
CABIOS Vol. 13 no. 6 1997

Pages 565-581

A genetic algorithm for multiple molecular

sequence alignment

Ching Zhang and Andrew K.C. Wong

Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario

N2L3G1, Canada

Received on December 12,1996 revised on March 17,1997, accepted on May 21, 1997

Abstract

Motivation: Multiple molecular sequence alignment is

among the most important and most challenging tasks in

computational biology. The currently used alignment tech-

niques are characterized by great computational complexity,

which prevents their wider use. This research is aimed at

developing a new technique for efficient multiple sequence

alignment.

Approach: The new method is based on genetic algorithms.

Genetic algorithms are stochastic approaches for efficient

and robust searching. By converting biomolecular sequence

alignment into a problem of searching for optimal or

near-optimal points in an 'alignment space', a genetic

algorithm can be used to find good alignments very

efficiently.

Results: Experiments on real data sets have shown that the

average computing time of this technique may be two or three

orders lower than that of a technique based on pairwise

dynamic programming, while the alignment qualities are

very similar.

Availability: A C program on UNIX has been written to

implement the technique. It is available on request from the

authors.

Contact: E-mail: czhang@watnow.uwaterloo.ca

Introduction

Multiple molecular sequence alignment is characterized by
very high computational complexity. The dynamic program-
ming method (Sankoff, 1972; Gotoh, 1982; Waterman,
1984) has been accepted as an effective method for two-se-
quence optimal alignment. In aligning two sequences of
lengths m\ and m% the straightforward implementations of
this method need 0(m\m2) time and 0(m\m2) space. An im-
proved algorithm of dynamic programming by Hirschberg
(1975) can produce an optimal alignment in O^mj) space
(Myers and Miller, 1988), where m2 is the shorter sequence
length. However, when the dynamic programming method
is used for simultaneous multiple sequence alignment, the
computational complexity is O(m") theoretically, where n is
the number of sequences and m is the length of the sequences.

A number of methods have been developed to align mul-
tiple sequences with reasonable computer resources. Many
of them use heuristics to find good alignments that are not
necessarily optimal. Existing heuristic methods for multiple
sequence alignment may be categorized into five different
approaches: (i) the subsequence approaches; (ii) the tree ap-
proaches; (iii) the consensus sequence approaches; (iv) the
clustering approaches; (v) the template approaches. For a
comprehensive survey, see Chan et at. (1992). Of the more
recent methods, many combine heuristic techniques with
pairwise dynamic programming. These methods include
those: (i) aligning every pair of sequences, (ii) aligning each
sequence with a pre-selected 'basic' sequence, (iii) aligning
sequences in an arbitrary order or (iv) aligning sequences
following the branching order in a phylogenetic tree (e.g.
Feng and Doolittle, 1987; Chan, 1990; Gotoh, 1990; Vingron
and Argos, 1991; Roytberg, 1992; Vihinen et at., 1992:
Thompson etal., 1994). Some of the methods involve creat-
ing a sequence graph (or tree) with each edge representing a
pairwise alignment (Gusfield, 1993; Miller, 1993). Others
involve grouping sequences according to their structural
similarity or species origins and then conducting intra- and
inter-cluster alignments (Miller, 1993). The results of these
methods may have deviations from the optimal and most of
the methods are still very costly. When aligning n sequences,
they usually require at least (n - 1) pairwise alignment pro-
cesses. The high costs have limited wider use of the methods.
More efficient methods are required.

In this paper, a new method for simultaneous multiple se-
quence alignment is presented. This method is characterized
by very high efficiency in both computing time and memory
space. Its quality, measured in a series of experiments, proves
to be satisfactory for most analysis purposes. The method is
based on genetic algorithms.

Methods and system

An overview of genetic algorithms

Genetic algorithms are a set of stochastic algorithms for effi-
cient and robust searching. They are developed in a way to
simulate biological evolutionary process and genetic oper-

© Oxford University Press 565

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

CZhang and A.K.C.Wong

ations on chromosomes. Unlike the majority of the conven-
tional search algorithms, a genetic algorithm starts with a po-
pulation of points (states) in the problem space instead of a
single one. In each step of a search, it generates a new and
usually a better generation of points. Searching towards the
better points may improve efficiency, and searching with a
population may minimize the chance of falling into local ex-
trema (Goldberg, 1989a; Michalewicz, 1992). Genetic algo-
rithms are suitable for problems with large, complex, and
poorly understood search spaces (De Jong, 1988).

Since the pioneering work by Holland (1975), research has
been conducted to develop genetic algorithms. Considerable
progress has been achieved in the theoretical work, e.g. by
Bethke (1981), Grefenstette and Fitzpatrick (1985), Holland
(1987), Goldberg (1987, 1989a,b), and Buckles and his col-
leagues (1990). Meanwhile, genetic algorithms have been
successfully applied in many fields, e.g. rule-based intelli-
gent systems (Holland, 1986), symbolic learning (Spears and
De Jong, 1990) and complex control system optimization
(Grefenstette, 1986). In the fields of computational biology,
genetic algorithms have been used as effective tools for pro-
tein and RNA structure studies, including modeling the evol-
ution of the zinc finger sequence motif of protein (Dandekar
and Argos, 1992), simulating protein folding (Unger and
Moult, 1993) and predicting RNA secondary structures (van
Batenbury et al., 1995; Gultyaev etal, 1995).

Concepts, components and operations of a genetic
algorithm

The major components of a genetic algorithm include a
string representation of points (states) in the problem space,
a fitness function, and three operations on the strings: repro-
duction, crossover and mutation.

The string representation of the points is denoted as:

A - a i <72 • • • ai (1)

where a-,{\ <i< I) is the ;th string elements and / is the length
of the string. The elements are taken from a domain 9) which
is a collection of symbols, i.e. a, € 9). Usually 3) is (0, 1 (. A
string of / elements has / positions on it, which are occupied
by elements a|, ^2. • • •. and a/, respectively. Let Q denote the
problem space and GO e Q be the generic representation of
points in Q An encoding procedure g is needed to encode the
points into strings:

A = g((o) (2)

The fitness function/is used to evaluate fitness (goodness)
of strings. It can be expressed as:

f(A) = r

where reR and R is a set of real numbers.

(3)

A search process starts with a population of strings. In a
standard genetic algorithm, strings are of the same length.
The size of the population may be constant. In each step of
the search, the three operations are applied to the strings to
create a new generation.

Reproduction duplicates strings of high fitness values. For
string Aj, the number of duplicates is calculated as:

round (Q • p,) (4)

where Q is the population size and p, is the probability for
string Aj to be duplicated, which is calculated as:

P, =
f(A)

(5)

The duplicated strings are placed in a mating pool for creat-
ing a new generation of strings.

Crossover is conducted on the strings in the mating pool.
The operation mates two strings to create two new ones and
the frequency of crossover is controlled by a crossover prob-
ability pc. There are three steps in a cross-over operation:

1. Randomly select two strings, denoted by A \ and A2,

from the mating pool.
2. For string A, (1 < / < 2), randomly select a cutting posi-

tion k,• (1 < kj < /,) on it where /, is the length of A,•. Cut
between the Iqlh and (kj + l)th elements to split the
string into two substrings (head and tail).

3. Create two new strings by exchanging A\ and z^'s
heads.

Mutation is the alternation of the values of string elements. In
a mutation operation, a string is randomly selected from the
mating pool and a mutation position on it is selected between
position 1 and position / inclusively. The element value at the
mutation position is changed. The frequency of mutation is con-
trolled by a mutation probability pm.

A search may repeat the three operations until the process
converges. At convergence, all the strings are exactly the same.
A search may terminate when a certain condition is satisfied.

Schema is an important concept in genetic algorithms,
which is helpful in studying the law of string growth. A
schema is a similarity template describing a subset of strings
which have the same elements at certain positions on the
strings. Schemata are represented by the symbols in 9) plus the
symbol * which denotes 'do not care', i.e. 9) u {*|. Strings
described by a schema are instances of it. In a schema, the
positions where the elements are symbols in 9) are called fixed
positions. For example, if 9) is the set of binary digits, i.e. 9)
= (0, 11, schemata on 9) are represented by using 0, 1 and *.
'1 1 1 1 *' is a schema on 9) which describes all the strings in
which elements at the first four positions are ones and the el-
ement at the fifth position may be 0 or 1.

Two important properties of a schema are order and defin-
ing length. The order of schema H, denoted by o(H), is the

566

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm for multiple sequence alignment

number of fixed positions. The defining length of schema H,

denoted by 8(//), is the distance between the first and last fixed
positions.

According to Goldberg (1989a), the expected number of
instances of schema H in the next generation under reproduc-
tion, crossover and mutation can be given as:

nH(t = nH(t)
\f{H)

[f
(\-pc

/-I
o(H)) (6)

where nn(t) is the number of instances of H in generation t,

/ i s the average fitness of the whole population and/(/f) is
the average fitness of the instances of H.

Equation (6) indicates that the strings with high fitness va-
lues, short defining lengths and low orders have good prob-
abilities to grow. This knowledge is useful in designing a
genetic algorithm.

Use of a genetic algorithm for sequence alignment

The basic idea of using a genetic algorithm for multiple se-
quence alignment is to represent possible alignments as
points (states) in a space and to search for an optimal or near-
optimal point. This process involves coding the points into
a population of genetic strings and associating each string
with a fitness value, and applying the three genetic oper-
ations to the strings. In a search process, good strings are
duplicated and their segments are combined to form better
strings. Being able to search with a group of alignments and
move in a 'good' direction, a genetic algorithm might be
more efficient than many of the conventional search methods
and may have less chances of falling into local extrema.

In practical applications, the molecular sequences to be
aligned, such as DNA, RNA and protein sequences, are
usually very long and numerous possible alignments may be
constructed. For an alignment, its fitness value is determined
not only by the number of matched subunits, but also by the
numbers of insertions, deletions and substitutions. The ef-
fects of state transition on fitness values can hardly be pre-
dicted. For example, the increase in fitness value obtained by
matching subunits at one position may be offset by the loss
of substitutions at other positions. Thus, the multiple se-
quence alignment problem is characterized by large and
complex search spaces. The conventional search methods
may be inefficient in dealing with such a problem and may
easily fall into local extrema. Genetic algorithms may pro-
vide better approaches for such a problem (De Jong, 1988).

The system

The computer system used for this research is an IBM RISC
6000 32H workstation with a processor rated at 32.2 MIPS
and 11.7 MFLOPS. The main memory is 32 megabytes. The
operating system is AIX (an IBM version of UNIX).

The algorithm for multiple sequence alignment

Conversion of sequence alignment into space
search

In our approach, sequence alignment is conducted in two
steps: (i) identifying matches and (ii) identifying mismatches
(i.e. deletions, insertions and substitutions). The input of the
first step is the sequences to be aligned and the output is the
matched subunits. The matched subunits are organized in a
form called pre-alignment. The pre-alignment is the input of
the second step. The final result is an alignment. A genetic
algorithm is designed for the first step.

To apply a genetic algorithm, the task of identifying
matches is converted into a search problem. Before we dis-
cuss the conversion, necessary representations are given in
the following. To avoid possible confusion, some terms are
clarified: a biomolecular sequence consists of subunits. The
subunits are represented by characters in domain A. A string
in a genetic algorithm consists of elements which are repre-
sented by symbols in domain 9).

It is assumed that there are n sequences to be aligned. They

are:

y l _ ..I..I ..I
A - A,A2...A
v2 _ 2 2 2
A — A|A2....\

A - . l ,A2 lm n

where A' € A is a subunit, superscript it indicates that the
subunit belongs to the kth sequence, subscript i indicates that
it is the /th subunit in the sequence, 1 < / < m^, m^ is the length
of the &th sequence, and 1 < k < n. ma is used to denote the
average length.

To take into account mismatches, we use <p to represent

'blank' elements. Thus, A' = A u | cp) and xk
0 is used for cp,

i.e., 4 = <p.

An alignment of the n sequences, denoted as
X'#X2#...#X", is:

XX#X2#...#X" =

1 I
2 2

"2,1 "2.2

2

(7)

I I ... I
. . / i .11 .n

V l "n.2 "• ""•"'

where AJ, e ^t', | indicates a match or a mismatch, and m

] , W 2 , . . . , mn).

An alignment has m columns and n rows. It satisfies the
following conditions, (i) The subunits included in the /th row
must be subunits in the /th sequence (!</'</?). (ii) The align-

567

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

CZhang and A.K.C.Wong

ment includes all the subunits in the input sequences, (iii) A
subunit can appear only once in the alignment, (iv) The order
of subunits in a sequence is preserved in the alignment, (v)
There does not exist a column in which all the subunits are (p.

An alignment may also be denoted as a set: X1 # X2 #...#

X" = A-v,l,l/.v^j v;;j ; ; i , where (.v,'(|j,^2i v;u) may in-

clude matches and mismatches.
A pre-alignment of the n sequences, denoted as

X^X2#'...WXn, is:

i i i

' " 1 , 1 ' " 1 . 2 "• ' " l . m l

(8)

where ,v£t e A, || indicates a match, and m\ is the length

ofX1.

A pre-alignment has m \ columns and n rows. It satisfies the
following conditions, (i) The subunits included in the /th row
must be subunits in the /th sequence (1 </<«) . (ii) A subunit
can appear only once in the alignment, (iii) The order of sub-
units in a sequence is preserved in the alignment.

A pre-alignment is a preliminary state for generating an
alignment. In a pre-alignment, match relationships have been
identified which are usually considered as the most import-
ant relationships in an alignment. A column may be a match
or entirely (p. The latter represents possible mismatches. By
comparing the two definitions, we note that a pre-alignment
allows columns of entire (p and may not include all the sub-
units in the input sequences. Such columns and the missing
subunits will be processed in the subsequent step. The
number of columns in a pre-alignment can be the length of
any other sequence. Because, in a pre-alignment, only
matches are processed, all the sequences can be considered
to have the same length. Therefore, the choice of X1 is arbit-
rary, and will not affect the quality of the alignment.

The following example is used to clarify the difference be-
tween a pre-alignment and an alignment, and explain some
concepts involved in the conversion. For simplicity, repro-
duction and mutation are not concerned in the example.

Example:

(i) Three sequences to be aligned:

i. c\ A\ c\ c\ r> cb

2. G] A\ A\ T\ Cj

3. G-; A] Cl T] G] Cl

(ii) Two pre-alignments constructed from the three se-
quences:

G] A* <f> </> <p c \

G\ A\(t> 4>(j> C\

<P <t> T\ C\

{iii) A good pre-alignment generated from the two pre-align-
ments by a crossover operation

G\ A\<p <p Pf Cl

G]A\4><j> Tl C\

G\ A \ <J><PTICI

(iv) An alignment generated from the pre-alignment in (iii)
by discovering a substitution and two insertions.

Cj A\ C\ G\ Tl <p Cl

I I I I I I I

G] A\ A\ <p T] <p C]

I I I I I I I

G] A\C\ <$> Tl Gl Cl

To convert a sequence alignment problem into a search
problem, a search space is defined which is called a pre-
alignment space. A pre-alignment space, denoted as Q, is an
m\ -dimensional space where m\ is the length of sequence X1.
Each position on X1 defines an axis of the space. A pre-align-
ment corresponds to a point in £1 The pre-alignment in equa-
tion (8) corresponds to point

" l . l " 1 . 2 Ml.m

«2 1 "2.2 - «2.m .
W = '

"n.l ",,.2 - Unjn

(9)

A point representation has m\ columns. The /th column
consists of the subscripts in the /th column in equation (8),
and is used as the /th coordinate of co. The pre-alignment in
(iii) of the above example corresponds to the following point:

T ' 2 ' 0 ' 0 ' 5 ?
1 1 0 0 4 5

As illustrated in the above example, for a set of input se-
quences, a group of pre-alignments can be constructed which

568

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm for multiple sequence alignment

correspond to the points in Q. To use a genetic algorithm to
search for a point corresponding to a good pre-alignment, the
points must be represented as genetic strings. In the follow-
ing, the procedure of constructing genetic strings is de-
scribed.

In constructing genetic strings, the match tuples must first
be found. A match tuple is a tuple of subscripts of n matched
subunits with each from an input sequence. For example, the
match tuple for

= = x1;

is

xl = xl = ... = x1;.

(v\j,V2j,...,vnJ)

where v̂ -j are subscripts, k = 1,2,..., n, and 1 < v^ < mk.

The match tuples are grouped into a collection of series which

satisfy conditions (ii) and (iii) in equation (8). In the above

example, two series are formed from the input sequences:

T 2 6 ? 6
1 2 5 4 5 (10)
^ 2 3 , 4 £

In each series, for each position on xK if there is not a
match tuple whose first subscript is equal to the position
number, a tuple of zeros is inserted. We thus generate the
point representation of a pre-alignment. For instance, in the
first series in equation (10), since there are no match tuples
whose first subscripts are 3,4 and 5, three tuples of zeros are
inserted:

1 2 0 0 0 6
1 2 0 0 0 5
1 2 0 0 0 3

(11)

This is the point representation of the first pre-alignment in
(ii) of the example.

Formally, the generation of a point representation from a
series can be expressed as:

V,.2 - , , ,

.. V2

(12)

Vn.\ vn.2 "n . l

where

= K if 3/(i = V,,)

'*' 10 otherwise

and 1 < / < m\, 1 <j < q, and 1 <k<n.

The match tuples in the point representation are then grouped

into match blocks. A match block consists of the largest possible

number of successive match tuples. For example,

T 2
1 2

is a match block in equation (11).

Formally, a match block of length /• is

•ij + i

Hi, W2j "2.1+1
(13)

" / i . i " n . i

such that

Ukj + 1 = ukJ + | , Ukj + \ + I = Ukl + 2 Ulij+r - 2 + I = **•;+; - 1

a n d (M , J - 1, M 2 J - •,•••> M/u - l) r a n d (uu+r _ i + \,U2J+r

_ i + 1 , . . . , uni+i _ i + O^are not match tuples, for k = 1, 2 , n.

To be uniform, isolated single match tuples are also repre-
sented as blocks. Then, we make genetic strings out of match
blocks. A genetic string corresponding to point u) is a string
of match blocks, i.e.:

A -ci\ai ... <7/

where a, is the /th match block in co and 1 <l<nt\.

A block is an indecomposable element in the search pro-
cess. Thus, the order and defining length of a schema should
be calculated in terms of blocks. For a point of a fixed
number of tuples (columns), more tuples of successive va-
lues result in less blocks. The point thus would be of lower
order and shorter defining length. Usually, such a point
represents a good alignment. Recall the discussion in the sec-
tion on 'Concepts, components and operations of a genetic
algorithm', a lower order and a shorter defining length may
increase the probability for the string to survive.

By means of the procedure discussed above, a set of gen-
etic strings can be constructed out of input sequences. They
form the first generation. By applying the genetic operations
of reproduction, cross-over and mutation to the population,
a new generation which contains the same number of hybrid
strings is generated. This process is repeated until a termina-
tion condition is satisfied. The best string in the last gener-
ation is used to make the output pre-alignment.

When applying crossover to two strings, we must check
whether the strings are matable. Two strings are matable at
given cutting positions if the two new strings satisfy condi-
tions (ii) and (iii) in equation (8).

Algorithm parameters

Determining the appropriate population sizes and the muta-
tion position is important in applying genetic algorithms.
This section covers a discussion on the two issues as well as
the condition for terminating the search processes. The fit-
ness function is described.

Fitness function. The fitness value of a string is equal to the
number of match tuples it contains.

Population size. The population size largely affects algo-
rithm performance in terms of convergence and computa-
tional costs. If the size is too small, the risk of falling into a
local maximum becomes high. However, if it is too big, the

569

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

C.Zhang and A.K.C.Wong

fankt qnvllvaqyqfdfglrpsiaytkskakdvegigdvdlvny

fankt qnfeavaqyqfdfglrpslgyvlskgkdiegigdedlvny

fankatqfeavaqyqf sf glrpslgylskgkdieggsqn edlvny

Fig. 1. A 'harmful' element, which is marked by '

computation might be very costly. As Goldberg (1989b) sug-
gested, relatively small population sizes are appropriate for
serial implementations of genetic algorithms and large sizes
are appropriate for parallel implementations.

Since the algorithm is coded as a serial program, we use
small populational sizes. In an alignment task, the population
size is determined when choosing a number of series to form
the first generation. It was observed that of the series, there
exists a small group of strings with high fitness values, while
the rest have much lower values (< 1/10 of the highest). Since
strings of very low fitness values have small probabilities to
survive, we use only the highly fit series to form the first
generation. It is also observed that the number of highly fit
series is proportional to the product of n\, and n, and the
number is usually < 1/100 of the product. For an alignment
task, we choose the population size Q as:

= man/\00 (14)

Selection of mutation positions. Mutation plays an important
role in the algorithm. It is used to remove some 'harmful'
elements from the strings. To pick up such elements, we de-
fine four distances.

For two successive blocks B\ and B?.

»\r "\.r " l . r+1
U2.r + 2

- M , . ,

- " 2 . ,

... «„,

'l.l u\.l+l ... U, w

8, =
_ u2j u2l+2 ... u2w

Un.< ... M n M ,

'where u/r < «o-, uis < utJ, and wu < UJW (;' = 1,..., n).

The average left distance of B2 is."

ALDfl2 =

The average right distance of B\ is:

ARDfi| = ALDfi2

The maximum left distance of B2 is:

MLDe = max(«,,-«u)

The maximum right distance of B\ is:

MRDB = MLD8

(15)

(16)

(17)

For a string selected for mutation, the operation removes
the element which has the largest D value and the D value is
greater than a threshold, where:

D = [(MLD - ALD) + (MRD - ARD)]/L (19)

where L is the length of the element (block).
In most cases, an element with a large D value is a 'harm-

ful' one which prevents the string from mating with others
to generate strings of high fitness values. The string element
'qn' in Figure 1 illustrates such an element.

Termination condition. The termination condition used in
this algorithm stops the search process when the population
has been converged to a string or when there is no change in
the highest fitness value for 10 successive generations.

The procedure

Matching. Finding match blocks is the first step in the align-
ment algorithm. Conceptually, match tuples are first identi-
fied and match blocks are then formed by grouping them.
While in implementing the algorithm, the match blocks are
directly built for improving efficiency. The following is the
procedure for building a match block when a match tuple is
found:.

If ((vij,V2j,..-, vnj) is a match tuple)
Form a new match block which includes (v^ , V2 ;,..., v,,y);

+j, V2; +j,..., vnj + j) is a match tuple)

+ j , >'2j + j,...,vnj + j) to the match block;

(18)

While ((vij
Add (vij

J=j+U
EndWhile

Endlf

The match tuples included in the match block will not par-
ticipate in the subsequent searching for match blocks.

Construction of pre-alignment. Here is the genetic algorithm
for pre-alignment generation. The sequences to be aligned
areX1,X2,..., andX" which have lengthsm\, mi,..., andmn ,

respectively. The output is pre-alignment X^if X^W'... tfXn.

procedure PRE-ALIGN (Input: X1, X2,...JC; Output: Xlif X2tf...

tfX")
begin
1. Find match blocks from X1, X2,, and X".
2. Create genetic strings from the match blocks (/ - number of match

blocks, J - number of strings):
7 = 0

570

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm for multiple sequence alignment

For i = 1 through / do
For j = 1 through J do

If (Aj satisfies conditions (ii) and (iii) in (8) after inserting B,

into it)
Insert B,- into Ay,

Quit the inner loop;
Endlf

EndFor

If (Bj is not inserted)
J = J+ 1;
Create Aj to contain B,;

Endlf
EndFor

3. Form the first generation of string population

&=\AUAI,...,AQ\

where A, (i: = 1,2 , Q) are the genetic strings of the highest fitness
values and Q is the population size.

4. Apply reproduction to G' where / denotes generation number (/ = 0,

1,...).
For / = 1 through Q do

Calculate the fitness value for Aj e C ;
Determine the number of duplicates for A, using
Equation (4);
If (the number is greater than or equal to 1)

Duplicate Aj and place the duplicate(s) into matepool M';

Endlf
EndFor

The matepool is M' = {A'\, A'2,..., A'Q) where A', (1 < / < Q) is
duplicated from a string in G'.

5. Apply mutation to M'\

Calculate the number of element(s) to be mutated;
Randomly select strings for mutation;
In each selected string, determine the mutation position using
(15)—(19), and remove the element at the position;

6. Apply crossover to M' to generate G'+ ':
While (There are strings in M' to mate) do

Randomly select Aj and Aj from M'\

Randomly select cutting positions on A, and Aj,

If (Af and Aj are matable at the positions)
Perform crossover on Aj and Aj to create two new strings;
Replace Aj and Aj with the new strings;

Endlf
EndWhile
G'+ ' = M'\

7. If the termination condition is not satisfied,
Go to step 4.

8. Select the best string from the population.
9. If there exist substrings of successive zeros longer than ma/20 in the
best string

Call PRE-ALIGN to align the substrings.
10. Produce X1 W X2 W... W X" from the selected string.
end procedure

From the procedure and the description in the previous sec-
tion, it can be observed that the genetic algorithm developed
in this research deviates from a standard one. The major devi-
ations are in the string coding and the selection of mutation
position. The use of match blocks as string elements instead
of binary digits is more expressive and efficient. Besides, the

strings in a population may be of different lengths and this
makes generating highly fit pre-alignments possible. In this
algorithm, mutation positions are selected by using a set of
distances [equations (15)—(18)], such that some harmful el-
ements can be removed. Mutation operation plays a very im-
portant role in the new method.

Construction of alignment. This subsection describes the
second step in multiple sequence alignment, i.e. identifying
mismatches.

A pre-alignment is a series of match blocks and there exists
a gap between every two adjacent blocks. A gap consists of
one or more tuples of cp, which represent subunits missing
from the pre-alignment. In constructing an alignment from
a pre-alignment, we use the missing subunits to fill the gaps
between match blocks. For every two adjacent match blocks,
we do the following:

1. Find the missing subunits from the input sequences
which should be in the gap.

2. Find sequence X' which has the maximum number of
such subunits (1 <i<n).

3. Fill row / of the gap of the pre-alignment with the sub-
units of X'.

4. Fory = 1 through n and j * /'

Place the missing subunits xJ
u , xJ „ 2 , . . . , .v7,, at

the lower end of the gap in row j ;

For k = s down to 1.

Move i , to the column of x'.. in the free

space, such that F(x'u ,.v',,) is the maximum for

all the subunits of X' in the free space:
EndFor

EndFor

The following are the evaluation functions F for protein,
DNA and RNA. The matrix in equation (20) is the function
for evaluating the scores between amino acids, in which A

= {cs,t,p,a,g,n,d,e,q, h, r, k, m, i, I, v,/,y,w}. An asterisk
in the matrix represents a negative integer and -1 is used in
this paper for gap penalty. The scores, except those for (p, are
from the SG (Structure-Genetic) Matrix (Feng et al., 1985).
According to Feng, this scoring system has taken into ac-
count the structure similarity of amino acids, as well as the
likelihood of interchanges. The function for evaluating the
scores between DNA or RNA nucleotides is given in equa-
tion (21), in which A = [a g,c,t) for DNA and A= [a g,

c, u} for RNA. The scores, except the diagonal ones, are from
Chan (1990).

Note that the evaluation functions are used in handling the
mismatches between match blocks and in calculating the
scores of the final alignment results, while the fitness func-
tion for the genetic algorithm is defined as the number of
match tuples contained in a pre-alignment.

571

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

C.Zhang and A.K.C.Wong

c s I p a i> n d e q h r k m i I v f v
* * * * * * * * * * * * * * * * * * *

6 4 2 2 2 3 2 1 0 1 2 2
6 5 4 5 5 5 3 3 3 3 3

6 4 5 2 4 2 3 3 2 3
6 5 3 2 2 3 3 3 3

3

0 2 2 2 2 3 3

6 5 3 4 4 3 2 2
6 3 4 4 2

6 5 3 3 4 2

6 5 4 3 2

6 4 2 2
6 4 3

6 4

3 1
4 3
2 2

3 2
2

2 2 2 3 3 2

2 3 1 2

1 3 2 1
4 I
3 0
4 1
4

3 1
5 2
6 2

6

2 1 2 2

2 3
2 2
2 2
2 1
1 I
1 1

2

3 2 2 2

5 2 2 2
4 1 2
2 1 3
3 1 2

4 0 1
1 1 2

1 3
2 2
2 2
4 5
6 5

6

1 2 3
2 1 1
3 0 1
4 2 2
5 4 3
5 4 3
6 4 3

6 5
6

(20)

<p a g c t(u)

<j> 0 0 0 0 0

a 6 1 1
g 6 1

c 6
t(u)

(21)

Algorithm complexity

In this subsection, the algorithm complexity is analyzed in
terms of computing time and memory space. The complexity
is compared with pairwise dynamic programming which is
the basis of many existing alignment approaches.

The time complexity of the genetic algorithm can be esti-
mated using a model developed by Ankenbrandt (1991),
which is based on the schema theorem for genetic algorithms
(Goldberg, 1989a). As Ankenbrandt formulated and proved,
the time required for a genetic algorithm to converge is:

O(Q log Q) (22)

where Q is the population size. That is, there exist constants
Co and Qo such that the time required is CQ • (Q log Q) for all
Q > Qo- For a specific task, the time is affected by string
lengths and the fitness ratio which is defined as:

(23)

where / ' is the average fitness of the strings which have par-
ticular symbols at certain positions and / " is the average
fitness value of all the other strings in the population. It will

be seen in the section 'Results of aligning a protein sequence
set' that equation (22) fits well with the experimental results.

Since Q = manl 100 (see the discussion in the previous sec-
tion 'The procedure') we have:

Q log Q = log(/?v?/100)

When using a dynamic programming method to align two
sequences of length m\ and mi, the computing time is
0(m\n\2). When the two sequences have similar lengths, we
use ma, the average length, to approximate them. We can thus
estimate the time as O(nfy. In aligning n sequences, pairwise
dynamic programming involves at least (n — 1) times of two-
sequence alignment. Assuming the n sequences are of simi-
lar lengths, the computing time can be estimated as:

0[m2
a(n - 1)] (24)

Pairwise dynamic programming has greater time complex-

ity than the genetic algorithm: For/? > 2 and n <C ma, we have:

ma-
(n-l)l(X)

nf-{n-\)

(w,,»/100)log(wu/7/100)

log(m(,/i/100)

log(m,,/?/100)
(25)

> 1

which indicates that the longer the sequences, the greater the
ratio.

The major data structure of the genetic algorithm is a two-
dimensional array which is used to store G (population) and
M (matepool). The array is of size /maxG where /max is the
maximum length of the strings and Q is the population size.
When Q - man/100, the total memory space required for the
array is /max/?vj/100. Recall that the length of a string is the
number of match blocks. In most cases, we have /max C «?o

and n < 100. The requirement for memory can be satisfied
by most computer systems.

Experimental results

In the rest of the paper, we use 'the genetic algorithm' to refer
to the whole algorithm for constructing pre-alignments and
alignments. The algorithm has been implemented as a C pro-
gram and applied to align several sets of molecular sequence
data. The results are encouraging in terms of time efficiency
and alignment quality. In the following, the results of align-
ing sequences in a protein data set, an mRNA data set and 11
other DNA or RNA data sets are presented and analyzed.
Also, the results are compared with those obtained by using
CLUSTALW, a most widely used program for multiple mol-
ecular alignment (Thompson et ai, 1994). The experimental
results have shown that the genetic algorithm is dramatically
more efficient.

572

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm Tor multiple sequence alignment

Table 1. Time and quality measurements of the alignments of the protein data set by the two programs

No. of sequences Average length Methods Processing time No. of matches ScoreG ScoreC

335

333

336

338

341

341

341

G

C

G

C

G

C

G

C

G

C

G

C

G

C

0s312ms

8s524ms

0s499ms

I4s257ms

0s764ms

21s860ms

0s876ms

29s881ms

lsl20ms

39s 12ms

1 s344ms

46s 125ms

ls390ms

53s663ms

208

211

191

189

187

187

153

155

148

151

139

145

139

143

1505

1687

5048

5224

10 279

10 654

15 539

16 936

23 425

25 081

32 625

34 836

43 708

46 457

1184

1312

4149

4320

8785

9207

11 817

14 176

16 980

21 625

23 148

28 014

31 346

37414

Results of aligning a protein sequence set

The protein data set has eight sequences of bacterial porin
(Jeanteur et al., 1991). The lengths of the sequences range
from 329 to 347 subunits. This data set is discussed because
the alignment results can be presented in detail. Alignments
of longer sequences (up to 12 000 subunits long each) will
be discussed later.

The genetic algorithm was used to align two, three,... and
eight of the protein sequences. The processing time and qual-
ity measurements of the results are listed in Table 1. Two
types of scores, ScoreG and ScoreC (to be discussed later),
are used to evaluate alignment quality. CLUSTALW was ap-
plied to the same data for comparison. The time and quality
measurements of its results are also listed. In the table, as well
as in the following discussion, we use 'G' to indicate the gen-
etic algorithm and ' C to indicate CLUSTALW.

The 'processing time' listed in Table 1 is elapse time
measured when the program, i.e. the genetic algorithm or
CLUSTALW, was the only one executed on the computer.
For the genetic algorithm, this includes the time required for
the steps from finding match blocks to constructing the align-
ments and evaluating the scores (ScoreG). For CLUSTALW,
this includes the time for pairwise alignment, multiple align-
ment and evaluation of quality.

The 'number of matches' is the number of tuples of:

(A'') e

such that

'ScoreG' and 'ScoreC in the table are goodness measure-
ments of alignments. The two programs use different scoring
systems for aligning sequences. For the purpose of compari-
son, the alignments by a program are also evaluated by using
the other's scoring system (time for the 'mutual' evaluation
is not included in the processing time).

'ScoreG' is calculated using the following formula:

ScoreG = Z,- = jt (̂.v,, . A) (26)

= X2 = =
A " 2 . , • • •

where m is the length of the alignment, 1 <j<n, 1 < k < n.

j < k, n> 2, and F is a function for evaluating the score be-
tween any two characters. The evaluation function F for pro-
tein, DNA and RNA is defined in the matrixes of equations
(20) and (21), respectively.

'ScoreC is calculated by using the evaluation method of
CLUSTALW. The evaluation function for calculating scores
of 'ScoreC is equation (27) in the Appendix. Gap penalties
of this scoring system are not included in the matrix. Details
of the gap definition and the gap penalty can be found in the
article by Thompson etal. (1994). When using CLUSTALW,
we choose 10 as gap penalty.

Table 2 lists the ratios of the measurements of the genetic
algorithm over those of CLUSTALW from Table 1. The fol-
lowing facts can be observed from the alignment results of
the two programs.

The processing time required by the genetic algorithm is
about two orders lower than the time required by CLUS-
TALW. As the number of sequences increases, the proces-
sing time required by both programs increases. However, the
difference in processing time between the two programs also
increases. This is indicated by the decrease in the ratios of the
processing time.

573

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

C.Zhang and A.K.C.Wong

Table 2. C/C ratios of the measurements in Table 1. The columns marked

with an asterisk contain the ratios

No. of

sequences

2

3

4

5

6

7

8

Average

Processing

time*

3.7 x 10-2

3.5 x 10-2

3.5 x 10-2

2.9 x 10-2

2.9 x 10-2

2.9 x 10-2

2.6 x 10-2

3.1 x 10-2

No. of

matches*

0.99

1 01

1.00

0.99

0.98

0.96

0.97

0.99

ScoreG*

0.89

0.97

0.97

0.92

0.93

0.94

0.94

0.94

ScoreC*

0.90

0.96

0.95

0.83

0.79

0.83

0.84

0.87

The number of matches identified by the genetic algorithm
is no less than 96% of the number by CLUSTALW. On aver-
age, the number of matches identified by the genetic algo-
rithm is 99% of those by CLUSTALW. Overall, the align-
ments by the two programs have very similar numbers of
matches.

The scores of the results by using the genetic algorithm are
slightly lower. On average, the ratio in ScoreG is 94% and in
ScoreC is 87%. Since ScoreG and ScoreC are implemented
in the two programs, respectively, there would be some ad-
vantages when the alignments generated by one program are
evaluated by the original scoring system. Thus, the actual
performance difference of the two programs should be
evaluated as the average of the two ratio averages, which is
-90%.

Figures 2 and 3 illustrate the eight protein sequences
aligned by the two programs. For easy comparison, the align-
ments are subdivided into successive segments, with each
containing 60 subunits of the first sequence. An asterisk is
used to indicate a match. It can be observed that both
methods have correctly identified most of the matched sub-
units and discovered the overall relationships between the
sequences. The alignment generated by the genetic algo-
rithm is slightly less compact than that by CLUSTALW. The
former has six more columns.

It can be noticed that in the alignment generated by the
genetic algorithm, there is not any long match block. The
longest match block is seven subunits long. In aligning this
kind of sequence, the genetic algorithm has to deal with a
large number of short match blocks (shorter than or equal to
three subunits). This is a relatively time-consuming task for
a genetic algorithm because short match blocks usually lead
to a large number of long strings. Searching with long strings
requires more time, even though the genetic algorithm is still
much more efficient and achieves reasonably good results.
As will be seen in the following two subsections, when se-

quences have long match blocks, the genetic algorithm is
more advantageous than CLUSTALW in terms of efficiency.

When aligning all the eight sequences in the data set, 49
pre-alignment series were created and 24 of the series were
used to form the first generation. The search process stopped
at the 46th generation. Figure 4 illustrates the maximum
numbers of matches in the generations, which may help un-
derstand the search towards the final result. The maximum
number in a generation is the number of matches in the string
which is the most fit.

Results of aligning an mRNA sequence set

The mRNA data set has 10 sequences, each of which has a
length of-12 000 subunits. In this subsection, the results of
aligning the 10 mRNA sequences of different lengths by the
two programs are presented and compared in terms of pro-
cessing time and alignment quality. The ratios of the
measurements are also presented. Then the time required by
the genetic algorithm to align different numbers of sequences
is presented.

Table 3 lists the processing time and the quality measure-
ments of the alignments from the 10 sequences. Table 4 gives
the ratios of the measurements. The alignments were ob-
tained from subsequences of different lengths. For example,
length '1000' indicates the first 1000 subunits of the 10 se-
quences. The CLUSTALW method is not able to align se-
quences longer than 9000 subunits.

For this data set, the genetic algorithm produces align-
ments of very similar quality as CLUSTALW in terms of the
number of matches and the scores. The difference in time
efficiency is even bigger. For instance in aligning the 10 se-
quences of length 9000, while CLUSTALW took >14 h to
produce a result which has 61 (0.85%) more matches, the
genetic algorithm spent only 1 min and 11 s to align the se-
quences. In analyzing this set of results, the following facts
can be observed.

The average processing time taken by the genetic algo-
rithm to align the 10 sequences of different lengths is ap-
proximately three orders lower than the time taken by
CLUSTALW. As the length of the 10 sequences increases,
the processing time required by the genetic algorithm in-
creases, but the difference in processing time between the
two programs also increases. This is also indicated by the
decrease of the ratios in processing time: when the length
increases from 1000 to 9000, the ratio in processing time de-
creases from 9.0 x 10~3 to 1.4 x 10~3.

The averages of the ratios in number of matches is 1.00.
The averages of the ratios in ScoreG and ScoreC are 1.00 and
0.97, respectively, and the average of these two is 0.99. Over-
all, the genetic algorithm is able to generate alignments of
very similar quality in about 1/1000 of the time required by
CLUSTALW.

574

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm for multiple sequence alignment

** *** ** * ** ** * ** * * •

aeiynkdgnkvdlygkavglhyfskgngensyggngdatyarlgfkgetqinsdltgygq

aeiynkdgnkldvygkvkamhyms-dn—as—kdgdqsyirfgfkgetqindqltgygr

aevynknankldvygkikamhyfs dyds—kdgdqtyvrfgikgetqinedltgygr

aevynkngnkldvygkv-kmhyis dddtkdgdqtyvrfgfkgetqindqltgygr

aevynkdgnkldlygkvdglhyfs dn-kdvdgdqtymrlgfkgetqvtdqltgygq

aeiynkdgnkldlfgkvdglhyfsddkg—s dgdqtymrigfkgetqvndqltgygq

aeiynkdsnkldlygkvnakhyfs sn-daddgdttyarlgfkgetqindqltgfgq

aeiynkdsnkldlygkvnakhyfs sn-daddgdttyarlgfkgetqindqltgfgq

* * * * * * **** ** * *** *• * ** ** ****

veynfqgnnsegadaqtgnktrlafag—lkyadvgsidyg rnygvvyydalgytdmlpefg

weaefagnkaesdtaq—qktrlafag—lkykdlgsfdyg rnlg-alydveavtdmfpefg

wesefsgnktesdssq ktrlafagvklk—nygsfdyg rnlg-alydveavtdmfpefg

weaefagnkaesdssq ktrlafaglklk—dfgsldyg rnlg-alydveavtdmfpefg

veyqiqgnsae nennswtrvafag—lkfqdvgsfdyg rnygvv-ydvtsvtdvlpefg

veyqiqgnqteg sndsvtrvafag—lkfadagsfdyg rnyg-vtydvrsvtdvlpefg

weyefkgnrae-sqgsskdkyrlafag—lkf g—dygsidygrayg-vaydigawtdvlpefg

weyefkgnrae-sqgsskdkyrlafag—lkf g—dygsidygrayg-vaydigavtdvlpefg

* * * * * ***** *** *** ** *** **** * *

gdtaysddff-vgrvggvatyrasnffglvdglnfavqylgkn—erdtarrs ngdgvggsis

gdssaqtdnfmtkrasglatyrntdffgvidglnltlqyqgknen rdv kiqngdgfgtslt

gdssaqtdnfmtkrasglatyrntdffglvdgldltlqyqglni—egre v kkqngdgvgtsls

gdssaqtdnfmtkrasglatyrntdffgaidgldmtlqyqgkn e n-rdakkqngdgfgtslt

gdt-ygsdnfmqqrgngyatyrntdffglvdgldfalqyqgkngnpsgegftsgv-taingrdalrqiigdgvggsit

gst-ygadnfmqqrgngyatyrntdffglvdgldfalqyqgkngsvsgentngrsUn qngdgyggslt

gdtwtqtdvfmtgrttgfatymndffglvdglnfaaqyqgkn-drs—df-dnyt-eg ngdgfglsat

gdtwtqtdvfmtqratgvatyrnndffglvdglnfaaqyqgkn-drs—df-dnyt-eg ngdgfgfsat

* ** * * ******* **** *

yeyeg-fgiv-gaygaadrtlnq-ea-qpl gngki-aeqwatglkydanniylaanygetrnatp

ydfggsdfaisgaytnsdrtneq-nlqsrgtgkra—ea—watglkydanniylatfysetrkmtp

ydfggsdfavsaaytssdrtndq-nllargqgska ea—watglkydanniylatmyset-rkmt

ydfggsdfavsgaytnsdrtnaq-nllargqgqka ea—watglkydandiylaamyset-rnmt

ydyeg—fgiggaissskrtdaqnta ayigngdraetytgglkydanniylaaqytq tyn

yaigegfsvggaitt-skrtadqnn—tanarlygngdratvytgglkydanniylaaqysqtnatrf

yeyegfgigatya—ksdrtdtqvnagkvlpevfasgknaewaaglkydanniylattys etqn

yeyegfgigatya—ksdrtdtqvnagkvlpevfasgknaevwaaglkydanniylattys etqn

*** * ****** ****** * ** * * **

itnkftn—ts-gfanktqdvllvaqyqfdfglrpsiaytkskakd—veg—igdvdlvnyfevga

it—g gfanktqnfeavaqyqfdfglrpslgyvlskgkdi-egigdedlvnyi dvga

pis-g gfankaqnf eavaqyqfdfglrpslgyvlskgkdi-egvgsedlvnyi dvgl

pis-g gfankaqnfevvaqyqfdfglrpslgyvqskgkd-legigdedlrayi dvga

atrvg slgvankaqnfeavaqyqfsfglrpslaylqskgk—nlgrg—yddedilkyvdvga

gtsngsnpstsygfankaqnfevvaqyqfsfglrpsvaylqskgkdisngygasygdqdivkyvdvga

mt vfadhfvankaqnf eavaqyqfdfglrpsvaylqskgkd lg-wgdqdlvkyvdvga

mt vf adhvankaqnf eavaqy qf df glrps vaylqskgkd lg-wgdqdlvkyvdvga

*** ***** * * ** ** * ***

tyy-fnknmstyvdyiinqidsdnklgvgsddt vavgivyqf
tyy-fnknmsafvdykinqld-sd-nk-lninnddivavgmtyqf
tyy-fnknmdafvdykinql-ksd-nk-lgindddivalgmtyqf
tyy-fnknmsafvdykinqid-dd-nk-lgvndddivalgmtyqfnytqinaasvglrhkf
tyyyfnknmstyvdykinllddnqftrdagintdnivalglvyqf
tyy-fnknmstyvdykinlldkndftrdagintddivalglvyqf
tyy-fnknmstfvkykinlldkndftkalgvstddivavglvyqf
tyy-fnknmstfvkykinlldkndftkalgvstddivavglvyqf

Fig. 2. Alignment of eight protein sequences by the genetic algorithm. An asterisk is used to indicate a match.

575

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

C.Zhanj! and A.K.C.Wong

* * * *****

aeiynkdgnkvdlygkavglhyf skgngensyggngdaityarlgfkgetqinsdlTgygq

aeiynkdgnkldvygkvkamhymsdnaskd gdqsyirfgfkgetqindqltgygr

aevynknankldvygkikamhyfsdydskd gdqtyvrfgikgetqinedlcgygr

aevynkngnkldvygkvk-mhyisdddtkd gdqtyvrf gfkgetqmdqltgygr

aevynkdgnkldlygkvdglhyfsdnkdvd gdqtymrlgfkgetqvtdcltgygq

aeiynkdgnkldlfgkvdglhyfsddkgsd gdqtymrigfkgetqvndqltgygq

aeiynkdsnkldlygkvnakhyfssndadd gdttyarlgfkgetqindqltgfgq

aeiynkdsnkldlygkvnakliyf ssndadd gdttyarlgfkgetqindqitgfgq

* * * * * * •*** * ** ***** * *• ** •*•*

veynf qgnnsegadaqtgnktrlafaglkyadvgsfdygmygvvyydalgytdzlpefg

ueaefagnkaesdt—aqqktrlafaglkykdlgsfdygrnlg-aiydveavtdrfpefg

wesefsgnktesd ssqktrlafagvklknygsfdygmlg-alydveavtd=fpefg

ueaefagnkaesd—ssqktrlafaglklkdfgsldygralg-alydveavtdzrpefg

veyqiqgrsaenen-ns—wtrvafaglkf qdvgsfdygrayg-wydvtsvtdTlpefg

ueyqiqgnqtegsn-ds—wtrvafaglkfadagsfdygrnyg-vtydvrswtdTlpefg

veyefkgaraesqg-sskdkyrlafaglkfgdygsidygrnyg-vaydigavtdvlpefg

veyefkgnraesqg-sskdkyrlafaglkfgdygsidygrnyg-vaydigawtd-lpefg

gdt-aysddffvgrvggvatyrnsnf fglvdglnf avqylgknerdtarr sngdgvggsis

gdssaqtdnfmtkrasglatyrntdffgvidglnltlqyqgloienxdvkk qngdgfgtslt

gdssaqtdnfmtkrasglatyrntdf f glvdgldltlqyqgknegrevkk qngdgvgtsls

gdssaqtdnfmtkrasglatyratdf f gaidgldmtlqyqgknenrdakk qngdgfgtslt

gdtygs-dnfmqqrgngyatyrntdffglvdgldf alqyqgkngnpsgegftsg-r:aiigrdalrqngdgvggsit

gstyga-dnfmqqrgngyatyrntdffglvdgldfalqyqgkngsvsge atngrsllnqngdgyggslt

gdtutqtdvfmtgrttgfatyrnndffglvdglnfaaqyqgkndrsdfdn yteg ngdgfgfsat

gdtvtqtdvfmtqratgvatyrnndffglvdglnfaaqyqgkndrsdfdn jteg ngdgfgfsat

• • *+ * * * ******* **** * * *

yeyeg—fgivgaygaadrtlnqe aqplgngkkaeqwatglkydanniylaanygetrnatp

ydfggsdfaisgaytnsdrtneqn lqsrgtgkraeavatglkydanniylatfysetrkmtp

ydfggsdfavsaaytssdrtndqn llargqgskaeawatglkydannijlatmysetrkmtp

ydfggsdfavsgaytnsdrtnaqn liargqgqkaeawatglkydandiylaamyset rnmtp

ydy—egfgiggaissskrtdaqn taayigngdxaetytgglkydanniylaaqytqtynatr

yaig-egfsvggaittskrtadqnnt—anarlygngdratvytgglkydanniylaaqysqtn-atr

yey—egfgigatyaksdrtdtqvnagkvlpevf asgknaevwaaglkydanni-lattysetqmntv

yey—egfgigatyaksdrtdtqvnagkvlpevfasgknaevyaaglkydanniylattysetqnmtv

ltnkftnt sgf anktqdvllvaqyqfdfglrpsiaytkskakd vegigdvdlvnyfevga

it ggf anktqnfeavaqyqfdfglrpslgyvlskgkd legigdedlvnyidvga

is ggfankaqnfeavaqyqfdfglrpslgyvlskgkd iegvgsedlvnyidvgl

is ggfankaqnfevvaqyqfdfglrpslgyvqskgkd legigdedlvnyidvga

vgs lgwankaqnfeavaqyqf sf glrpslaylqskgk nlgrgrddedilkyvdvga

fgtsngsopstsygf ankaqnf evvaqyqf sf glrpsvaylqskgkdisngygasvgdqdivkyvdvga

1 adhf van kaqnf eavaqyqf df glrpsvaylqskgkd lgv-vgdqdlvkyvdvga

fadhvan kaqnf eavaqyqf df glrpsvaylqskgkd lgv-vgdqdlvkyvdvga

* ******* * * ** * ** * ***

t-yyfnknmstyvdyimqidsd nklgvgsddtvavgivyqf

t-yyf nknmsaf vdykmqldsd nklninnddivavgmtyqf

t-yyfnknmdafvdykinqlksd nklgindddivalgmtyqf

t-yyfnknmsafvdykinqiddd nklgvndddivalgmtyqfnytqinaasvglrhkf

tyyyfnknmstyvdykmllddnqf trdagintdnivalglvyqf

t-yyfnknmstyvdykinlldkndftrdagintddivalglvyqf

t-yyfnknmstfvkykinlldkndftkalgvstddivavglvyqf

t-yyf nknmstfvkykmlldkndftkalgvstddivavglvyqf

Fig. 3. Alignment of the same protein sequences by CLUSTALW.

576

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm for multiple sequence alignment

Table 3. Time and quality measurements of the alignments of the mRNA data set by the two programs

Length Methods Processing time No. of matches Scored ScoreC

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 000

11 000

12 000

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

5s092ms

9m24s352ms

14s461ms

37m50s329ms

24s276ms

lhr25m46s520ms

31s552ms

2hr41m30s783ms

43s679ms

4hrl7m53s542ms

48s344ms

6hr25ml6s070ms

55s757ms

8hr41m23s699ms

lm04s230ms

HhrO4m55s431ms

lml0s844ms

14hr03ml3s902ms

Iml7s227ms

NA

Im23s472ms

NA

Im28s797ms

NA

797

797

1504

1508

2319

2322

3130

3143

3922

3877

4700

4732

5544

5587

6328

6383

7205

7266

8038

NA

8906

NA

9627

NA

257 766

257 813

501 230

501 539

758 391

759 854

1 012 239

1 015712

1 286 592

1 265 871

1 512 500

1 522 469

1 776 488

1 784 108

2 030 002

2 040 507

2 285 279

2 300 673

2 547 223

NA

2 806 860

NA

3 028 626

NA

284 173

288 591

545 930

556 687

807 544

828 861

1 086 277

1 116731

1 372 633

1 390 669

1 600 349

1 659 179

1 896 154

1 956 777

2 164 507

2 237 351

2 421 534

2 512 553

2 715 173

NA

2 990 517

NA

3217619

NA

Table 4. G/C ratios of the measurements in Table 3. The columns marked
with an asterisk contain the ratios

The genetic algorithm has been used to align two, three,...,
and 10 of the mRNA sequences. For a given number of se-
quences, the algorithm was applied to subsequences of dif-
ferent lengths. Figure 5 illustrates the relationship between

140

130 -•

Length

1000

2000

3000

4000

5000

6000

7000

8000

9000

Average

Processing

time*

9.0 x 10-3

6.4 x 10-3

4.7 x 10-3

3.3 x 10-3

2.8 x 10-3

2.1 x 10-3

1.8 x 10"3

1.6 x 10-3

1.4 x 10-3

3.7 x 10-3

No. of

matches*

1.00

1.00

1.00

1.00

1.01

0 99

0.99

0.99

0.99

1.00

ScoreG*

1.00

1.00

1.00

1.00

1 02

0 99

1.00

0.99

0.99

1.00

ScoreC*

0.98

0.98

0.97

0 97

0.99

0.96

0.97

0.97

0.96

0.97

8 120

if
m

a
tc

h

o

* 100
E
| 90

| 80

70

60

Fig. 4.

20 30
Generation

Fig. 4. Maximum numbers of matches in the generations.

computing time and sequence length. Each curve is for a
given number of sequences. By comparing the curves with
the complexity model of Q log Q or mn log(wn) of the section
"Algorithm complexity', it can be observed that the model
fits well with the experimental results.

577

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

CZhang and A.K.C.Wong

Results of aligning other sequence sets

In addition to the protein and the mRNA data sets, the genetic
algorithm has been applied to many other data sets and satis-
factory results have been obtained.

In this section, the results of using the genetic algorithm to
align 11 other data sets are presented and compared with
those by CLUSTALW. The sequence data sets are from the
ftp site of the European Bioinformatics Institute. IDs of the
sequences are listed in the Appendix. Of the 11 sequence
sets, four are DNA and seven are RNA. The minimum aver-
age length is 212 and the maximum is 4582. Table 5 lists the
processing time and the quality measurements. Table 6 gives
the ratios of the measurements. With the 11 data sets, the
genetic algorithm also produced alignments of very similar
quality to CLUSTALW. Its processing time is approximately
two orders lower. The averages of the ratios in the number of
matches is 0.98. The average of the ratios in ScoreG and Sco-
reC are 0.98 and 1.00, respectively, and the average of the
two is 0.99.

An important character of the genetic algorithm can again
be observed by examining this group of experimental results.
The processing time of the genetic algorithm is not simply
proportional to the number and the length of the sequences
aligned. Instead, it is heavily dependent on the sizes of match
blocks and the number of match blocks in a given length of

2000 4000 6000

Length
8000 10000 12000

Fig. 5. Processing time versus sequence length (for the genetic

algorithm method). The curves from the bottom to top are for two,

three,..., and 10 sequence alignments, respectively.

sequences. Higher efficiency is closely related to the exist-
ence of longer match blocks and thus a smaller number of
match blocks. The processing time increases proportionally
with the increase in the sequence lengths and the number of
sequences only in situations where the sizes and the number
of match blocks in a given length of the sequences are similar
(as in the cases of the protein and the mRNA data sets).

Table 5. Time and quality measurements of the alignments of other DNA and RNA data sets by the two programs

Data set No. of sequences Average length Methods Processing time No. of matches ScoreG ScoreC

SI

S2

S3

S4

S5

S6

S7

S8

S9

S10

Sll

10 211

1780

2433

1437

1680

4582

1093

1071

1456

1448

1092

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

G

C

0s215ms

27s 113ms

6s 194ms

13m8s776ms

0s983ms

18m28s 150ms

17s943ms

15m38s568ms

10s685ms

21m5s898ms

0s784ms

Ihr4m58s781ms

4s394ms

5ml2s948ms

3s782ms

8m35s650ms

8s553ms

Ilm21s416ms

6s265ms

13m22s264ms

4s281ms

5m3s838ms

198

197

1553

1611

2303

2305

804

901

1420

1439

4332

4409

894

905

999

999

1046

1118

1179

1193

840

855

56 491

56 491

101 507

103 018

85 615

85 701

196 746

210317

269 432

269 092

159 532

160 860

60 153

60 719

176 665

176 665

116 221

120 534

170 552

172 756

57 682

60 100

71 847

69 010

120 763

115 785

104 867

104 149

191 880

226 516

291 406

303 390

180 620

182 475

75 516

73 280

227 985

216 359

139 681

142 237

211 327

206 195

68 951

71 361

578

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm for multiple sequence alignment

Table 6. G/C ratios of the measurements in Table 5. The columns marked with an asterisk contain the ratios

Data set

SI

S2

S3

S4

S5

S6

S7

S8

S9

S10

Sll

Average

No. of sequences

10

5

4

8

8

4

5

8

6

7

5

Average length

211

1780

2433

1437

1680

4582

1093

1071

1456

1448

1092

Processing time*

7.92 x 10"3

7.85 x 10"3

8.87 x 10"4

1 91 x 10"2

8.44 x 10"3

2.01 x 10-4

1.40 x 10"2

7.33 x 10~3

1.26 x 10"2

8.03 x I0"3

1.41 x 10-2

9 13 x 10"3

No of matches*

1 00

0.96

1.00

0.89

0.99

0.98

0.99

1.00

0.94

0.99

0.98

0.98

ScoreG*

1.00

0.99

1.00

0.94

1.00

0.99

0.99

1.00

0.96

0.99

0.96

0.98

ScoreC*

1.04

1.04

1.01

0 85

0.96

0.99

1.03

1.05

0.98

1.02

0.97

1.00

Compare the results of S4 and S5. Both data sets have eight
sequences each, and S4 has an average length of 1437, while
S5 has 1680. The processing time for the genetic algorithm
to align S4 is -18 s and the time for S5 is ~11 s. Different
from CLUSTALW, the genetic algorithm spent a longer time
on the shorter sequence data set. Compare the results of S9
and SI 0. Both data sets have sequences of approximately the
same length. S9 has six sequences and S10 has seven. The
processing time for the genetic algorithm to align S9 is ~9 s
and the time for S10 is ~6 s. Again, different from CLUS-
TALW, the genetic algorithm spent a longer time on the data
set with the smaller number of sequences. A similar phenom-
enon is also observed in comparing the results of S7 and S8.

Examine the data set pairs again. The ratios of the number
of matches over the sequence length may shed some light on
the relationship between the string length and efficiency. For
instance, S4 has a ratio of 56.0% and S5 has a ratio of 84.5%.
Thus, it is more likely that there exist more longer match
blocks in the alignment of set S5 than S4, and therefore the
genetic algorithm could spend less time aligning S5. Similar
situations can also be found in the alignments of S7 and S8,
as well as of S9 and SI0.

Discussion

The experimental results indicate that the major strength of
the genetic algorithm is its high efficiency in computing time.
This strength is especially significant when aligning the long
sequences. For the same sequences, while a conventional
method, for example, one based on pairwise dynamic pro-
gramming, may require hours to align, the genetic algorithm

may produce results of similar quality within a few minutes
(even seconds).

At the present stage, we do not expect the algorithm to be
superior to the existing multiple molecular sequence align-
ment approaches in every aspect. However, the initial experi-
ments have shown that merely with a very simple fitness
function, a genetic algorithm could yield alignments of good
quality. Being able to identify match columns in alignments
at high speed, the genetic algorithm approach has good po-
tential which enables us to incorporate other techniques or
other criteria for processing the intervals between match col-
umns to achieve higher quality efficiently.

The additional advantages of the genetic algorithm include
simultaneousness, automated processing, easy implementa-
tion and a simple data structure. The algorithm does not need
any extra interactions, e.g. grouping sequences, selecting
subsequences, or shuffling alignments. No pre-processing,
such as creating a tree or calculating the distances, is re-
quired. Using the algorithm does not need any specific
knowledge about species origins, sequence structures, and so
on. The implementation involves coding the three simple
operations only, and requires a one-dimensional array of
strings.

The alignments generated by the genetic algorithm have
correctly identified the majority of the one-to-one correspon-
dence between the sequences aligned, although it is not guar-
anteed that the alignments are optimal. Such alignments are
acceptable for many applications. With the strength of high
efficiency, genetic algorithms are very promising to become
useful tools for multiple sequence alignment in applications
which do not strictly require the optimal alignments.

579

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

CZhang and A.K.C.Wong

Appendix

An evaluation matrix ofCLUSTALW

a
c

d
e

a
5

- 1
- 2
- 1

c

12
- 3
- 3

a

7
2

/ g

f - 2 - 2 - 4 - 3 8

0 - 3 - 1 - 2 - 3 7

/? - 2 - 3 0 0 - 2 - 2 10
/ - 1 - 3 - 4 - 3 0 - 4 - 3 5
Jt - 1 - 3 0 1 - 3 - 2 - 1 - 3 5
/ - 1 - 2 - 3 - 2 1 - 3 - 2 2 - 3
m - 1 - 2 - 3 - 2 0 - 2 0 2 - 1
« - 1 - 2 2 0 - 2 0 1 - 2 0
p - 1 - 4 - 1 0 - 3 - 2 - 2 - 2 - 1

q - 1 - 3 0 2 - 4 - 2 1 - 2 1

r - 2 - 3 - 1 0 - 2 - 2 0 - 3 3
s 1 - 1 0 0 - 2 0 - 1 - 2 - 1
t 0 - 1 - 1 - 1 - 1 - 2 - 2 - 1 - 1
v 0 - 1 - 3 - 3 0 - 3 - 3 3 - 2
w -2 - 5 - 4 - 3 1 - 2 - 3 - 2 - 2
v - 2 - 3 - 2 - 2 3 - 3 2 0 - 1

/ m t v w y

5
2 6

•3 - 2 6
•3 - 2 - 2 9

•2 0 0 - 1

•2 - 1 0 - 2
•3 - 2 1 - 1

6

1 7
0 - 1

- 1 - 1 0 - 1 - 1 - 1
1 1 - 3 - 3 - 3 - 2 - 1

5

0

-2 - 2 - 4 - 3 - 2 - 2 - 4 - 3 - 3 15
0 0 - 2 - 3 - 1 - 1 - 2 - 1 - 1 3 8

(27)

Sequence IDs of the 11 data sets

S1:(DNA)
HCV2LIAI0
HCV2L3C1
S2: (DNA)
HS06674
S3: (RNA)
HS04816
S4: (DNA)
HI1U16764
HI1U16776
S5: (DNA)
HI IU16765
HI 1U16777
S6: (RNA)
BTPHOSA
S7: (RNA)
PH35624
S8: (RNA)
FT 10537
FT 10543
S9: (RNA)
PP59651
S10: (RNA)
FC07667
FC07674
SI 1: (RNA)
MNMHDRBA

HCV2L3A5

HCV2L3C8

HS06675

HS04817

HI 1U16766

HI 1U16778

HI1U16767

HI 1U16779

BTPHOSB

PH35625

FT 10538
FT 10544

PP59652

FC07668

MNMHDRBB

HCV2L3A7
HCV2L3D4

HS06676

HS04818

HI 1U16768

HI 1U16769

BTPHOSC

PH35626

FT 10539

PP59653

FC07669

MNMHDRBC

HCV2L3A9
HCV2L3E6

HS06677

HS04824

HI1U16770

HI1U16771

BTPHOSD

PH35627

PT10540

PP59654

FC07670

MNMHDRBD

HCV2L3B1

HS06679

H11U16772

HI1U16773

PH35628

PT10541

PP59655

FC07672

MNMHDRBE

HCV2L3B2

HI1U16774

HI 1U16775

PT 10542

PP59656

FC07673

580

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

Genetic algorithm for multiple sequence alignment

References

Ankenbrandt,C.A. (1991) An extension to the theory of convergence
and a proof of the time complexity of genetic algorithms. In
Rawlins,G.J.E. (ed.), Foundations of Genetic Algorithms. Morgan
Kaufmann Publishers, San Mateo, CA, pp. 53-68.

Bethke, A.D. (1981) Genetic algorithms as function optimizer. Ph.D
Thesis, University of Michigan.

Buckles, B.P., Petry, F.E. and Kuester, R.L. (1990) Schema survival
rates and heuristic search in genetic algorithms. In Proceedings of

Tools for Artificial Intelligence. IEE Computer Society Press, Los
Alamitos, CA, pp. 322-327.

Chan,S.C. (1990) A hierarchical sequence synthesis procedure. PhD
Thesis, University of Waterloo, Waterloo, Ontario, Canada.

Chan.S.C, Wong,A.K.C. and Chiu.D.K.Y. (1992) A survey of multiple
sequence comparison methods. Bull. Math. Biol, 54, 563-598.

Dandekar.T. and Argos.P. (1992) Potential of genetic algorithms in protein
folding and protein engineering simulations. Protein Eng., 5, 637-545.

De Jong,K. (1988) Learning with genetic algorithms: an overview.
Machine Learning 3. Kluwer Academic, Hingham, MA, pp. 121-138.

Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment as
prerequisite to correct phylogenetic trees. J. Mol. Evoi, 25, 351-360.

Feng,D.F., Johnson.M.S. and Doolittle,R.F. (1985) Aligning amino
acid sequences: comparison of commonly used methods. J. Mol.

Evol., 21, 112-125.
Goldberg,D.E. (1987) Simple genetic algorithms and the minimal,

deceptive problem. In Davis,L. (ed.). Genetic Algorithms and

Simulated Annealing. Pitman, London, pp. 74—88.
Goldberg.D.E. (1989a) Genetic Algorithms in Search. Optimization,

and Machine Learning. Addison-Wesley, New York.
Goldberg.D.E. (1989b) Sizing populations for serial and parallel

algorithms. In Genetic Algorithms in Search. Optimization, and

Machine Learning. Addison-Wesley, New York.
Gotoh,0. (1982) An improved algorithm for matching biological

sequences../. Mol. Biol., 162, 705-708.
Gotoh,O. (1990) Consistency of optimal sequence alignments. Bull.

Math. Biol., 52, 509-525.
Grefenstette.J.J. (1986) Optimization of control parameters for genetic

algorithms. IEEE Trans. System Man Cybernet., 16, 122-128.
GrefenstetteJJ. and FitzpatrickJ.M. (1985) Genetic search with approxi-

mate function evaluations. In Proceedings of an International Confer-

ence on Genetic Algorithms and their Applications, pp. 112-120.
Gultyaev,A.P., Batenbury.F.H.D.V. and Pleij.C.W.A. (1995) The

influence of a metastable structure in plasmid primer RNA on
antisense RNA binding kinetics. Nucleic Acids Res., 23.3718-3725.

Gusfield.D. (1993) Efficient methods for multiple sequence alignment
with guaranteed error bounds. Bull. Math. Biol., 55, 141-154.

Hirschberg.D.S. (1975) A linear space algorithm for computing
longest common subsequences. Commun. Assoc. Comput. Mach ,

18,341-343.

Holland.J.H. (1975) Adoption in Natural and Artificial Systems.

University of Michgan Press, Ann Arbor, MI.

HollandJ.H. (1986) Escaping brittleness: The possibilities of general-pur-

pose learning algorithms applied to parallel rule-based systems. In

Michalski et al. (eds), Machine Learning: An Artificial Intelligence

Approach. Morgan Kaufmann, San Mateo. CA, Vol. 2, pp. 593-623.

Holland,J.H. (1987) Genetic algorithms and classifier systems:

foundations and future directions. In Genetic Algorithms and their

Applications: Proceeding of the Second International Conference

on Genetic Algorithms, pp. 82-89.

Jeanteur.D., Lakey.J.H. and Pattus.F. (1991) The bacterial porin

superfamily: sequence alignment and structure prediction. Mol.

Microbioi, 5, 2153-2164.

Michalewicz.Z. (1992) Genetic Algorithms + Data Structures =

Evolution Programs. Springer-Verlag.

Miller,W. (1993) Building multiple alignment from pairwise align-

ments. Comput. Applic. Biosci., 9, 169-176.

Myers,E.W. and Miller.W. (1988) Optimal alignments in linear space.

Comput. Applic. Biosci., 4. 11-17.

Roytberg.M. (1992) A search for common patterns in many sequences.

Comput. Applic. Biosci., 8, 57-64.

Sankoff.D. (1972) Matching sequence under deletion-insertion con-

straints. Proc. Natl Acad. Sci. USA, 64, 4-6.

Sankoff.D., Cedergren.R.J. and McKay.W. (1982) A strategy for

sequence phylogeny research. Nucleic Acids Res.. 10, 421-431.

Spears.W.M. and De Jong.K.A. (1990) Using genetic algorithms for

supervised concept learning. In Proceedings of Tools for Artificial

Intelligence. IEEE Computer Society Press. Los Alamitos. CA. pp.

335-341.

Thompson.J.D., Higgins.D.G. and Gibson.T.J. (1994) CLUSTAL W:

improving the sensitivity of progressive multiple sequence align-

ment through sequence weighting, position-specific gap penalties

and weight matrix choice. Nucleic Acids Res., 22. 4673-4680.

Unger.R. and Moult.J. (1993) Genetic algorithms for protein folding

simulations../. Mol. Biol.. 231. 75-81.

van Batenbury.F.H.D.. Gultyaev.A.P. and Pleij.C.W.A. (1995) An

APL-programmed genetic algorithm for the prediction of RNA

secondary structure. J. Theor. Biol., 174. 269-280.

Vihinen.M., Euranto.A.. Luostarinen.P. and Nevalainen.O. (1992)

MULTICOMP: A program package for multiple sequence compari-

son. Comput. Applic. Biosci., 8. 35-38.

Vingron.M. and Argos.P. (1991) Motif recognition and alignment for

many sequences by comparison of dot-matrices../. Mol. Biol.. 218.

33^3 .

Waterman.M.S. (1984) General methods of sequence comparison.

Bull. Math. Biol.. 46. 473-500.

Waterman,M.S. (1986) Multiple sequence alignment by consensus.

Nucleic Acids Res . 14. 9095-9102.

581

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/1
3
/6

/5
6
5
/3

2
3
5
3
9
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

