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Abstract. A mobile robot requires the perception of its local environment for position estimation.
Ultrasonic range data provide a robust description of the local environment for navigation. This
article presents an ultrasonic sensor localization system for autonomous mobile robot navigation
in an indoor semi-structured environment. The proposed algorithm is based upon an iterative non-
linear filter, which utilizes matches between observed geometric beacons and an a-priori map of
beacon locations, to correct the position and orientation of the vehicle. A non-linear filter based
on a genetic algorithm as an emerging optimization method to search for optimal positions is de-
scribed. The resulting self-localization module has been integrated successfully in a more complex
navigation system. Experiments demonstrate the effectiveness of the proposed method in real world
applications.
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1. Introduction

A prerequisite for geometric navigation of a mobile robot is a position-finding
method. A rough estimation of the displacements of the robot (position and orienta-
tion) is possible with odometry data. To reduce the uncertainty and the error of the
estimated location, re-localization techniques have been developed. Unfortunately,
location estimates are typically very sensitive to the event-source attribution. This
is particularly true of Kalman filter-based systems. These are very effective at track-
ing moving parameters as long as their hypotheses are met, but they are extremely
susceptible to outliers and systematic model deviations because the Kalman filter
update rule depends critically on the assumed error distributions.

Integrated localization systems are absolute positioning methods; which require
external absolute references in order to estimate the position and the orientation.
This technique estimates the absolute position and orientation of the robot by mea-
suring the direction of incidence or the distances to several signals transmitted or
reflected by artificial beacons. The locations of the beacons in the environment have
to be known a priori. These methods have been used for ship navigation for many
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years as a very reliable localization method. Traditionally, two approaches are used
in mobile robot localization: the matching between certain geometric features such
as walls or corners observed by the sensorial system (widely used with ultrasonic
sensors, infrared sensors and laser range finders) and a map of the environment, or
the detection of natural or artificial landmarks (used mainly with cameras).

A landmark is a localized physical feature that the robot can sense and use to
estimate its own position in relation to a map that contains the landmark’s absolute
position. D’Orazio et al. (1994) use a landmark that consists of panels on which
two groups of four LEDs were fixed. The camera can see these confidence points
at any moment and they can be located easily in the image plane because of their
brightness and arrangement. In (Betke and Gurvits, 1997), an efficient method for
localizing a mobile robot in an indoor environment is described. The robot can
identify the landmarks and measure their bearings relative to each other. Ricotti
and Liotta (1995) have used a guide mark (two circles and identification codes) that
can be easily characterized by geometric features, which are invariant with respect
to scale factors and perspective views. Han and Rhee (1994) use a solid circle in
black with two interior white dots to obtain the position of the mobile robot. Salichs
et al. (1999) present a localization system, which use visual detection of natural and
artificial landmarks for re-localization in indoor environments. Artificial landmarks
are solid circles placed on the walls and natural landmarks are nameplates fixed at
the entrance of each room.

In (Escalera et al., 1996), a combination of a laser diode and a CCD camera is
used; the sensorial information is modelled as straight lines that are matched with
a prior map of the environment. The matching process is accomplished within an
extended Kalman filter. In (Triggs, 1994), a sonar localization system for mobile
robot navigation in a known environment is described, where state corrections are
applied through a standard Kalman filter. In (Leonard and Durrant-Whyte, 1992),
an application of the extended Kalman filter to the problem of mobile robot nav-
igation in a known environment is presented. This navigation algorithm is based
on an extended Kalman filter, which matches observed geometric beacons and an
a priori map of beacons locations.

This article describes an algorithm based upon an iterative extended Kalman
filter, which utilizes matches between observed geometric beacons and an a pri-
ori map of beacon locations, to correct the position and orientation of the vehi-
cle. A non-linear filter based on a genetic algorithm is presented as an emerging
optimization method to search for optimal positions.

Genetic algorithms (GAs) have proven to be effective in different mobile robot
applications. In (Chen and Zalzala, 1995) a genetic approach to mobile robot mo-
tion with a distance-safety criterion is presented. Hein and Meystel (1994) have
developed a GA that finds admissible control trajectories that tend to minimize
the vehicle’s transit time through the obstacle field. Other applications include the
planning of control and trajectories for automated delivery vehicles and the opti-
mization of control for racing vehicles. In Potvin et al. (1996) a route construction
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heuristic for a vehicle routing problem is described. Kang et al. (1995) present a
GA for global path planning to a goal for a mobile robot in a known environment.

2. Robot Localization Problem

When trying to estimate the state of the robot at the current time-step k, we assume
there exist knowledge about the initial state, all the measurements Zk = {zk, i =
1, . . . , k} up to the current time, the system and the observation models. Due to
the fact that the system model and the observation model are corrupted with noise,
some kind of state estimation method needs to be used.

x(k) = g(k, x(k − 1), ε(k)),
z(k) = h(k, x(k), η(k)),

(1)

where the first function is the state equation, which represents the model of the
system. The function g(k, x(k − 1), ε(k)) is called the estimator and the value of
this function is the estimate. The second one is the measurement equation and it
permits the comparison of the model results with the real ones.

This estimate permits integrate all the previous knowledge about the system
with the new data observed by the sensors in order to obtain a precise state esti-
mation of the real state of the system. Due to the stochastical nature introduced
by sensors and system noise, it is convenient to use a probabilistic formulation
of the estimators to reach reliable values of the state estimate. This estimation
problem can be formulated as a Bayesian filtering problem, where the posterior
probability density p{xk|Zk} of the current state is constructed taking into account
all measurements up to the current time. This density is recursively computed in
two steps:

– Prediction.
In this phase the system model is used to predict the state of the system in
the next cycle x̂(k|k − 1) and to predict the conditional probability density
function p(xk|Zk−1).

– Updating.
In the second phase, the measurement model is used to integrate new informa-
tion from the sensors to obtain the updated state x̂(k|k)and the posterior prob-
ability density function p(xk|zk, Zk−1). It is assumed that the new measure zk
is conditionally independent from the previous measurements Zk−1given xk,
and that the measurement model is given in terms of p(zk|xk)which expresses
the likelihood that the robot is at position xk given that zk is observed. The
posterior density p(xk|zk, Zk−1) is obtained using the Bayes theorem:

p(xk|Zk) = p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
, (2)

where p(zk|Zk−1) is defined as:

p(zk|Zk−1) =
∫

p(zk|xk) · p(xk|Zk−1) dxk. (3)
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An initial estimate of the state x1 and the probability density function p(x1|Z0)

= p(x1) are necessary for the algorithm to function properly.

3. Existing Approaches

The solution to the robot localization problem is obtained by solving Equations (2)
and (3). Depending on the method of representing the probability density function
p(xk|Zk) different classes of estimators are obtained.

The most traditional methods use the maximum a posteriori or the mean as
estimator of the state. These approaches work quite well when the probability
distribution function is uni-modal. In the case where the probability distribution
function is multi-modal this way of estimating the position of the robot is not
appropriate. This problem is clearly present when the mobile robot tries to localize
its initial position in a global environment model. There exists a high potential
number of symmetries in the environment, specially when the information pro-
vided by sensors is not sufficient or the a priori environment model does not match
reasonably the real world. In this situation the probability distribution function is
distributed around the different acceptable positions, and can not be considered as
uni-modal.

This problem can be addressed in different ways. One possibility consists of
increasing the number of features that can be observed by the robot sensors at each
possible position in order to decrease or even eliminate the number of possible sym-
metries. In this form, the assumption of uni-modality in the PDF can be reasonably
accepted. The second way of coping with this problem is by using filtering methods
where the uni-modal assumption is removed. This is the approach this work uses
and it is presented in the next sections. Before presenting the Restricted Genetic
Optimization (RGO) method, it is convenient to consider the existing methods of
obtaining the posterior density p{xk|Zk} which lead us to substantially different
methods with very different properties.

3.1. THE EXTENDED KALMAN FILTER (EKF)

If the equations of the model and the observation are linear and the noise terms
are Gaussian, then the least square estimate can be calculated using a Kalman filter
(Bar-Shalom et al., 1988). This filter provides us with an optimal estimate from a
statistical point of view. The Kalman filter method approach assumes that if both
the system and the measurement models can be described using a Gaussian prob-
ability density function, and the initial state is also specified as a Gaussian, then
the density p(xk|Zk) will remains Gaussian. Due to this assumption, the p(xk|Zk)

can be represented in a very compact way by means of only two parameters (the
mean and the covariance matrix of the probability distribution) which leads us to a
closed and elegant form of obtaining the state and covariance estimates of the robot
positions.
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The Kalman filter estimate can be done recursively, based on the new measure-
ment and the last estimate of the state in order to estimate the current state and
to predict the state in the next cycle. This recursive solution avoids the necessity
of storing previous estimates and measures, which improves greatly the speed and
computational requirements of the algorithm.

When the system model has a non-linear dynamics or a non-linear observation
model the simplest approach is to expand the model and observation equations in
Taylor’s series and use the first term of the series into the recursive Kalman filter.
This lead us to the Extended Kalman Filter (EKF).

In the linear case, the filtering problem at the state space is given by

x(k) = g(k, x(k − 1)) + ε(k),

z(k) = h(k, x(k)) + η(k),
(4)

where ε(k) and η(k) are the noise at the model and observation, which are supposed
to be independent random vectors with a Gaussian distribution of zero mean and a
known covariance:(

ε(k)

η(k)

)
=

((
0
0

)
,

(
Q(k) 0

0 R(k)

))
. (5)

The optimal estimate (the minimum mean square estimate) is evaluated consid-
ering the conditional probability density.

x̂MMSE(k|k) = E(x(k)|Zk) =
∫

x(k)p(x(k)|Zk) dx. (6)

The extended Kalman filter is similar to a linearized Kalman filter with the
exception that the linearization is done around the estimated trajectory instead of a
previously calculated nominal trajectory. For this reason, the functions g(k, x(k−1),
ε(k)) and h(k, x(k), η(k)) are developed in Taylor’s series around x̂(k|k) with first-
or second-order terms to obtain the EKF or Second Normal Form (SNF) filters.

A considerable number of researchers have used approaches based on extended
Kalman filters to correct the position and orientation of the vehicle using the error
between the observed and estimated distances between the robot and the segments
of the environment (walls, doors, etc.).

3.2. MONTE CARLO LOCALIZATION

The Gaussian approximation to the density of the underlying state done in the EKF,
will often prove to be inadequate, causing the update procedure to become unstable
(Aidala, 1979; Kalos and Whitlock, 1986). In addition, the linearization presents
problems that tend to appear in the early states of tracking. These linearization
errors tend to be self-perpetuating problems and can prevent an accurate estimate
ever being found. To avoid this problem, a good knowledge of the initial means and
covariances is needed, but in practice such information is frequently unavailable.
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The Monte Carlo localization methods are an alternative class of filters called
sampling-based methods in which theoretical probability distributions on the state
space are approximated by simulated random measurements. In those methods the
probability density function p(xk|Zk), where xk indicates the state at time k, is
represented by a set of N randomly sampled points called particles Sk = {sik; i =
1, . . . , N}. Based on the samples it is possible to approximate the probability
density (Dellaert et al., 1999; Thrun et al., 2001).

The key point in this group of methods is how to calculate recursively at step k

the set of particles Sk based on p(xk|Zk).

4. Limitations of Existing Methods

Techniques based on EKF filters have demonstrated to be robust to keep the track
of the robot position in a precise way, but they have not been able to solve satisfac-
torily ambiguities (like symmetries). Moreover there are not able to re-localize the
robot in case of localization failure or an initial global localization. Most of these
difficulties derive from the assumption of Gaussian constraints in the probability
distributions considered in the Kalman filter. Observing carefully the assumptions
done when one apply Kalman filtering techniques to the mobile robot localization
problem, some weaknesses are noticed:

– The assumption of a Gaussian noise in the system model is not completely
true. The errors in the motion model can be originated from mechanical as-
pects in the design of the robot (transmissions, gears, wheels, encoders) which
are systematic or can be originated by slippage of the robot on the floor and
then can be considered non-systematic. An important part of the systematic
errors can be taken into account through a properly calibration process, but
the non-systematic errors can not so easily eliminated (Borenstein and Feng,
1996; Chong and Kleeman, 1997). Depending on the floor conditions and the
motion done by the robot the slippage can be substantially different from the
Gaussian assumption, and it may be inaccurate.

– The assumption of Gaussian error in the sensor measurements is optimistic
in some kind of sensors. In case of using ultrasonic sensors to observe the
environment, additional distortions are introduced because of the lobe in the
ultrasound sensor which provide us the closer obstacle distance. If the angle
between the sensor axis and the surface is not appropriate an erroneous dis-
tance is obtained. One can argue that this closer obstacle distance tends to be
Gaussian. However, a small change in the observation angle has important ef-
fects on the obstacle perceivability. Besides, there is a bias in the observation,
except in case of using a complete sensor observation model which includes
the ultrasound lobe effect on the observation.

– The extended Kalman filter equations, which define the evolution of the Gaus-
sian conditional probability density of the state, are obtained from a Taylor
series expansion up to first-order terms of the filter. This introduces errors in
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the equations since the higher-order terms are neglected. This filter can be
considered as a class of deterministic estimators.

Kalman filtering techniques applied to mobile robot localization have proven to
be robust and accurate for keeping track of the robot’s position in relatively open
areas. But when robot moves into cluttered environments or in narrow places and
the sensorial systems is ultrasound this technique has accuracy limitations.

This techniques works well to keep track of the position if the initial position
is well known, this happens because in this case the sensorial symmetries and
ambiguities are a priori eliminated.

A modified state updating approach can be obtained by using an iterative pro-
cedure to optimize locally the error function. Looking at the expression of the
measurement prediction:

ẑ(k + 1|k) = h(k, x̂(k + 1|k)). (7)

It can be noticed that there are prediction errors in using x̂(k|k) for x(k) and
also there are other additional errors that are due to measurement nonlinearity.
It is possible to alleviate these errors if the updated state is not computed as an
approximate conditional mean, but a maximum a posteriori estimate.

With respect to Monte Carlo filtering technique the main limitations comes
from the high computational cost required and also from the relatively slow con-
vergence of the algorithm, which restricts the applications of this solution to off
line problems.

5. Restricted Genetic Optimization Filter (RGO)

In the literature, the use of Genetic Algorithms as a stochastic optimization method
is traditionally done off-line because the computing time is usually considerably
long. This high computational effort is due to two main reasons: the first one is
that Genetic Algorithms are sampling-based methods and the second one is the
difficulty of covering a global solution space with a limited number of samples.

The technique proposed in this paper tries to imitate the Nature: it works on-
line. When Nature uses Genetic Optimization, it uses it locally, that is: at a given
moment and to adapt to particular environmental conditions. For this reason, it is
possible to achieve fast adaptation rate to changing conditions. It has been demon-
strated (Garrido et al., 1998; Garrido and Moreno, 2001), that Genetic Algorithms
operating in restricted areas of the solution space can be a fast optimization method
for time-varying, non-linear and non-differentiable functions. That is why, the tech-
nique proposed is called Restricted Genetic Optimization (RGO).

Usually, GAs are used as a parallel, global search technique. It evaluates many
points simultaneously, improving the probability of finding the global optimum.

In Dynamic Optimization, finding the global optimum is useful for the first
generations to find the correct basin of attraction. However, it consumes a large
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computation time. Therefore, a fast semi-local optimization method, such as RGO,
is better.

The basic idea of this filtering technique is to combine the extended Kalman fil-
tering approach, which has good properties due to the close form of the algorithm,
and their recursive form of integrating the information with a simulation based
filtering technique. The technique presented in this work uses the extended Kalman
filter to obtain a seed, which is used to estimate a neighborhood where the true
value of the state is located. With this information, and inside this neighborhood the
most accurate solution is searched. The search of this solution is done stochastically
employing a genetic search technique. The genetic optimization technique consti-
tutes a probabilistic search method that avoids derivatives. The use of derivatives
present two types of problems:

– Causes strong numerical oscillations when noise to signal ratio is high.
– Requires differentiable functions, because otherwise the derivatives can be

discontinuous or even do not exist.
The numerical advantage of being a non gradient-based optimization method

(which imitate the natural selection process based on genetic laws) has an important
role in non linear systems with high noise to signal ratio.

The set of solutions (the population) is modified according to the natural evo-
lution mechanism: selection, crossover and mutation, in a recursive loop. Each
loop iteration is called generation, and represent the set of solutions (population)
at this moment. The selection operator tries to improve the medium quality of the
set of solutions by giving higher probability to be copied to next generation to the
best solutions. This operator has a substantial significance because it focuses on
the search of best solutions in the most promising regions of the state space. The
quality of an individual solution is measured by means of the fitness function.

It is possible to adapt the genetic algorithm method (Goldberg, 1989) in order
to focus the search in a certain neighborhood around the previous estimate by using
as a fitness function:

f : B(x̂(k|k − 1), σ ) → � (8)

with

σ = ‖P(k|k − 1)‖ (9)

and

V (x(k)) = 1
2 (z(k) − h(k, x(k)))T R(k)−1(z(k) − h(k, x(k)))

+ 1
2(x(k) − x̂(k|k − 1))T P (k|k − 1)−1(x(k) − x̂(k|k − 1)). (10)

The global effect of the algorithm is to update the estimates of the state and the
covariance matrix, and then the loop is repeated a number of times.

Each chromosome represents the difference with the best point of the last gen-
eration. New generations are oriented in the direction of the steepest slope of the
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Figure 1. Restricted genetic optimization algorithm.

cost function (steepest descend), and have smaller distance to the correct estimate
at each generation. This distance corresponds to the velocity at which the system
is changing. This behavior simulates the gradient method without using derivatives
and can be used even when signals are noisy.

It is possible to carry out a search in a big neighborhood at the beginning to
explore a wide area of the solutions space, which permits to avoid a premature
convergence of the algorithm to local minima. Once the space of solutions has
been roughly explored, it is convenient to reduce progressively its radius (the ra-
dius is taken as proportional to uncertainty) to focus the algorithm to the most
promising area of solutions. This improves the stability and accuracy of solutions
near the optimum. In this way, the method makes a global search at first and a
local search at the end reducing the probability of finding a local minimum and
improving the stability and accuracy of solutions near the optimum. Similar effects
are obtained in classical non-linear optimization methods by changing from Gradi-
ent Descend method to Quasi-Newton method when the algorithm approaches the
solution (Dennis and Schnabel, 1996). The algorithm has the following steps:

– 1. Initialization:
The initial set of solutions is calculated and the fitness value associated to each
of the points in the state space is evaluated.

– 2. Genetic Search:
The genetic operators: selection, cross mutation, elitism and immigration are
used to build the new population (set of points in the state space), and the
fitness function is evaluated for the new population. After a certain number
of iterations, the best value of the whole population is selected as the most
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promising estimate. An important point to be considered is to determine the
adequate population of solutions and the number of iterations to achieve good
results. There is no an exact value, because it depends strongly on the dimen-
sions of the state space, the variability of the system (noise to signal ratio) and
the maximum response time required to be used on-line. For these reasons the
populations and the number of iterations should be adapted to each specific
problem. In the problem under consideration, the state space has dimension 3
and we have obtained good results with a population of 250 and a number of
generations from 5 to 10.

– Updating:
The best element of the population is used as the updated state and then used
in an EKF to predict the new state. Then, a new Mahalanobis distance is
evaluated to determine the new search radius for the next genetic search.

The steps of the algorithm are illustrated in Figure 2.
The maximization of the previous function done by the algorithm is equivalent

to calculating a Maximum a Posteriori estimate (MAP). That is also equivalent to
minimizing V (x(k)); that is to maximize the fitness function f (J ).

The standard fitness function (that is the fitness function divided by the sum
of the fitness) is an approximation of the conditional probability density function
(PDF).

p(x(k)|Zk) = p(z(k)|x(k))p(x(k)|Zk−1)∫
p(z(k)|x(k))p(x(k)|Zk−1)

. (11)

To determine the radius of the search area, the Mahalanobis distance obtained
from the EKF is used,

d = (x̂(k|k − 1) − x̂(k − 1|k − 1)T P−1(k|k)(x̂(k|k − 1) − x̂(k − 1|k − 1). (12)

This distance provides information about the associated uncertainty of the linear
estimate x(k).

The most interesting characteristic of this approach is that it combines the
advantages of the EKF with the interesting properties of the genetic search mech-
anism. The EKF is used to limit the search area (otherwise the genetic search
becomes too costly from a computational point of view) and the genetic search
area is used to improve the estimate (which is very interesting if the system is non-
linear or the Gaussianity of the errors is not true or when the noise to signal ratio
is high).

The results of the RGO filter shown in the next section have been obtained by
using a population of 250 elements and 5–10 generations in the search of the best
solution. The population size depends on the size of the area where the solutions
are looked for, and can be decreased by iterating the algorithm more frequently if
the sensors and the computational cost permit it.
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Figure 2. Restricted genetic optimization flowchart.

6. Experimental Results

All experiments have been developed in an indoor environment – University lab-
oratories, offices and corridors (Figure 3), and conducted on a B21-RWI mobile
vehicle, equipped with a peripheral ring of 24 Polaroid ultrasonic sensors.

The map of the environment is based on rooms and corridors modelled as
segments. Segments of the environment are lines in 2-D, and are defined by the
parameter vector ps = (Os,Ds, θs), where Os is the origin of the local coordinate
system. Ds is the length of the segment and θs is the angle with respect to the global
coordinate system. A set of segments defines a specific room or a corridor.

The ultrasonic sensors from Polaroid Corporation have been adopted as a stan-
dard for most mobile robot platforms. There are several reasons for its popularity:
robustness, range accuracy and low cost. However, this sensor presents some draw-
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Figure 3. Experimental indoor environment.

Figure 4. Ultrasonic sensor target.

backs such as reflection problems and low angular resolution. A detected target can
reside anywhere inside a conical region with an angle of ± 15◦. When the target is
oriented at unfavorable angles, it may not be detected. As a result of these issues,
a probabilistic model is required to capture the behavior of the sensor. Most of the
actual implementations on mobile robots assume a Gaussian distribution.

A calibration step to determine ultrasonic sensor parameters is necessary in
order to obtain accurate results. Figure 4 shows a detected target at 2250 mm
along 50 measurement cycles; with a mean distance of 2089.5 mm and a variance
of 0.335 mm.
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Figure 5. Linear model of the US error.

Figure 5 shows a linear model of the ultrasonic sensor errors working in a
corridor (2.6 meters wide). The maximum range to be expected in an indoor en-
vironment is about 10 meters, with a mean error of 5 cm per meter (calibration
results are used in the observation model).

To obtain the real position of the mobile robot, a Geodimeter 600 (Theodolite)
was used. The accuracy of the distance measurement is ± 5 mm.

To test the localization method proposed in this article, different experiments
were performed with the mobile robot stopped. The first test tries to determine the
statical accuracy and the convergence speed of the proposed method. Initially, a
position and orientation error was introduced in the location of the mobile robot,
and then maintaining the mobile robot stopped the localization algorithm tries to
reduce the position and orientation errors introduced artificially. Figure 6 shows the
evolution of the position in the two first generations, with an initial error of 20 cm
in position and 10◦ in orientation.

In Table I the evolution of the statical error at each generation of the RGO
algorithm is shown (with 250 population elements and 5 iterations). In this ex-
periment the number of ultrasonic sensors selected are eight and only one data
acquisition is done. The convergence behavior of the algorithm is remarkable and
it has great importance because a fast convergence in statical results facilitates a
good dynamical error correction.

A second test to evaluate the effect of a statical localization with unexpected
obstacles was developed. In this test there are some obstacles which occlude part
of the expected environment and only 4 lateral sensors match the expected observa-
tions. To compare the accuracy, sensor measurements are integrated with EKF and
RGO methods. Figures 7 and 8 depict the convergence of EKF and RGO methods
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Figure 6. Localization evolution.

Table I. Evolution of the error

Total error X error Y error Heading error

Position 1 (Odometry) 198.5 mm 150 mm 130 mm 10◦
Position 2 (Generation 1) 75 mm 60 mm 45 mm 2◦
Position 3 (Generation 2) 27 mm 25 mm 10 mm 1.5◦
Position 4 (Generation 3) 23 mm 21 mm 9 mm 1.1◦
Position 4 (Generation 4) 18 mm 16 mm 8 mm 0.9◦
Position 5 (Generation 5) 15 mm 14 mm 6 mm 0.6◦

in position and orientation to the real values after some re-localization cycles. It can
be noticed that the error after one statical re-localization is bigger than in the case
of having 8 positive observations of the expected environment. Besides, a higher
number of re-localization cycles are required to reach an accuracy similar to the
full observation case. The lack of information affects to both methods similarly,
but RGO method achieves considerably better accuracy than EKF method.

To test the validity of our method in a real dynamical situation, the mobile
robot moved along two different typical indoor environments. In Figure 9, the
mobile robot estimates its current position in a laboratory along a given path. In
Table II a comparison between EKF and RGO errors at some intermediate points is
shown. The results let us notice that the RGO method achieves systematically better
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Figure 7. Position error evolution.

Figure 8. Orientation error evolution.

results than EKF. The improvement is of about 2 to 3 centimeters in the different
dynamical test done. An RGO method with a population size of 250 elements and
5 generations has been used. The computational time is 0.1 s and 0.4 s for both
algorithms respectively on a Pentium processor at 300 MHz.

The mean absolute error accumulated at the final position is about 3.5 cm in
position and 1.0◦ in orientation with a population size of 250 elements and 5 gener-
ations. The results obtained with a population size 250 elements and 10 generations
are 2.5 cm in position error and 0.5◦ in orientation error.

In the next figure, Figure 10, the mobile robot moves along a corridor and
estimates its current position at some intermediate points. In Table III a compari-
son between results obtained with EKF an RGO algorithms, at some intermediate
points of the trajectory, is shown. These results have been obtained with a popula-
tion size of 250 elements and 10 generations. It can be noticed that the error has
been reduced significatively compared with the error provided by the EKF method.
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Figure 9. Travel path in a laboratory.

Table II. List of errors at each laboratory re-localization point

250,5 Sensors EKF error (cm) RGO error (cm)

Point 1 4 4.9 3.4

Point 2 4 5.5 3.8

Point 3 4 6.7 4.8

Point 4 5 7.3 4.5

Point 5 6 6.7 3.7

In Table IV the effect of the number of iterations executed by the RGO method
in the accuracy at final position can be noticed. In both cases the results are clearly
superior to the results of EKF method.

The re-localization points are marked with a continuous circle in Figures 9
and 10. At each point a different number of ultrasonic sensors is selected; re-
localization process is developed with the vehicle moving at a maximum velocity
set at 30–40 cm/s. The experiments were performed in a 12×7 m2 room (Figure 9)
and in a 20 m corridor (Figure 10).
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Figure 10. Travel path in a corridor.

7. Limitations of RGO

The most important limitations of the algorithm are related to the genetic nature of
the stochastic search:
1. As most of sampling based methods the number of samples affect the accuracy

of the estimate. With population sizes between 100 and 250 chromosomes, in
problems with state space of dimension 3, good results have been founded. If
the dimension of the state space increases the population required to obtain
good results would be substantially augmented.

2. The convergence speed of the algorithm is considerably fast because the search
area is restricted. In our tests the algorithm converges in around 3 to 5 genera-
tions and over 10 there are no significative improvement in the estimate.

3. Another important aspect to be considered is that the area where the solutions
are looked up has to be bounded. We use a Mahalanobis distance with 95% of
probability (but limited between a maximum and minimum values) to deter-
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Table III. List of errors at each re-localization point at the
corridor

250,10 Sensors EKF error (cm) RGO error (cm)

Point 1 6 5.7 3.9

Point 2 5 6.9 4.6

Point 3 4 7.6 4.8

Point 4 5 6.1 4.4

Final 5 6.7 3.8

Table IV. Effect of generation number on RGO errors at the corri-
dor’s final point position

Final Error X error Y error Orientation error

(250,10) 3.8 cm 1.5 cm 3.5 cm 0.5◦
(250,5) 5 cm 2 cm 4.5 cm 1◦

mine the radius of the sampling area and an EKF to estimate the center of the
searching area.

4. The computational cost of the RGO method, for the problem took into con-
sideration here, is approximately four times the computational time required
for the EKF method to integrate 8 ultrasound sensor readings. In spite that the
computational cost is higher than conventional EKF method, the RGO method
can be executed on line. Monte Carlo filter with 5,000 sampling points is 20
times slower than RGO method and can not be implemented on line. Monte
Carlo method is particularly slow because it estimate the probability density
function, and this requires a high number of samples to be statistically efficient.

8. Conclusions

This article addresses the problem of localization for autonomous mobile robots.
It has been shown that the effectiveness of traditional methods based on the use
of EKF depends strongly on the assumption of the correctness of the knowledge
about the error distribution (Gaussian and uni-modal). The practical difficulties to
implement algorithms based on Monte Carlo techniques which do not require any
assumptions about the error distribution have been commented.

To overcome these limitations, a new algorithm for mobile robot localization is
proposed in this article. The new technique proposed here combines the use of an
EKF to focus the area where the best estimate is looked for, and a genetic algorithm
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which operates in this restricted area to obtain the best estimated solution. The
genetic search is iterated in the method to refine the final solution.

The algorithm has been implemented for the case where the environment is
modelled in a semi-structured way and the robot knows an a priori map of it. A pe-
ripheral ring of 24 ultrasonic sensors provides the sensorial information; although
the ideas of the algorithm can be implemented for other localization methods such
as computer vision, laser range finder, etc.

The solution obtained with this method has been compared with those obtained
with a classical EKF, and it shows a remarkable improvement in the results. The
algorithm is computationally more expensive than the classical EKF, but less ex-
pensive than the Monte Carlo method. In addition, the proposed method has been
successfully implemented and tested under real conditions in a B-21 mobile robot.
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