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Abstract. Energy efficiency has become an important measurement of
scheduling algorithm for private cloud. The challenge is trade-off be-
tween minimizing of energy consumption and satisfying Quality of Ser-
vice (QoS) (e.g. performance or resource availability on time for reserva-
tion request). We consider resource needs in context of a private cloud
system to provide resources for applications in teaching and research-
ing. In which users request computing resources for laboratory classes at
start times and non-interrupted duration in some hours in prior. Many
previous works are based on migrating techniques to move online virtual
machines (VMs) from low utilization hosts and turn these hosts off to re-
duce energy consumption. However, the techniques for migration of VMs
could not use in our case. In this paper, a genetic algorithm for power-
aware in scheduling of resource allocation (GAPA) has been proposed
to solve the static virtual machine allocation problem (SVMAP). Due
to limited resources (i.e. memory) for executing simulation, we created a
workload that contains a sample of one-day timetable of lab hours in our
university. We evaluate the GAPA and a baseline scheduling algorithm
(BFD), which sorts list of virtual machines in start time (i.e. earliest
start time first) and using best-fit decreasing (i.e. least increased power
consumption) algorithm, for solving the same SVMAP. As a result, the
GAPA algorithm obtains total energy consumption is lower than the
baseline algorithm on simulated experimentation.

1 Introduction

Cloud computing [7], which is popular with pay-as-you-go utility model, is econ-
omy driven. Saving operating costs in terms of energy consumption (Watts-Hour)
for a cloud system is highly motivated for any cloud providers. Energy-efficient
resource management in large-scale datacenter is still challenge [1][13][9][5]. The
challenge of energy-efficient scheduling algorithm is trade-off between minimiz-
ing of energy consumption and satisfying demand resource needs on time and
non-preemptive. Resource requirements depend on the applications and we are
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interested in virtual computing lab, which is a cloud system to provide resources
for teaching and researching.

There are many studies on energy efficient in datacenters. Some studies pro-
posed energy efficient algorithm that are based on processor speed scaling (as-
sumption that CPU technology supports dynamic scaling frequency and voltage
(DVFS)) [1][13]. Some other studies proposed energy efficient by scheduling for
VMs in virtualized datacenter [9][5]. A. Beloglazov et al. [5] presents the Modified
Best-Fit Decreasing (MBFD) algorithm, which is best-fit decreasing heuristic, for
power-aware VM allocation and adaptive threshold-based migration algorithms
to dynamic consolidation of VM resource partitions. Goiri, . et al. [9] presents
score-based scheduling, which is hill-climbing algorithm, to place each VM onto
which physical machine has the maximum score. However, the challenge is still
remain. These previous works did not concern on satisfying demand resource
needs on time (i.e. VM starts at a specified start time) and non-preemptive,
in addition to both MBFD and score-based algorithms do not find an optimal
solution for VM allocation problem.

In this paper, we introduce our static virtual machine allocation problem
(SVMAP). To solve the SVMAP, we propose the GAPA, which is a genetic
algorithm to find an optimal solution for VM allocation. On simulated exper-
imentation, the GAPA discovers a better VM allocation (means lower energy
consumption) than the baseline scheduling algorithm for solving same SVMAP.

2 Problem Formulation

2.1 Terminology, Notation

We describe notation that is used in this paper as following:

– VMi: the i-th virtual machine
– Mj : the j-th physical machine
– tsi: start time of the VMi

– pei: number of processing elements (e.g. cores) of the VMi

– PEj : number of processing elements (e.g. cores) of the Mj

– mipsi: total required MIPS (Millions Instruction Per Seconds) of the VMi

– MIPSj: total capacity MIPS (Millions Instruction Per Seconds) of the Mj

– di: duration time of the VMi, units in seconds
– Pj(t): power consumption (Watts) of a physical machine Mj

– rj(t): set of indexes of virtual machines that is allocated on the Mj at time t

2.2 Power Consumption Model

In this section, we introduce factors to model the power consumption of single
physical machine. Power consumption (Watts) of a physical machine is sum
of total power of all components in the machine. In [8], they estimated power
consumption of a typical server (with 2x CPU, 4x memory, 1x hard disk drive,
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2x PCI slots, 1x mainboard, 1x fan) in peak power (Watts) spends on main
components such as CPU (38%), memory (17%), hard disk drive (6%), PCI
slots (23%), mainboard (12%), fan (5%). Some papers [8] [4] [6] [5] prove that
there exists a power model between power and resource utilization (e.g. CPU
utilization). We assume that power consumption of a physical machine (P (.)) is
linear relationship between power and resource utilization (e.g. CPU utilization)
as [8][4][6][5]. The total power consumption of a single physical server (P (.)) is:

P (Ucpu) = Pidle + (Pmax − Pidle)Ucpu

Ucpu(t) =

PEj∑

c=1

∑

i∈rj(t)

mipsi,c
MIPSj,c

In which:

– Ucpu(t): CPU utilization of the physical machine at time t, 0 ≤ Ucpu(t) ≤ 1
– Pidle: the power consumption (Watt) of the physical machine in idle, e.g. 0%

CPU utilization
– Pmax: the maximum power consumption (Watt) of the physical machine in

full load, e.g. 100% CPU utilization
– mipsi,c: requested MIPS of the c-th processing element (PE) of the VMi

– MIPSj,c: Total MIPS of the c-th processing element (PE) on the physical
machine Mj

The number of MIPS that a virtual machine requests can be changed by its
running application. Therefore, the utilization of the machine may also change
over time due to application. We link the utilization with the time t. We re-write
the total power consumption of a single physical server (P (.)) with Ucpu(t) as:

P (Ucpu(t)) = Pidle + (Pmax − Pidle)Ucpu(t)

and total energy consumption of the physical machine (E) in period time [t0, t1]
is defined by:

E =

t1∫

t0

P (Ucpu(t))dt

2.3 Static Virtual Machine Allocation Problem (SVMAP)

Given a set of n virtual machines {VMi(pei,mipsi, tsi, di)|i = 1, ..., n} to be
placed on a set ofm physical parallel machines {Mj(PEj ,MIPSj)|j = 1, ...,m}.
Each virtual machine VMi requires pei processing elements and total of mipsi
MIPS, and the VMi will be started at time (tsi) and finished at time (tsi + di)
without neither preemption nor migration in its duration (di). We do not limit
resource type on CPU. We can extend for other resource types such as memory,
disk space, network bandwidth, etc.
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Algorithm 1. GAPA Algorithm

Start: Create an initial population randomly for s chromosomes (with
s is population size)
Fitness: Calculate evaluation value of each chromosome respectively in
given population.
New population: Create a new population by carrying out follows the
steps:
Selection: Choose the two individual parents from current population
based on value of evaluation.
Crossover: By using crossover probability, we create new children via
modifying chromosome of parents.
Mutation: With mutation probability, we will mutate at some position
on chromosome.
Accepting: Currently, new children will be a part of the next generation.
Replace: Go to the next generation by assigning the current generation
to the next generation.
Test: If stop condition is satisfied then this algorithm is stopped and
returns individual has the highest evaluation value. Otherwise, go to
next step.
Loop: Go back the Fitness step.

We assume that every physical machine Mj can host any virtual machine, and
its power consumption model (Pj(t)) is proportional to resource utilization at a
time t, e.g. power consumption has a linear relationship with resource utilization
(e.g. CPU utilization) [8][2][5].

The objective scheduling is minimizing energy consumption in fulfillment of
maximum requirements of n VMs.

2.4 The GAPA Algorithm

The GAPA, which is a kind of Genetic Algorithm (GA), solves the SVMAP. The
GAPA performs steps as in the Algorithm 1.

In the GAPA, we use a tree structure to encode chromosome of an individual.
This structure has three levels:

Level 1: Consist of a root node that does not have significant meaning.
Level 2: Consist of a collection of nodes that represent set of physical machines.
Level 3: Consist of a collection of nodes that represent set of virtual machines.

With above representation, each instance of tree structure will show that an allo-
cation of a collection of virtual machines onto a collection of physical machines.
The fitness function will calculate evaluation value of each chromosome as in the
Algorithm 2.
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Algorithm 2. Construct fitness function

powerOfDatacenter := 0
For each host ∈ collection of hosts do

utilizationMips := host.getUtilizationOfCpu()
powerOfHost := getPower (host, utilizationMips)
powerOfDatacenter := powerOf Datacenter + powerOfHost

End For
Evaluation value (chromosome) := 1.0 / powerOfDatacenter

3 Experimental Study

3.1 Scenarios

We consider on resource allocation for virtual machines (VMs) in private cloud
that belongs to a college or university. In a university, a private cloud is built to
provide computing resource for needs in teaching and researching. In the cloud,
we deploy installing software and operating system (e.g. Windows, Linux, etc.)
for practicing lab hours in virtual machine images (i.e. disk images) and the
virtual machine images are stored in some file servers. A user can start, stop and
access VM to run their tasks. We consider three needs as following:

i A student can start a VM to do his homework.
ii A lecturer can request a schedule to start a group of identical VMs for

his/her students on lab hours at specified start time and in prior. The lab
hours requires that the group of VMs will start on time and continue in
spanning some time slots (e.g. 90 minutes).

iii A researcher can start a group of identical VMs to run his/her parallel
application.

3.2 Workload and Simulated Cluster

We use workload from one-day of our university’s schedule for laboratory hours
on six classes in the Table 1. The workload is simulated by total of 211 VMs and
100 physical machines (hosts).

We consider there are two kind of servers in our simulated virtualized dat-
acenter, which includes two power consumption models of two power model of
the IBM server x3250 (1 x [Xeon X3470 2933 MHz, 4 cores], 8GB) and another
power model of the Dell Inc. PowerEdge R620 (1 x [Intel Xeon E5-2660 2.2 GHz,
16 cores], 24 GB) server with 16 cores in the Table 2. The baseline scheduling
algorithm (BFD), which sorts list of virtual machines in start time (i.e. ear-
liest start time first) and using best-fit decreasing (i.e. least increased power
consumption, for example MBFD [5]), will use four IBM servers to allocate for
16 VMs (each VM requests single processing element). Our GAPA can finds a
better VM allocation (lesser energy consumption) than the minimum increase
of power consumption (best-fit decrease) heuristic in our experiments. In this
example, our GAPA will choose one Dell server to allocate these 16 VMs. As a
result, our GAPA consumes less total energy than the BFD does.
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Table 1. Workload of a university’s one-day schedule

Day Subject Class ID Group ID Students Lab. Time
Duration

(sec.)

6 506007 CT10QUEE QT01 5 —456———- 8100
6 501129 CT11QUEE QT01 5 123————- 8100
6 501133 DUTHINH6 DT04 35 123————- 8100
6 501133 DUTHINH5 DT01 45 —456———- 8100
6 501133 DUTHINH5 DT02 45 —456———- 8100
6 501133 DUTHINH6 DT05 35 123————- 8100
6 501133 DUTHINH6 DT06 41 123————- 8100

3.3 Experiments

We show results from the experiments in the Table 3 and Figure 1. We use a
popular simulated software for a virtualized datacenter is the CloudSim [14][6]
to simulate our virtualized datacenter and the workload. The GAPA is a VM
allocation algorithm that is developed and integrated into the CloudSim ver-
sion 3.0.

On simulated experimentation, we have total energy consumptions of both
the BFD and the GAPA algorithms are 16.858KWh and average of 13.007KWh
respectively. We conclude that the energy consumption of the BFD algorithm
is higher than the energy consumption of GAPA algorithm is approximately
130%. In case of the GAPA, these GAPA use the probability mutation is 0.01
and size of population is 10, number of generations is {500, 1000}, probability
of crossover is {0.25, 0.5, 0.75}.

Table 2. Two power models of (i) the IBM server x3250 (1 x [Xeon X3470 2933 MHz,
4 cores], 8GB) [16] and (ii) the Dell Inc. PowerEdge R620 (1 x [Intel Xeon E5-2660 2.2
GHz, 16 cores], 24 GB) [15]

Utilization 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IBM x3250 41.6 46.7 52.3 57.9 65.4 73.0 80.7 89.5 99.6 105.0 113.0

Dell R620 56.1 79.3 89.6 102.0 121.0 132.0 149.0 171.0 195.0 225.0 263.0

4 Related Works

B. Sotomayor et al. [12] proposed a lease-based model and First-Come-First-
Serve (FCFS) and backfilling algorithms to schedule best-effort, immediate and
advanced reservation jobs. The FCFS and backfilling algorithms consider only
performance metric (e.g. waiting time, slowdown). To maximize performance,
these scheduling algorithms tend to choose free load servers (i.e. highest-ranking
scores) when allocates a new lease. Therefore, a lease with single VM can be
allocated on big, multi-core physical machine. This way could be waste energy,
both of the FCFS and backfilling does not consider on the energy efficiency.
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Table 3. Total energy consumption (KWh) of running: (i) earliest start time first with
best-fit decreasing (BFD); (ii) GAPA algorithms. These GAPA use the probability
mutation of 0.01 and size of population of 10. N/A means not available.

Algorithms VMs Hosts
GA’s

Generations
GA’s Prob.
of Crossover

Energy

(KWh) BFD/GAPA

BFD 211 100 N/A N/A 16.858 1
GAPA P10
G500 C25 211 100 500 0.25 13.007 1.296

GAPA P10
G500 C50 211 100 500 0.50 13.007 1.296

GAPA P10
G500 C75 211 100 500 0.75 13.007 1.296

GAPA P10
G1000 C25 211 100 1000 0.25 13.007 1.296
GAPA P10
G1000 C50 211 100 1000 0.50 13.007 1.296
GAPA P10
G1000 C75 211 100 1000 0.75 13.007 1.296

S. Albers et al. [1] reviewed some energy efficient algorithms which are used to
minimize flow time by changing processor speed adapt to job size. G. Laszewski
et al. [13] proposed scheduling heuristics and to present application experience
for reducing power consumption of parallel tasks in a cluster with the Dynamic
Voltage Frequency Scaling (DVFS) technique. We did not use the DVFS tech-
nique to reduce energy consumption on datacenter.

Some studies [9][3][5] proposed algorithms to solve the virtual machine alloca-
tion in private cloud to minimize energy consumption. A. Beloglazov et al. [3][5]
presented a best-fit decreasing heuristic on VM allocation, named MBFD, and
VM migration policies under adaptive thresholds. The MBFD tends to allocate
a VM to such as active physical machine that would take the minimum increase
of power consumption (i.e. the MBFD prefers a physical machine with minimum
power increasing). However, the MBFD cannot find an optimal allocation for all
VMs. In our simulation, for example, the GAPA can find a better VM allocation
(lesser energy consumption) than the minimum increase of power consumption
(best-fit decrease) heuristic in our experiments. In this example, our GAPA will
choose one Dell server to allocate these 16 VMs. As a result, our GAPA consumes
less total energy than the best-fit heuristic does.

Another study on allocation of VMs [9] developed a score-based allocation
method to calculate scores matrix of allocations of m VMs to n physical ma-
chines. A score is sum of many factors such as power consumption, hardware
and software fulfillment, resource requirement. These studies are only suitable
for service allocation, in which each VM will execute a long running, persistent
application. We consider each user job has a limited duration time. In addition
to, our GAPA can find an optimal schedule for the static VM allocation problem
on single objective is minimum energy consumption.

In a recently work, J. Kolodziej et al. [10] presents evolutionary algorithms for
energy management. None of these solutions solves same our SVMAP problem.
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Fig. 1. The total energy consumption (KWh) for earliest start time first with best-fit
decrease (BFD), GAPA algorithms

5 Conclusions and Future Works

In a conclusion, a genetic algorithm can apply to the static virtual machine
allocation problem (SVMAP) and brings benefit in minimize total energy con-
sumption of computing servers. On simulation with workload of one-day lab
hours in university, the energy consumption of the baseline scheduling algorithm
(BFD) algorithm is higher than the energy consumption of GAPA algorithm is
approximately 130%. Disadvantage of the GAPA algorithm is longer computa-
tional time than the baseline scheduling algorithm.

In the future work, we concern methodology to reduce computational time of
the GAPA. We also concern some other constraints, e.g. deadline of jobs. We
also study on migration policies and history-based allocation algorithms.
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