possible linear complexity from 0 to 16 respectively.

The third coordinate, z, in each point (x, y, z) represents the

number of error patterns e of weight x such that L(s+e) = y.

The figure presents a scaled version of the real distribution.

1We consider the term by term addition between sequences.
If a = (a0, . . . , at−1) and b = (b0, . . . , bt−1) then the sum sequence

(a+b) = (a0 +b0, . . . , at−1 +bt−1) with the additions in the field which
includes the terms of a and b.

Full space configuation for a binary sequence of size 16

"/home/coaa3/full_space_16/dump.txt" using 1:2:3
 1.4e+03
 1.2e+03
 1e+03

 800
 600
 400

 0
 2

 4
 6

 8
 10

 12
 14

 16

Weight of the error pattern

 0
 2

 4
 6

 8
 10

 12
 14

 16

Linear complexity

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Number of sequences

Fig. 1. Distribution of linear complexities of s = 0110111101110101
when combined with all poosible error sequences over GF (2)16

C. Genetic operators

1) Selection: There are various schemes for the selection

of the best individuals for further recombination. However

the general idea is that each chromosome will be copied

zero, one or more times according to its fitness (more times

if it is more fit) making sure that the population remains

varied.

We will use three alternative schemes for selection:

• Elitist selection of level 25% · PS (ELSEL). A set

percentage of the population is chosen for survival in

the order of the fitness values. It has been found that

the higher the level of elitism the lower the efficiency as

the GA will deal and will have to evaluate individuals

which were previously processed ([2]). For this reason

and since intuitively the algorithm does not benefit from

the overduplication of fit individuals, but more from the

population diversity, the rest of the individuals up to

the population size are randomly generated using the

same generation method as for the initial population.

The complexity of this approach is O(PS ln(PS)) since

it is necessary to order the individuals in the population

by their fitness value. ([11])

• Roulette wheel with slots sized according to fitness

(RWSEL). We first evaluate every single individual

in the population, e(i), for their fitness value, f(e(i))
(i = 0, 1, . . . , PS−1). We also compute the total fitness

of the population, TF , which represents the sum of the

fitness of each individual

TF =

PS−1∑
i=0

f(e(i))

This way we can compute the relative and the cumula-

tive probability of each individual, which is rprob and

cprob respectively

rprob(e(i)) =
f(e(i))

TF

3572 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

cprob(e(i)) =
i∑

j=0

rprob(e(j))

The selection process consists of spinning the roulette

wheel PS times and select each time an existing indi-

vidual such that the fitter the individual the bigger the

probabillity is for it to be selected.

Formally, the following two steps are repeated PS

times:

1) Generate a random value r, r ∈ [0, 1].
2) If r < cprob(e(0)) then select e(0), otherwise find

j such that cprob(e(j−1)) < r ≤ cprob(e(j)) and

select e(j).

• Tournament Selection (TRSEL). In a two order tour-

nament model, random pairs of individuals from the

current population are chosen and the best one out of

the two is selected to survive in the next population.

Intuitively, this method is particularly suitable as the fit-

ness values for this problem are very close which makes

the Roulette Wheel selection to give close probabilities

of selection to most of the individuals.

Formally, the following two steps are repeated PS

times:

1) Generate two random values pos1 and pos2, such

that 0 ≤ pos1 < pos2 ≤ t − 1.

2) If f(e(pos1)) < f(e(pos2)) then select e(pos2),

otherwise select e(pos1).

2) Crossover: For each chromosome e, when calculating

the linear complexity of s + e with the Berlekamp-Massey

Algorithm we hold all the intermediary linear complexities,

therefore we obtain the whole linear complexity profile.

That is, for each e(i), i = 0, 1, . . . , PS − 1 we hold

lcp(i) = (lcp
(i)
0 , . . . , lcp

(i)
t−1), a vector of size t such that

lcp
(i)
j represents the linear complexity of the sequence s+e(i)

up to term j. We also hold the intermediary discrepancies in

an array dis(i) where dis
(i)
j is the intermediary discrepancy

calculated by the Berlekamp-Massey algorithm at step j

when being run on the sequence s + e(i).

During the Berlekamp-Massey algorithm, only the case

when the discrepancy d(n) �= 0 and 2L(n) ≤ n (case (1b)

in Section II) yields an increase in the current complexity

of the sequence. We are interested in minimizing the linear

complexity. It seems therefore natural in this case to concen-

trate on error patterns which have that current term changed

in such a way as to make the discrepancy zero and therefore

make an increase in complexity unncessary.

Two of the crossover types that we consider are using

the previous remark and the information given by the linear

complexity profile as well as the intermediary discrepancies

held against each chromosome.

We define a parameter called probability of crossover, pX ,

pX ∈ [0, 1]. The crossover involves choosing two parents PS

times, therefore repeating the following steps PS times

1) Generate a random value r, r ∈ [0, 1].
2) If r < pX and no parent yet selected then choose first

parent p(i).

3) If r < pX and first parent has been selected then

choose the second parent p(j) such that p(i) �= p(j),

crossover parents p(i) and p(j) to obtain one or two

children and reset parents.

After each crossover the best two individuals out of the two

parents and the children, depending on their fitness value,

are kept for the new generation.

For readability, in the following, we will denote the parent

chromosomes p(1) and p(2) with the corresponding linear

complexity profiles, lcp(1) and lcp(2) and the intermediary

discrepancies dis(1) and dis(2).

Having chosen two parents p(1) and p(2), the following

crossover schemes are considered.

• Single point crossover (SPX). Generate a random natu-

ral number pos, pos ∈ 0, 1, . . . , t − 1.

p(1) = (p
(1)
0 , p

(1)
1 , . . . , p

(1)
pos−1, p

(1)
pos, . . . , p

(1)
t−1︸ ︷︷ ︸)

p(2) = (p
(2)
0 , p

(2)
1 , . . . , p

(2)
pos−1, p

(2)
pos, . . . , p

(2)
t−1)

The resulted offsprings are:

c(1) = (p
(1)
0 , p

(1)
1 , . . . , p

(1)
pos−1︸ ︷︷ ︸, p(2)

pos, . . . , p
(2)
t−1)

c(2) = (p
(2)
0 , p

(2)
1 , . . . , p

(2)
pos−1, p

(1)
pos, . . . , p

(1)
t−1︸ ︷︷ ︸)

This strategy provides some diversity without disrupting

any long building blocks. 2

• One point crossover using the linear complexity profile

(LCPSPX). Generate a random natural number pos,

pos ∈ {0, 1, . . . , t − 1}. Find in parent p(1) the first

position after pos where there is an increase in the

complexity of p(1) + s. Otherwise stated, find first

position i in the first parent p(1) such that pos < i,

lcp
(1)
i < lcp

(1)
i+1 and p

(1)
i+1 �= p

(2)
i+1. That means that if

we apply the following recombination then it is likely

that in some of the cases the linear complexity of the

first child to be reduced.

p(1) = (p
(1)
0 , p

(1)
1 , . . . , p(1)

pos, . . . , p
(1)
i , p

(1)
i+1, . . . , p

(1)
t−1︸ ︷︷ ︸)

p(2) = (p
(2)
0 , p

(2)
1 , . . . , p

(2)
pos, . . . , p

(2)
i , p

(2)
i+1, . . . , p

(2)
t−1)

The resulted offsprings are:

c(1) = (p
(1)
0 , p

(1)
1 , . . . , p(1)

pos, . . . , p
(1)
i︸ ︷︷ ︸, p(2)

i+1, . . . , p
(2)
t−1)

c(2) = (p
(2)
0 , p

(2)
1 , . . . , p

(2)
pos, . . . , p

(2)
i , p

(1)
i+1, . . . , p

(1)
t−1︸ ︷︷ ︸)

This strategy provides good diversity without disrupting

any long building blocks. Experimentally we noticed

that especially on fields with a lower order (for example

binary field) we can take out the third condition when

finding the crossover point i (p
(1)
i+1 �= p

(2)
i+1) as this is

eliminating a considerable amount of possible crossover

positions without providing consistent advantages.

• Two point crossover (TPX). Generate two random nat-

ural numbers pos1 and pos2, such that 0 ≤ pos1 <

pos2 ≤ t − 2.

p(1) = (p
(1)
0 , . . . , p(1)

pos1
, . . . , p(1)

pos2
, . . . , p

(1)
t−1︸ ︷︷ ︸)

2Building blocks are short sequences of good genes which appear in the
chromosomes. It is desired not to disrupt them if possible in order to promote
them to the following generations.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3573

p(2) = (p
(2)
0 , . . . , p

(2)
pos1 , . . . , p

(2)
pos2 , . . . , p

(2)
t−1)

The resulted offsprings are:

c(1) = (p
(1)
0 , . . .︸ ︷︷ ︸, p(2)

pos1 , . . . , p
(2)
pos2 , . . . , p

(1)
t−1︸ ︷︷ ︸)

c(2) = (p
(2)
0 , . . ., p(1)

pos1
, . . . , p(1)

pos2︸ ︷︷ ︸, . . . , p(2)
t−1)

• Two point crossover using the linear complexity profile

(LCPTPX). One thing which can be improved on the

LCPSPX crossover presented above, is to use the linear

complexity information for the second parent as well.

Generate two random natural numbers pos1 and pos2,

such that 0 ≤ pos1 < pos2 ≤ t − 2. Find the first

position i in the first parent p(1) such that pos1 < i,

lcp
(1)
i < lcp

(1)
i+1 and p

(1)
i+1 �= p

(2)
i+1. Also find the first

position j in the second parent p(2) such that pos2 < j,

lcp
(2)
j < lcp

(2)
j+1 and p

(2)
j+1 �= p

(1)
j+1.

That means that if we apply the following recombination

it is likely that in some of the cases the linear complexity

of one or both children to be reduced improving their

fitness. Note that we assume to have i < j. If it does

not happen p(1) and p(2) as well as i and j can be

interchanged to fulfill this requirement.

p(1) = (p
(1)
0 , . . . , p

(1)
i , p

(1)
i+1, . . . , . . . , . . . , . . . , p

(1)
t−1︸ ︷︷ ︸)

p(2) = (p
(2)
0 , . . . , . . . , . . . , . . . , p

(2)
j , p

(2)
j+1, . . . , p

(2)
t−1)

The resulted offsprings are:

c(1) = (p
(1)
0 , . . . , p

(1)
i︸ ︷︷ ︸, p(2)

i+1, . . . , . . . , . . . , . . . , p
(2)
t−1)

c(2) = (p
(2)
0 , . . . , . . . , . . . , . . . , p

(2)
j , p

(1)
j+1, . . . , p

(1)
t−1︸ ︷︷ ︸)

This strategy provides a higher diversity than LCPSPX.

It is likely for disruption of long building blocks to

appear but the ones at the beginning of the sequence

remain untouched.

• Uniform random crossover (URX). Recent studies show

that the use of the uniform random crossover operator

is superior in most cases, see [14]. This crossover

technique obtains one child only, c from the two parents

p(1) and p(2).

p(1) = (p
(1)
0 , p

(1)
1 , . . . , p

(1)
t−1)

p(1) = (p
(2)
0 , p

(2)
1 , . . . , p

(2)
t−1)

Generate t random real numbers, ri ∈ [0, 1], i =

0, 1, . . . , t − 1. For each i, if ri < 0.5 then ci = p
(1)
i ,

otherwise ci = p
(2)
i .

3) Mutation: Whereas selection and crossover are the

evolutionary operators which are implementing the need to

promote good patterns from one generation to the next one,

the mutation is an operator which introduces variety and

implements the need to throw the individuals away from any

potential local optimum that they are converging to.

We consider two types of mutation, the standard one and

one which uses the linear complexity information similarly

with the crossover types LCPSPX and LCPTPX. We define

a parameter called probability of mutation, pM , pM ∈ [0, 1].

• Simple random mutation (SRM). This type of mutation

loops through all PS individuals in the population and

for each of them through all t terms, it generates a

random value r, r ∈ [0, 1] and if r < pM then it adds

a random value from the field to the current term.

Formally, for each i, i = 0, 1, . . . , PS−1 and for each j,

j = 0, 1, . . . , t−1, generate a random value r, r ∈ [0, 1].
If r < pM then generate another random value val,

val ∈ GF (q) and e
(i)
j = e

(i)
j + val.

• Random mutation using the linear complexity profile

(RMLCP). This mutation process tries to obtain in-

dividuals with a higher fitness by using the linear

complexity similarly with the crossover types LCPSPX

and LCPTPX. Aditionally it uses the discrepancy infor-

mation for a better chance to enhance the fitness of the

new individual.

Formally, for each i, i = 0, 1, . . . , PS and each j =
0, . . . , t − 1 generate a random value rj , rj ∈ [0, 1].
If rj < pM then generate a random position pos ∈
{0, 1, . . . , t − 1} and find the first position m in e(i)

such that pos < m and lcp
(i)
m < lcp

(i)
m+1. Once m found

make e
(i)
m+1 = e

(i)
m+1−dis

(i)
m+1. We remind that dis

(i)
m+1

represents the discrepancy at step m + 1 in Berlekamp-

Massey algorithm applied to the sequence s + e(i).

The fitness value of the mutated individual is evaluated

and the global solution updated if necessary. For the sake of

diversity the initial individual is discarded and the mutated

one is kept for the next population disregarding the value of

its fitness.

For both crossover and mutation an additional postpro-

cessing is needed in order to check if the resulted offsprings

have a higher weight than k0 and if so, randomly switch to

0 some of the non zero terms until the weight is at most

k0. The fitness values of the children are evaluated and the

global solution updated.

Since the genetic algorithm depends on the choice of quite

a few parameters we will refer to the genetic algorithm as:

kGA(t, k, s, PS, NOGEN,ST,XT, MT, pX , pM) where

t, k, s are the input values and

• PS is an integer representing the population size,

• NOGEN is an integer representing the number of

generations,

• ST is the selection scheme used, it can be ELSEL,

RWSEL, TRSEL (see section III-C.1),

• XT is the crossover scheme used, it can be SPX ,

LCPSPX , TPX , LCPTPX , URX (see section III-

C.2),

• MT is the mutation scheme used, which can be SRM

or LCPRM (see section III-C.3),

• pX is a value in the range [0, 1] representing the

probability of crossover,

• pM is a value in the range [0, 1] representing the

probability of mutation.

IV. TESTS AND RESULTS

In order to assess the accuracy of the algorithm and to

establish which is the best combination of parameters to

choose for the genetic algorithm we have set up a series

of tests as presented in the following.

3574 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

Best fitness values in each generation for different

population size / number of generations combinations

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50 60 70 80 90 100

Generation number

B
e
s
t

fi
tn

e
s
s

PS=110 NOGEN=100 PS=1100 NOGEN=10

(a) Speed of convergence for large population size and small number of
generations (PS=1100 and NOGEN=10) opposed to moderate population size
and number of generations (PS=110 and NOGEN=100)

Best fitness values in each generation for different

population size / number of generations combinations

-16

-14

-12

-10

-8

-6

-4

-2

0

0 100 200 300 400 500 600 700

Generation number

B
e
s
t

fi
tn

e
s
s

PS=11 NOGEN=1000 PS=110 NOGEN=100

(b) Speed of convergence for moderate population size and number of
generations (PS=110 and NOGEN=100) opposed to small population size
and large number of generations (PS=110 and NOGEN=1000)

Fig. 2. Best fitness value in each generation when the population size and number of generation vary

We considered 10 randomly chosen sequences of length

32 and k0 = 5 (each bit of the sequences is generated

with the C rand() linear congruential generator function).

The algorithms have been ran with different combination of

parameters, but on the same input the same seeds were used

for each algorithm so that the initial population is the same.

The search space size in this case is SS =
∑5

i=0

(
32
i

)
=

243.001 (see equation (4)). This is a relatively small search

space however we are only testing that the concept is fit for

the purpose. Also, another benefit is the fact that for this

length we can use the exhaustive search as a benchmarking

algorithm to evaluate the solutions of the genetic algorithm.

In the following tests, the evaluation of the best algorithm

is done by calculating the ratio between the k0-error linear

complexity value obtained by the genetic algorithm and the

exact k0-linear complexity value given by the exhaustive

search. We call this value the accuracy of the genetic

algorithm. We then average the accuracy over the same 10

sequences for each test.

1) Population size and number of generations: First

test decides the best choice for the population size PS.

If we put q = 2, t = 32 and k0 = 5 in (5) we obtain

PS = 110c. We take c = 0.1, c = 1 and c = 10,

therefore population sizes 11, 110 and 1100. In order to

have similar durations for the tests, we choose the number

of generations NOGEN to be inverse proportional with

the population size, namely 1000, 100 and 10, respectively.

We ran kGA(t, k, s, PS, NOGEN, ST,XT, MT, pX , pM)
for each of these combinations using selection type ST =
ELSEL, crossover type XT = URX with probability of

crossover pX = 0.66 and mutation type MT = SRM

with probability of mutation pM = 0.33. We denote the

best choice for the population size, PS∗, and the number

of generations, NOGEN∗. The average accuracies ob-

tained for each combination of parameters (PS, NOGEN),
(11, 1000), (110, 100) and (1100, 10) are 1.29861, 1.24682
and 1.27222, respectively. Therefore we chose the combina-

tion of parameters PS∗ = 110 and NOGEN∗ = 100.

The figure 2 shows the convergence speed for

each of the (PS, NOGEN) combinations when the

genetic algorithm is applied to the binary sequence

11110110010011101000100101010100 to compute the 5-

error linear complexity. The exact value is 8, therefore the

fittest error sequence would have the fitness −8. When

using small or moderate population size ((PS, NOGEN) is

(11, 1000) or (110, 100)) the result is 9, whereas when using

a large population size the result is 10. In the figure, the best

fitness value is shown against each of the generations.

The algorithm with large population size reaches its op-

timum, −10, in generation number 5, after processing 5500
individuals. However it does not manage to improve the

solution any further by the end of the 10 generations.

From a convergence point of view the other two configu-

rations are similar. When using a small population size and

large number of generations the optimum, −9, is reached

in generation number 659, after processing 7249 individuals.

The algorithm ran with moderate population size and number

of generations arrives at its optimum, −9, in generation

number 67, after processing 7370 individuals. We are there-

fore confident in choosing the moderate population size and

number of generation since the convergence to the solution is

smooth and the average accuracy over all the test sequences

is the best.

2) Selection: Having the population size

PS∗ and number of generations NOGEN∗ we

compare the three types of selection ELSEL,

RWSEL and TRSEL by running the algorithm

kGA(t, k, s, PS∗, NOGEN∗, ST,XT,MT, pX , pM)
for each of the three selection types ST . Crossover type is

XT = URX with probability of crossover pX = 0.66 and

mutation type is MT = SRM with probability of mutation

pM = 0.33. We denote the best selection scheme, ST ∗.

The average accuracies for the different types of selection

ELSEL, RWSEL and TRSEL are 1.24682, 1.40579 and

1.38396. Therefore we choose the elitist selection type of

level 25% for further experiments, ST ∗ = ELSEL.

3) Crossover: Having the population size PS∗,

the number of generations NOGEN∗ and the

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 3575

selection type ST ∗ we compare now the different

types of crossover (SPX , LCPSPX , TPX ,

LCPTPX and URX). We ran the algorithm

kGA(t, k, s, PS∗, NOGEN∗, ST ∗, XT, MT, pX , pM)
for each of the crossover types XT with probability

of crossover pX = 0.66 and for mutation type

MT = SRM and probability of mutation pM = 0.33.

The average accuracies for the different types of crossover

(SPX , LCPSPX , TPX , LCPTPX and URX) are

1.26250, 1.19464, 1.32043, 1.19464 and 1.24682. The

difference between the accuracy of LCPSPX and

LCPTPX is of the order 10−17. Therefore we can choose

either the one or the two point crossover which uses the

linear complexity profile information (XT ∗ = LCPSPX

or XT ∗ = LCPTPX) for further experiments.

4) Mutation: Having the population size PS∗,

the number of generations NOGEN∗, the selection

type ST ∗ and the crossover type XT ∗ we finally

compare the two proposed types of mutation (SRM

and LCPRM). Since the accuracy is so close for

crossover LCPSPX and LCPTPX , we ran the algorithm

kGA(t, k, s, PS∗, NOGEN∗, ST ∗, XT, MT, pX , pM) for

all four combinations of each of the two crossover types

with each of the two mutation types taking probability

of crossover pX = 0.66 and probability of mutation

pM = 0.33. The average accuracies for the combinations of

crossover and mutation, LCPSPX with SRM , LCPSPX

with LCPRM , LCPTPX with SRM and LCPTPX

with LCPRM are 1.19464, 1.25615, 1.19646 and 1.27003
respectively. The test indicates that the best mutation scheme

is MT ∗ = SRM .

Table I shows the approximate values of the 5-error linear

complexity found by the GA algorithm applied to each

of the test sequences s(i) (i = 0, 1, . . . , 9) of length 32,

when population size is 110, number of generations is 100,

selection scheme is the elitist selection with a level of 25%,

crossover is two point crossover using the linear complexity

information with probability of crossover 66% and mutation

is standard random mutation with probability of mutation

33%. The table displays the exact values of the 5-error linear

complexity and the generation number when the GA has

found the solution.

Studying the details of each generation we noticed that

sometimes very fit solutions produced by crossover are

turned into unfit solutions through mutation (since mutation

keeps the mutated individual for the next population for

the sake of variety). This suggests that the percent that we

considered for our tests, 33%, is quite large. Whilst the

mutation process is needed in order to prevent convergence

to a potential local minimum, we consider future work to

experiment different mutation probability values as well as

different crossover probability values.

V. CONCLUSIONS

We proposed a genetic algorithm for computing the k-

error linear complexity of a sequence over a finite field. We

implemented various techniques for each of the evolutionary

TABLE I

THE RESULTS OF kGA(32, 5, si, 110, 100, ELSEL(25%), LCPTPX,

SRM, 0.66, 0.33) COMPARED TO THE EXACT VALUES

s (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

Exact value 8 9 4 9 7 8 5 7 7 8
GA Value 8 9 8 9 9 10 5 7 9 9
Generation 42 99 73 86 13 10 61 1 69 4

operators and we investigated the best choice of parameters

for the problem. From our preliminary experiments we

conclude that the genetic algorithm approach is suitable to

the problem and that a good scheme would use a medium

sized population, an elitist type of selection with a level

of 25%, two point random crossover which uses the linear

complexity profile information with a probability of 0.66 and

a standard random mutation with a probability of 0.33. With

these choices, the algorithm outputs an approximative value

of the k-error linear complexity which is on average only

19.5% higher than the exact value.

As future work we intend to experiment more strategies

and more choices of parameters and also run experiments on

longer sequences.

ACKNOWLEDGMENT

The authors would like to thank Dr. Chris Hinde for the

useful discussions on the subject of this paper.

REFERENCES

[1] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, NY, 1968.
[2] Jason Cooper. Improving Performance of Genetic Algorithms by Using

Novel Fitness Functions. PhD thesis, Loughborough University, 2004.
[3] C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream

Ciphers. Springer-Verlag, Heidelberg, 1992.
[4] R. A. Games and A. H. Chan. A Fast Algorithm for Determining

the Complexity of a Binary Sequence with Period 2n. IEEE Trans.

Information Theory, 29(1):144–146, 1983.
[5] David E. Goldberg. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley, USA, 1989.
[6] T. Kaida. On the Generalized Lauder-Paterson Algorithm and Profiles

of the k-error linear complexity for Exponent Periodic Sequences.
In Proceedings of SETA 2004, volume LNCS 3486, pages 166–178,
Berlin, 2005. Spinger-Verlag.

[7] T. Kaida, S. Uehara, and K. Imamura. An Algorithm for the k-error

linear complexity of Sequences over GF (pm) with Period pn, p a

Prime, volume 151 of Information and Computation, pages 134–147.
Academic Press, 1999.

[8] A. G. B. Lauder and K. G. Paterson. Computing the Error Linear
Complexity Spectrum of a Binary Sequence of Period 2n. IEEE Trans.

Information Theory, 49(1):273–2803, 2003.
[9] R. Lidl and H. Niederreiter. Introduction to finite fields and their

applications. Cambridge University Press, 1994.
[10] J. L. Massey. Shift-Register Synthesis and BCH Decoding. IEEE

Trans. Information Theory, 15(1):122–127, 1969.
[11] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer-Verlag, Berlin, 1999.
[12] Colin R. Reeves. Using genetic algorithms with small populations.

In Proceedings of the 5th International Conference on Genetic Al-

gorithms, pages 92–99, San Francisco, CA, USA, 1993. Morgan
Kaufmann Inc.

[13] M. Stamp and C. F. Martin. An Algorithm for the k-Error Linear
Complexity of Binary Sequences with Period 2n. IEEE Trans.

Information Theory, 39(4):1398–1401, 1993.
[14] Gilbert Sywerda. Uniform crossover in genetic algorithms. In Pro-

ceedings of the 3rd International Conference on Genetic Algorithms,
pages 2–9, San Francisco, CA, USA, 1989. Morgan Kaufmann Inc.

3576 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

