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Abstract Scheduling problems usually obtain the optimal

solutions assuming that the environment is deterministic.

However, actually the environment is dynamic and uncer-

tain. Thus, the initial data could change and the initial sched-

ule obtained might be unfeasible. To overcome this issue,

a proactive approach is presented for scheduling problems

without any previous knowledge about the incidences that

can occur. In this paper, we consider the berth allocation

problem and the quay crane assignment problem as a rep-

resentative example of scheduling problems where a typical

objective is to minimize the service time. The robustness is

introduced within this problem by means of buffer times that

should be maximized to absorb possible incidences or break-

downs. Therefore, this problem becomes a multi-objective

optimization problem with two opposite objectives: mini-

mizing the total service time and maximizing the robustness

or buffer times.
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1 Introduction

A container terminal is an open system with three distin-

guishable areas (berth, container yard and landside areas)

where there exist different complex optimization problems.

For instance, berthing allocation or stowage planning prob-

lems are related to the berth area [20], remarshalling problem

or transport optimization to the yard area, and planning and

scheduling hinterland operations related to trains and trucks

to the landside area [22].

In a container terminal, once a vessel arrives at the port,

it waits at the roadstead until it has permission to moor at

the quay. The locations where mooring can take place are

called berths. These are equipped with giant cranes, known

as quay cranes (QC), that are used to load and unload con-

tainers which are transferred to and from the yard by a fleet of

vehicles. These QCs are mounted on the same track (or rail)

and, therefore, they cannot pass each other. Two schedul-

ing problems are considered in this paper, the berth alloca-

tion problem (BAP) and the quay crane assignment problem

(QCAP). The former is a well-known combinatorial opti-

mization problem [16], which consists in assigning berthing

positions and mooring times to incoming vessels. The QCAP

deals with assigning a certain number of QCs to each berthed

vessel such that all required movements of containers can be

fulfilled [1].

Nowadays, the point of the view for the scheduling

tasks has changed. Due to the fact that the real world is

uncertain, imprecise and non-deterministic, there might be

unknown information, breakdowns, incidences or changes,
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which become the initial plans or schedules obtained invalid.

Thus, there are new trends to cope these aspects in the opti-

mization techniques. This approach is being studied within

the berth allocation and the quay crane assignment prob-

lems. The uncertainty within these problems is due to the

fact, among others, that engines of the QC might present

a failure or the movements per time unit are lower than

expected. Due to the introduction of this new objective in

the scheduling optimization problem, a multi-objective opti-

mization approach needs to be taken into consideration.

The overall collaboration goal of our group at the Univer-

sitat Politècnica de València (UPV) with the Valencia Port

Foundation and the maritime container terminal Mediter-

ranean Shipping Company S.A. (MSC) is to offer assistance

and help in the planning and scheduling of tasks such as the

allocation of spaces to outbound containers, to identify bot-

tlenecks, to determine the consequences of changes, to pro-

vide support in the resolution of incidents, to provide alter-

native berthing plans, etc.

A comprehensive survey of BAP and QCAP is given

in [1]. These problems have been mostly considered sepa-

rately, with an interest mainly focused on BAP. An interest-

ing approach for BAP is presented in [13] where a Simulated

Annealing metaheuristic is compared with a mathematical

model. However, there are some studies on the combined

BAP + QCAP considering different characteristics of berths

and cranes [6,12,15,19,24].

All the above studies do not take into consideration the

uncertainty of the real world to obtain a robust schedul-

ing. However, there are some studies that address the robust

scheduling. In [10], a proactive approach for a discrete and

dynamic model of the BAP is presented taking into account

uncertainties in the arrival and handling times given their

probability density functions. They propose a mixed integer

programming model and a genetic algorithm (GA) for both

problems: discrete berth allocation and QC assignment. The

objective is to minimize the sum of expected value, the stan-

dard deviation of the service time and the tardiness of the

incoming vessels. In [11], a robust optimization model for

cyclic berthing for a continuous and dynamic BAP is stud-

ied by minimizing the maximal crane capacity over differ-

ent arrival scenarios of a bounded uncertainty given by their

arrival agreements.

Robust scheduling based on operational buffers has

already been introduced as a proactive approach in the BAP.

An approach to robust BAP is presented in [5]. They pre-

sented a feedback procedure for the BAP that iteratively

improves the robustness of the initial schedule. This feed-

back procedure determines the time buffers for each vessel

by means of adjustment rules.

In [23], another approach to the robust BAP is solved by

a scheduling algorithm that integrates simulated annealing

and branch-and-bound algorithms. This study introduces the

robustness as an objective to maximize and an evaluation is

carried out by varying the weights of these functions. The

robustness is achieved by a constant buffer time assigned to

all vessels.

In [25], the robust BAP problem is studied as a proac-

tive strategy as a multi-objective optimization problem. They

solved this problem with the Squeaky-Wheel optimization

(SWO) metaheuristic. The first objective is to minimize the

late departures and the deviation from the desired position;

and, the second objective is to maximize the robustness of the

schedule. They tackle the robustness measure as a diminish-

ing return, specifically the exponential function, to capture

the decreasing marginal productivity of slacks in a berthing

schedule.

However, some of the above approaches consider dis-

crete berths or previous knowledge about the uncertainty in

arrival or handling times to produce robust schedules, but

usually this knowledge is not available. Furthermore, other

approaches propose how to obtain robust schedules by means

of operational buffer times, but these buffers are set indepen-

dently of the handling time of the vessels.

Nevertheless, in this paper, we present a formal mixed

integer lineal programming (MILP) for the combined

dynamic and continuous BAP + QCAP that extends the

model presented in [13]. To obtain optimized solutions in an

efficient way, we develop a metaheuristic GA to obtain near-

optimal solutions in competitive computational times (com-

pared with mathematical solvers). Furthermore, we assume

that there is no previous knowledge about incidences, so both

the MILP and the GA approaches have been adapted to tackle

robustness of the BAP + QCAP as a multi-objective optimiza-

tion problem using operational buffers within the schedule.

The rest of the paper is organized as follows. In the next

section, we give a thorough description of the BAP + QCAP.

In Sect. 3, the robustness is formalized for the BAP + QCAP.

The multi-objective optimization approach to manage the

two objective functions is detailed in Sect. 4. In Sect. 5, the

mathematical formulation is presented. In Sect. 6, we give

the details of the GA designed for the BAP + QCAP. Section

7 reports the results of the experimental study. Finally, in

Sect. 8 we give the main conclusions of this work.

2 Problem description

The objective in BAP + QCAP is to obtain a schedule of the

incoming vessels with an optimum order of vessels mooring

and a distribution of the docks and QCs for these vessels.

Figure 1b shows an example of the graphical space-time rep-

resentation of a berth plan with 6 vessels. Each rectangle

represents a vessel, its handling time and length.

Our BAP + QCAP case is classified, according to the clas-

sification given by [1], as:
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(a)

(b)

Fig. 1 Representation of the BAP + QCAP problem

– Spatial attribute: continuous layout We assume that the

quay is a continuous line, so there is no partitioning of

the quay and the vessel can berth at arbitrary positions

within the boundaries of the quay. It must be taken into

account that for a continuous layout, berth planning is

more complicated than for a discrete layout, but it better

utilizes the quay space [1].

– Temporal attribute: dynamic arrival Fixed arrival times

are given for the vessels, so that vessels cannot berth

before their expected arrival times.

– Handling time attribute: unknown in advance The han-

dling time of a vessel depends on the number of assigned

QCs (QCAP) and the moves required.

– Performance measure: wait and handling times The

objective is to minimize the sum of the waiting (wi ) and

handling times (hi ) of all vessels.

Let V be the set of incoming vessels. Following, we intro-

duce the notation used for each vessel i ∈ V (Fig. 1a). The

data variables are:

– QC: Available QCs in the container terminal. All QCs

carry out the same number of movements per time unit

(movsQC), given by the container terminal.

– L: Total length of the berth in the container terminal.

– H : Planning horizon for this schedule. It is calculated

as the last departure when the first-come, first-served

(FCFS) policy is applied to the incoming vessels.

– ai : Arrival time of the vessel i at port.

– ci : Number of required movements to load and unload

containers of i .

– li : Vessel length.

The decision variables are:

– mi : Mooring time of i . Thus, waiting time (wi ) of i is

calculated as (wi = mi − ai ).

– pi : Berthing position where i moors.

– qi : Number of assigned QCs to i .

– uik : Indicates whether the QC k works (1) or not (0) on

the vessel i .

The variables derived from the previous ones are:

– hi : Loading and unloading time at quay (handling time)

of vessel i . This time depends on qi and ci , that is:
(

ci

qi movsQC

)

.

– tik : Working time of the QC k that is assigned to vessel

i .

– di : Departure time of vessel i (di = mi + hi ).

– si , ei : indexes for the first and last QC used in vessel i ,

respectively.

In this study, the following assumptions are considered:

– The number of QCs assigned to a vessel do not vary

along the moored time. Once a QC starts a task in a

vessel, it must complete it without any pause or shift

(non-preemptive tasks). Thus, all QCs assigned to the

same vessel have the same working time
(

tik = hi ,∀k ∈

QC, uik = 1
)

.

– All the information related to the waiting vessels is known

in advance (arrival, priority, moves and length).

– Every vessel has a draft that is lower than or equal to the

draft of the quay.

– Movements of QCs along the quay as well as berthing

and departure times of vessels are not considered since it

supposes a constant penalty time for all vessels.

123



180 Prog Artif Intell (2014) 2:177–192

– Simultaneous berthing is allowed, subject to the length

of the berth.

And the following constraints must be accomplished:

– Moored time must be at least the same that its arrival time

(mi ≥ ai ).

– It must be enough contiguous space at berth to moor a

vessel of length (li ).

– There is a safety distance between two moored ships.

We assume that each vessel has a 2.5 % of this length at

each side as a safety distance (ηi ) (Fig. 1a). This safety

distance is added to the length of each vessel i : li :=

li + 2ηi .

– There must be at least one QC to assign to each ves-

sel. The maximum number of assigned QCs by vessel i
(

QC+
i

)

depends on its length, since a safety distance is

required between two contiguous QCs (safeQC), and

the maximum number of QCs that the container terminal

allows per vessel (maxQC). Both parameters are given

by the container terminal.

Our objective is to allocate all vessels according to several

constraints minimizing the total weighted waiting and han-

dling or processing time, known as the service time, for all

vessels:

Ts =
∑

i∈V

(wi + hi ) (1)

3 Robustness in BAP + QCAP

Container terminals are uncertain and non-deterministic sys-

tems in the same way than many other real-world systems.

In the BAP + QCAP problem, the initial obtained schedules

might become invalid due to different reasons: breakdowns

in QCs, late arrivals of the vessels, bad weather, a lower ratio

of movements per QC than expected, etc.

The robustness concept means that, given a schedule, this

initial schedule remains feasible when incidences occur in

its actual scenario.

The usual disruptions to be considered in BAP + QCAP

are the followings:

– The arrival of a vessel is delayed from its expected arrival

time (ai ) assuming that the order remain unchanged.

– The handling time of a vessel is larger than its expected

handling time (hi ).

In case of a delay in the arrival of a vessel, it can be mod-

eled as the departure time of this vessel is delayed by the

same amount. Therefore, an incidence related to the arrival

of a vessel is represented as a larger handling time for this

vessel.

Fig. 2 Buffer times bi given an example schedule

Given these two disruptions, we consider that a schedule

is robust if a disruption in one vessel does not affect or alter

the mooring times of the other vessels.

In BAP + QCAP, the robustness of a schedule might be

guaranteed through two periods of time:

– The waiting time of vessels (wi ). One vessel might be

late wi time units without disrupting the schedule of the

others vessels.

– The buffer times of vessels (bi ). The handling time of a

vessel might be delayed bi time units which correspond

to the time between vessel i and each vessel j that shares

the berth and moors just after vessel i (Fig. 2).

The schedule could absorb delays or breakdowns that do

not exceed the sum of those two periods (wi +bi ). Therefore,

both times should be maximized to achieve the maximum

robustness and ensure that there is no need to re-schedule

the vessels. However, it should be kept in mind that the first

objective of the BAP + QCAP is to minimize the total service

time of the incoming vessels (wi + hi ). Therefore, we focus

on maximizing only the second period of time, buffer times

(bi ), to obtain robust schedules.

The buffer time (bi ) for each vessel i is obtained by Eq.

(4). We define ϕi as the set of vessels that succeed vessel

i and occupy some berth space of vessel i ; and, τi j is the

difference between the departure time of vessel i (di ) and the

mooring time of vessel j (m j ). As example, Fig. 2 shows

the buffer times (bi ) for each scheduled vessel as an empty

rectangle.

ϕi = { j∈V, m j ≥ di ∧ [pi , pi + li ) ∩ [p j , p j + l j ) �= ∅}

(2)

τi j = m j − di ∀i ∈ V, ∀ j ∈ ϕi (3)

bi =

{

+∞, |ϕi | = 0

min j∈ϕi

(

τi j

)

, otherwise
∀i ∈ V (4)
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Following the concept of decreasing productivity (dimin-

ishing returns) of the buffers presented in [25], in this study

it is considered that the more the handling time, the more is it

likely to suffer incidences. Nevertheless, there is no need to

assign a large buffer time to each vessel. For instance, in Fig.

2, Vessel 1 would not need 8 time units of buffer time (b1)

since its handling time is only 3 time units. It is not likely that

this vessel would suffer a delay of that magnitude. However,

Vessel 2, with a handling time of 8 time units, has only 2

time units of buffer time (b2). In this case, it is high likely

that this vessel would suffer some breakdown or delay and

so becomes invalid this schedule.

It is known that the late arrivals may be due to other fac-

tors such as the travel time from its immediately origin. To

simplify this study, we only consider that the magnitude of

the incidence is related to the handling time.

Thus, the robustness measure is related to the buffer time

bi and the average handling time h∗
i of each vessel i . There-

fore, the following objective function (Eq. 6) is proposed as

a measure of the robustness of a schedule.

ri = min

(

1,
bi

h∗
i

)

, ∀i ∈ V (5)

R =
∑

i∈V

ri (6)

where h∗
i indicates the handling time when its possible aver-

age number of QCs

(

1+QC+
i

2

)

is assigned.

Let us see a simple example. Figure 3 shows two different

schedules given the same set of incoming vessels. Each vessel

is labeled with its vessel’s ID and the assigned QC number

in brackets. On the one hand, Fig. 3a represents a robust

schedule since almost any incidence over any vessel could

be absorbed. On the other hand, Fig. 3b shows a schedule

with the optimal solution according to the objective function

Ts . The latter schedule will be high likely unfeasible if any

incidence occurs.

From Fig. 3a and b, it is clear that there is a trade-off

between optimality and robustness. However, a robust sched-

ule is not only achieved by extending an optimized schedule

over the time. A robust schedule must also consider an opti-

mized allocation of vessels to achieve the maximum sum of

buffers with a proper distribution among them. Note that the

optimality is not the makespan of the schedule, but the total

service time (waiting and handling times).

4 Multi-objective approach for the BAP + QCAP

Solving the robust BAP + QCAP involves two optimiza-

tion objectives: the service time (Ts) and the robustness (R).

These objective functions must be normalized to apply the

search process correctly. Equations (9) and (10) define the

Fig. 3 Two possible schedules given the same incoming vessels

normalized service time and the normalized robustness func-

tion, respectively.

Normalizing the service time function into the interval

(0, 1) implies to normalize both the waiting time (Eq. 7)

and the handling time (Eq. 8). The handling time is just a
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linear normalization since the maximum (h+
i ) and minimum

(h−
i ) times are known by assigning the minimum and the

maximum number of QCs to vessel i (QC+
i ). Normalizing the

waiting time requires to determine a maximum total waiting

time (WF ). In this case, (WF ) value is the total waiting time

of the incoming vessels when an FCFS policy is applied.

Tw =
1

WF

∑

i∈V

(mi − ai ) (7)

Th =
1

|V |

∑

i∈V

(

hi − h−
i

h+
i − h−

i

)

(8)

T̂s =
Tw + Th

2
(9)

R̂ =
R

|V |
(10)

Thereby, the objective function for the robust BAP+QCAP

is to minimize the function F (Eq. 11). The coefficient λ

(0 ≤ λ ≤ 1) assigns different weights to each component to

establish an aggregate function.

F = λT̂s − (1 − λ)R̂ (11)

In a multi-objective optimization problem, usually there

is no single solution wherein all its objectives are simul-

taneously optimized. However, there may exist a set of

Pareto optimal solutions with different tradeoffs between

their objective functions. Pareto optimal solutions are defined

by means of the dominance concept. Considering the robust

BAP + QCAP, let x and y be two different solutions, x domi-

nates y if at least one of the following conditions is satisfied:

T̂s(x) < T̂s(y) and R̂(x) ≥ R̂(y)

T̂s(x) ≤ T̂s(y) and R̂(x) > R̂(y)

Given a set of feasible solutions D, a solution x ∈ D is

Pareto optimal (or efficient) if it is non-dominated by any

other solution x ′ ∈ D. The Pareto optimal set is the set of all

the efficient solutions.

In general, generating the Pareto optimal set is expensive

computationally and is often impracticable. Therefore, algo-

rithms try to find a good approximation of the Pareto optimal

set (potentially efficient solutions). In this work, we refer

to each approximation as Pareto front, which contains solu-

tions that, although are non-dominated among them, could

be dominated by other solutions not found by our algorithms.

5 Mathematical formulation

In this section, the mathematical formulations for BAP +

QCAP and the robust BAP + QCAP are presented. The first

MILP model (Fig. 4) solves the BAP + QCAP by minimizing

Fig. 4 Mathematical model for the BAP + QCAP

the function given by the Eq. (1), where M denotes a suffi-

ciently large number (as it is used in MILP), subject to the

given constraints.

The given formulation expands the model presented in

[13] by adding the needed constraints to take into considera-

tion QCs. Thereby, the handling time of vessels depends on

the number of QCs and these QCs cannot pass each other

when they are relocated.

In the proposed model, there are two auxiliary variables:

zx
i j is a decision variable that indicates if vessel i is located

to the left of vessel j on the berth (zx
i j = 1), and z

y
i j = 1

indicates that vessel i is moored before vessel j in time (see

constraint 32). Moreover, constraint 12 ensures that vessels

must moor once they arrive at the terminal. Constraint 15

guarantees that a moored vessel does not exceed the length

quay. Constraints 13 and 14 establish the waiting and depar-

ture times according to mi . Constraints 16, 17, 18, 19 and

20 assign the number of QCs to the vessel i . Constraint 21

establishes the minimum handling time needed to load and

unload their containers according to the number of assigned

QCs. Constraint 22 assigns the handling time for vessel i .

Constraint 23 ensures that QCs that are not assigned to ves-

sel i have tik = 0. Constraint 24 forces all assigned QCs

to vessel i working the same number of hours. Constraint

25 avoids that one QC is assigned to two different vessels
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Fig. 5 Mathematical model for the robust BAP + QCAP

at the same time. Constraints 26 and 27 force the QCs to

be contiguously assigned (from si up to ei ). Constraint 28

takes into account the safety distance between vessels. Con-

straint 29 avoids that one vessel uses a QC which should cross

through the others QCs. Constraint 30 avoids that vessel j

moors while the previous vessel i is still at the quay. Finally,

constraint 31 establishes the relationship between each pair

of vessels.

The robust BAP + QCAP model minimizes the objective

function presented in Eq. (11). This model requires the 12–

32 constraints presented above and the ones presented in

Fig. 5. The decision variable zt
i j (see constraint 40) indicates

if a vessel j moors later than i and, at the same time, the

vessel j intersects with the berth length occupied by vessel

i (zt
i j ). Constraint 33 ensures that the total waiting time of

the schedule does not exceed the maximum total waiting

time (WF ). Constraints 34–36 assign the time between the

departure time of vessel i and the mooring time of vessel

j . For those vessels j that zt
i j �= 1, they are assigned M as

a value representing an unbounded time for the robustness.

Constraints 38 and 39 set the value of the available buffer

time after vessel i and its robustness value, respectively.

These mathematical models have been coded in IBM

ILOG CPLEX optimization studio 12.5 as detailed in the

Sect. 7.

6 Genetic algorithm

In this section, we describe two implementations of genetic

algorithms to solve the problems: BAP + QCAP (Fig. 4) and

robust BAP + QCAP (Fig. 5), respectively.

In the first problem, the goal is to minimize the service

time Ts (Eq. 1). Thus, the fitness F associated with each

chromosome is the service time (Ts) of that solution.

In the second one, the goal is to find a set of non-dominated

solutions (henceforth efficient set E) that is as close as to the

Pareto optimal set. In this case, two objective functions are

associated with each chromosome: T̂s and R̂ (see Eqs. 9 and

10, respectively), and the fitness F is computed according to

the Eq. (11). Below, we describe in detail both approaches.

In both GAs, constraint-handling mechanisms based on

special operators [17] have been used during the crossover

and mutation operations, as well as during the creation of the

initial population. This fact allows the GA to move inside

the feasible region as well as to improve the quality of the

solutions found.

6.1 A genetic algorithm to solve the BAP + QCAP

Algorithm 1 shows the structure of the GA we have consid-

ered herein. The core of this algorithm is taken from [8,9]

and is quite similar to others generational GAs described in

the literature [7] or [18]. In the first step, the initial pop-

ulation is generated and evaluated. Then, the GA iterates

over a number of steps or generations. In each iteration, a

new generation is built from the previous one by applying

the genetic operators of selection, reproduction and replace-

ment. These operators can be implemented in a variety of

ways and, in principle, are independent of each other. How-

ever, in practice all of them should be chosen considering

their effect on the remaining ones to get a successful overall

algorithm.

The approach taken in this work is the following:

– In the selection phase, all chromosomes are grouped into

pairs, and then each one of these pairs is mated or not

in accordance with a crossover probability (Pc) to obtain

two offspring.

– Each offspring, or parent if the parents were not mated,

undergoes mutation in accordance with the mutation

probability (Pm).

– Finally, the replacement is carried out as a tournament

selection (4:2) among each pair of parents and their off-

spring.

Algorithm 1 The genetic algorithm

Require: A BAP + QCAP instance P

Ensure: A mooring schedule for instance P

1. Generate the initial population;

2. Evaluate the population;

while No termination criterion is satisfied do

3. Group chromosomes from the current population;

4. Apply the reproduction operators to the chromosomes selected

at step 3 to generate new ones;

5. Evaluate the chromosomes generated at step 4;

6. Apply the replacement criterion to the set of chromosomes

selected at step 3 together with the chromosomes generated at step

4;

end while

return The schedule from the best chromosome evaluated so far;
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We consider that all chromosomes have the same number

of genes N (number of vessels |V |), and all populations have

the same number of chromosomes, popsize.

The coding schema is based on permutations of vessels,

each one with a given number of QCs. So a gene is a pair (i ,

qi ), 1 ≤ qi ≤ QC+
i , and a chromosome includes a gene like

this for each one of the vessels. For example, for an instance

with 5 vessels where the maximum number of QCs is 2, 3,

4, 3 and 2, respectively, two feasible chromosomes are the

following ones:

chr1: ((11) (21) (31) (42) (51))

chr2: ((32) (12) (22) (52) (43))

Note that, the same vessel may have different number of

QCs in each chromosome. In accordance with this encoding,

a chromosome expresses the number of QCs that each ves-

sel is assigned in the solution and an order for building the

schedule.

The order of vessels in chromosomes is used as a dispatch-

ing rule. Hence, we use the following decoding algorithm:

the genes are visited from left to right in the chromosome

sequence. For each gene (i, qi ), the vessel i is scheduled at

the earliest mooring time with qi consecutive QCs available,

so that none of the constraints is violated. If there are sev-

eral positions available at the earliest time, that closest to one

of the berth extremes is selected. Also, the QCs are chosen

starting from the same extreme of the berth.

For chromosome mating, we have considered a classi-

cal crossover operator such as generalized position crossover

(GPX) which is commonly used in permutation based encod-

ings. This is a two-point crossover operator which work as

follows. Let us consider two parents like:

pt1: ((11) | (21) (31) | (42) (51))

pt2: ((32) | (12) (22) | (52) (43))

Symbols “|” represent crossover positions 1 and 3, respec-

tively, in this example, which are selected at random for each

mating. Then, two offsprings are built taking the substrings

between positions 1 and 3 in each parent and then filling the

remaining positions with the genes representing the remain-

ing vessels taken from the other parent keeping their relative

order. So in this case the two offsprings are:

off1: ((12) | (21) (31) | (52) (43))

off2: ((31) | (12) (22) | (42) (51))

For mutation, we have implemented an operator that shuf-

fles a random substring of the chromosome and at the same

time changes the number of QCs assigned to each one of the

shuffled genes at random, provided that the number of QCs

is kept in between the proper limits for the vessel.

The initial population in generated at random, i.e., a ran-

dom order for the vessels is chosen and each vessel i is

assigned a number of QCs chosen uniformly in
[

1, QC+
i

]

.

The termination condition is given in one of these three

forms: (1) a number of generations, (2) a time limit or (3)

a number of evaluations.

6.2 A genetic algorithm to solve the robust BAP + QCAP

In this section, we describe a GA that proposes a set of poten-

tially efficient solutions E considering two optimization cri-

teria: the service time and the robustness. The objective of

this approach is to find a set E that is as close as to the Pareto

optimal set of the same instance.

Thus, we have modified the Algorithm 1 in the following

issues:

– The initial population is constructed in such a way a per-

centage of this population is at least, as good as the solu-

tion that the FCFS policy would propose.

– For each generation and for each chromosome, a pair of

random weights that sum 1 are assigned to each objective

function.

– Gene representation changes. The initial berthing posi-

tion is added to the pair (i, qi ). Thus, each gene is repre-

sented by (i, qi , pi ), where qi and pi are feasible values

for vessel i .

– Before performing crossover, mutation and replacement,

daughter and son inherits mom and dad weights, respec-

tively. Therefore, the replacement operation compares

daughter and mom, and son with dad. The two best chro-

mosomes pass to the following generation.

– In the decoding process to evaluate each chromosome, the

initial berthing position is given by each gene. Therefore,

this value is not computed by the decoding process. A

mooring time should be assigned to vessel i so that it is

feasible, taking into account that vessel i must be berthed

at quay from position pi with qi QCs without breaking

any of the problem constraints.

– Once the population of the next generation is obtained,

the efficient set E is updated.

Following, we describe in detail the issues that have been

modified with respect to the single-objective GA.

Representation Structure of each chromosome is similar to

the structure that is used in single-objective GA (Sect. 6.1).

However, the gene has been modified to consider the ini-

tial berthing position as part of its data. Thus, this value is

assigned by the GA instead of being computed by the decod-

ing function. Structure of each gene and each chromosome

is shown in Fig. 6.

It should be noted that each gene must be composed by

feasible values with respect to vessel i . That is, according

to the problem constraints, each vessel i can be assigned at

most QC+
i cranes. Therefore, 1 ≤ qi ≤ QC+

i . Likewise, if

the berth length is L , then ηi ≤ pi ≤ L − li − ηi .
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Fig. 6 Chromosome representation

Algorithm 2 shows an outline of the multi-objective GA.

Variable O indicates the number of objective functions that

are considered by the algorithm.

Below, we describe the main steps of this algorithm.

Initialization Construction of initial population is performed

so that the service time of a percentage of the initial pop-

ulation (GA parameter) is at least as good as the solution

provided by the policy FCFS. The other chromosomes are

constructed by instantiating each gene in the following way:

– Vessel identifier (i): an integer, between 1 and N is chosen

randomly. Two genes of the same chromosome cannot

have the same vessel identifier.

– Number of QCs: an integer, between 1 and QC+
i , is cho-

sen randomly.

– Initial position: an integer pi , between ηi and L − li −ηi ,

is chosen randomly.

Each chromosome x in the initial population is considered

to update the efficient set E . Following, we describe how is

performed this operation [2].

Update of efficient set E According to the concept of domi-

nance defined above, updating set E with a new solution x

consists of:

– Adding x to E if there is no other solution y ∈ E such

that y dominates x ,

– Removing from set E all solutions dominated by x .

Generations After the initial population has been generated,

the algorithm constructs a new generation of population for

each iteration, until some stop criterion is fulfilled.

Algorithm 2 multi-objective genetic algorithm

Require: A BAP + QCAP instance P , popsi ze, N ,O

Ensure: E : set of non-dominated solutions

pop0 ← generate_the_initial_population(popsi ze,N , O)

t ← 0

while No termination criterion is satisfied do

assign_weights(popt ,N ,O)

popt+1 ← construct_next_generation(popsi ze,N , O)

t ← t + 1

end while

return schedule for each element of efficient set E

Algorithm 3 construct_next_generation

Require: popt ,popsi ze,N ,O

Ensure: popt+1

i ← 0

assign_weights(popt ,N ,O)

i ← 0

while i < popsi ze do

m ← random integer between 1 and popsi ze, which has not been

selected yet in the current loop.

d ← random integer between 1 and popsi ze, which has not been

selected yet, in the current loop.

p ← random real between 0 and 1

daughter.weights ← chromosomem .weights

son.weights ← chromosomed .weights

if p ≤crossover probability Pc then

crossover(chromosomem ,chromosomed ,daughter ,son)

else

daughter ← chromosomem

son ← chromosomed

end if

p ← random real between 0 and 1

if p ≤ mutation probability Pm then

mutation(daughter )

end if

p ← random real between 0 and 1

if p ≤mutation probability Pm then

mutation(son)

end if

if daughter �= chromosomem then

evaluate daughter

E ← update_efficient_set(daughter )

end if

if son �= chromosomed then

evaluate son

E ← update_efficient_set(son)

end if

if daughter. f i tness ≤ chromosomem . f i tness then

popt+1 ← popt+1 ∪ {daughter}

else

popt+1 ← popt+1 ∪ {chromosomem}

end if

if son. f i tness ≤ chromosomed . f i tness then

popt+1 ← popt+1 ∪ {son}

else

popt+1 ← popt+1 ∪ {chromosomed }

i ← i + 2

end if

end while

Let popt be the population obtained in the generation t ,

Algorithm 3 shows how each generation is constructed.

Crossover Crossover operation is performed using the same

operator that is used by the single-objective GA (GPX). How-

ever, some differences there exist and these are explained in

the following.

The crossover receives one pair of chromosomes (mom

and dad), which are in the current population popt and have

been selected randomly. The objective of this operator is to

construct two offspring chromosomes (daughter and son).

For that, each time the crossover operation is performed, the

following steps are made:
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1. Two cross points are chosen randomly, k1 and k2 (1 ≤

k1 < k2 ≤ N ). Figure 7a and b show an example, where

N = 8, k1 = 3 and k2 = 6.

2. Each gene in chromosome mom and dad, which is in

position p, k1 ≤ p < k2 is copied to the same position

in chromosomes daughter and son, respectively.

3. Each gene in chromosome mom/dad, which is in posi-

tion p, 1 ≤ p < k1 is copied to the same position in

chromosome son/daughter.

4. Each gene in chromosome mom/dad, which is in posi-

tion p, k2 ≤ p ≤ N is copied to the same position in

chromosome son/daughter.

Figure 8 shows the position of genes that will be copied

from the chromosome mom to the offspring son. The same

procedure is made for the chromosome dad and the offspring

daughter.

One chromosome cannot have two genes with the same

vessel identifier. Therefore, if the vessel identifier in the gene

that will be copied already exists in the offspring (daugh-

ter/son), the vessel identifier in the new chromosome must

be modified.

The new value (i ′) is obtained from the first gene in the

chromosome parent (mom/dad) that has a vessel identifier

that does not exist in the offspring. Because the original vessel

identifier has been modified, it is necessary to ensure that the

number of QCs and the initial position in the gene are feasible

with respect to the new vessel identifier (i ′). If the number

of QCs or the initial position in the gene is higher than the

maximum value that is allowed for vessel (i ′), these values

are also modified, by the maximum values corresponding to

vessel (i ′).

Figure 9 shows an example where the identifier 6 must

be changed by the identifier 2, because the vessel 6 already

exists in the offspring. Once the identifier is modified by

2, the procedure must verify the number of QCs and initial

position in the same gene are feasible, with respect to the

vessel 2. In this case, the maximum initial position of vessel

2 is 400. Therefore, the value 473 in the same gene must be

modified to 400.

Mutation Mutation operation is performed on one chromo-

some, following these steps:

1. Two positions (k1 and k2) of the chromosome are chosen

randomly (1 ≤ k1 < k2 ≤ N ).

2. Positions of genes that are between k1 and k2, both

included, are modified randomly.

3. The number of QCs in each gene that is between k1 and

k2, both included, is modified by a feasible random value

with respect to the vessel in the same gene.

4. The initial position in each gene that is between k1 and

k2, both included, is modified by a random value that is

feasible with respect to the vessel that is in the same gene.

Figure 10 shows how the offspring son, which has been

obtained after the crossover operation, is mutated. First, two

values k1 = 2 and k2 = 4 are selected randomly. Then,

all genes between both positions are shuffled. The gene 2

is moved to position 4, the gene 3 to position 2 and gene

4 to position 3. Finally, the number of QCs and the initial

position of each gene in position p, 2 ≤ p ≤ 4 are modified

by selecting feasible random values for each one.

Evaluation of one chromosome/solution Function that eval-

uates each objective function of one chromosome and its

fitness (evaluate in Algorithm 3) is the responsible of assign-

ing a valid mooring time to each vessel. For that, it processes

each vessel in the same order that it appears in the chromo-

some. For each gene g in the chromosome, this procedure

assigns the mooring time most near to the arrival time of the

vessel g.i , such that all the problem constraints are fulfilled,

considering the initial position of the vessel i must be g.pi

and the number of QCs that must be available at this time is

at least g.qi .

Once a valid mooring time has been assigned to each gene

g, the two normalized objective functions: service time (Eq.

9) and robustness (Eq. 10) are computed; and, the fitness

assigned to the chromosome is computed according to the

Eq. (11).

7 Evaluation

The experiments were performed in a corpus of 100 instances

randomly generated, where parameters (maxQC, safeQC,

etc.) follow the suggestions of container terminal operators.

Thus, these instances correspond to configurations in real-

world scenarios. Each one is composed of a queue from 5

to 20 vessels. These instances follow an exponential distri-

bution for the inter-arrival times of the vessels (β = 20).

The number of required movements and length of vessels are

uniformly generated in [100, 1,000] and [100, 500], respec-

tively. In all cases, the berth length (L) was fixed to 700 m; the

number of QCs was 7 (corresponding to a determined MSC

berth line) and the maximum number of QCs per vessel was

5 (maxQC); the safety distance between QCs (safeQC) was

35 m and the number of movements that QCs carry out was

2.5 (movsQC) per time unit.

The two approaches developed in this paper, the GA and

the MILP model, were coded using C++ and the IBM ILOG

CPLEX optimization studio 12.5, respectively. They were

solved on a Core 2 Quad 2.83 Ghz with 4 Gb RAM.

In the GA, the population size was 500. Mutation and

crossover probabilities were Pm = 0.1 and Pc = 0.8, respec-

tively. Due to the stochastic nature of the GA process, each

instance was solved 30 times and the results show the average

obtained values.
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Fig. 7 Crossover points

applied to the parents

(a)

(b)

Fig. 8 Copy of genes to complete the offspring

Fig. 9 Ensure offspring

feasibility
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Fig. 10 An example of

mutation operation

7.1 BAP + QCAP

Table 1 shows the average results for CPLEX and GA for

each group of 100 instances with the same number of ves-

sels (5–20). The timeout was 10 s. For CPLEX, the reported

values are the average value of Ts for the solutions reached

(Avg Ts), the number of instances solved to optimality (#Opt)

and the number of instances solved without certify optimality

(#NOpt). The last two columns show the best and the aver-

age values of the solutions obtained by the GA in 30 runs,

respectively. Obviously, in all cases, the objective function

(Ts) increases as the number of incoming vessels increases

from 5 up to 20.

From these results, it can be observed that CPLEX was not

able to reach any optimal solution by the given timeout in at

least 25 % of the instances with 8 vessels or more. In addition,

it cannot get any optimal solution from 18 up to 20 vessels

with this timeout. Regarding GA, all instances were solved

and it can be observed that the average values were better

than those from CPLEX, the differences being in direct ratio

with the number of vessels. Here, it is important to remark

that GA reached approximately 1,000 generations in 10 s.

However, the GA was able to converge in lower times.

Figure 11 shows the GA convergence for one represen-

tative instance of 20 vessels indicating for each generation

the average of the best value [Avg(Best)] and the average of

the entire population [Avg(Pop)], so that near-optimal values

were obtained after 150 generations, taking about 1.5 s.

Considering the previous test case, the binomial sign test

for a single sample [4,21] has been employed to show that

Table 1 Comparison CPLEX with GA (timeout 10 s)

|V | CPLEX GA

Avg Ts #Opt #NOpt Best Ts Avg Ts

5 267.08 100 0 267.08 267.08

6 339.25 97 3 339.21 339.21

7 417.52 88 12 416.70 416.80

8 501.41 74 26 497.70 497.98

9 585.94 58 42 575.36 576.22

10 690.91 38 62 667.15 669.55

11 797.15 24 76 758.12 762.88

12 927.85 18 82 852.99 860.78

13 1,065.32 12 88 947.88 959.54

14 1,212.86 6 94 1,049.60 1,064.61

15 1,406.21 3 97 1,154.58 1,172.50

16 1,610.21 2 98 1,268.47 1,291.39

17 1,796.58 1 99 1,372.89 1,402.45

18 2,101.27 0 100 1,486.20 1,523.05

19 2,333.46 0 100 1,605.74 1,651.37

20 2,603.36 0 100 1,733.20 1,788.23

the average fitness from generation 253 has a similar quality

to that obtained with a higher number of generations.

Thirty experiments have been performed on the GA. For

each one, the average fitness per generation g (1 ≤ g ≤ 500)

has been computed. Then, the results given by the process

with g and 500 generations have been compared and classi-

fied into two categories: (1) number of times that the aver-

age fitness obtained with 500 generations was better than

that obtained with g generations; (2) the opposite case.

Table 2 shows the number of experiments that correspond

123



Prog Artif Intell (2014) 2:177–192 189

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0  100  200  300  400  500

T
s

Generations

Avg(Best)

Avg(Pop)

Fig. 11 Convergence of the genetic algorithm

Table 2 Model for binomial sign test for a single sample

Generations (g) Category 1 Category 2 Total

400 15 15 30

350 16 14 30

300 17 13 30

270 16 14 30

253 20 10 30

100 30 0 30

20 30 0 30

Table 3 Probability of obtaining x or more experiments

Generations (g) Category 1 (x) Category 2 (N − x) P(≥ x)

400 15 15 0.572

350 16 14 0.427

300 17 13 0.292

270 16 14 0.427

253 20 10 0.049

100 30 0 9.313e−10

20 30 0 9.313e−10

to each category, considering a total of 30 experiments, and

g = {400, 350, 300, 270, 253, 100, 20}.

Within a binomially distributed population, the likelihood

that an experiment will fall in category 1 will equal π1, and

the likelihood that an experiment will fall in category 2 will

equal π2. To apply the statistical test, H0 : π1 = 0.5 has been

specified as the null hypothesis.

P(≥ x) =

n
∑

r=x

(

n

r

)

(π1)
r (π2)

(n−r) (12)

Equation (12) is employed to compute the probability that

a number of experiments equal to or greater than x out of a

total of n experiments will fall in one of the two categories.

These probabilities are shown in Table 3.

Table 4 Average Ts for 20 vessels setting different timeouts

Timeout (s) CPLEX Best GA Avg GA

5 3,187.01 1,743.04 1,799.87

10 2,603.36 1,735.56 1,787.54

20 2,406.16 1,729.53 1,779.44

40 2,251.88 1,726.79 1,773.20

60 2,126.56 1,725.57 1,770.19

Given that a nondirectional alternative hypothesis has

been employed (π1 �= 0.5), the null hypothesis can be

rejected if P(≥ x) ≤ α/2 [21]. According to the results in

Table 3, if α = 0.05, the null hypothesis cannot be rejected

for the values g = {400, 350, 300, 270, 253} because the

probabilities are >0.025. However, the null hypothesis is

rejected for the other cases. There exists a considerable dif-

ference between the average fitness that is obtained with a

number of generations lower than 253, and the average fit-

ness that is obtained with 500 generations. Then, it means

that with g ≥ 253 is possible to obtain an average fitness

with similar quality to that obtained with 500 generations.

Table 4 shows how the average Ts for 20 vessels decreases

as more computation time was allowed. In this experiment,

the timeout was set from 5 to 60 s. It can be observed, the GA

approach does not require a large timeout (the improvement

is lower than 1 % beyond 5 s). Moreover, CPLEX was given

a timeout up to 300 s and it obtained an average Ts (1,876.27)

greater than the one obtained by the GA after 5 s (1,743.04).

7.2 Robust BAP + QCAP

Table 5 shows the results of the CPLEX and the GA for the

robust BAP + QCAP for each group of 100 instances with

the same number of vessels (5–20) and the same weights λ ∈

{0, 0.2, 0.5, 0.8, 1}. The timeout was set to 10 s. For CPLEX,

the reported values were the average value of F for the solu-

tions reached (Avg F), the number of instances solved to

optimality (#Opt), the number of instances solved without

certify optimality (#NOpt) and the number of instances for

which no solution was reached by the timeout (#NSol). Note

that CPLEX was not able to reach the optimal solution even

for instances with five vessels (e.g., λ = 0.2). Furthermore,

for instances with more than eight vessels, CPLEX was not

able to reach a feasible solution for all instances while robust

GA always obtains feasible solutions for all instances. Note

that robust GA was able to get better solutions (lower F val-

ues) for instances with more than ten vessels. CPLEX solver

was not able to find feasible solutions to most instances due

to the fact that the addition of the robustness objective func-

tion and the variables related to it makes this problem much

harder.
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Table 5 Average F values obtained by CPLEX with robust

BAP + QCAP model

|V | λ Robust CPLEX Robust GA

Avg F #Opt #NOpt #NSol Best F Avg F

5 0 −0.723 100 0 0 −0.715 −0.696

0.2 −0.481 99 1 0 −0.465 −0.455

0.5 −0.141 97 3 0 −0.096 −0.090

0.8 0.150 99 1 0 0.229 0.230

1 0.324 100 0 0 0.436 0.437

6 0 −0.698 82 18 0 −0.708 −0.674

0.2 −0.450 83 17 0 −0.437 −0.420

0.5 −0.106 86 14 0 −0.066 −0.059

0.8 0.180 90 10 0 0.283 0.284

1 0.346 92 8 0 0.419 0.426

7 0 −0.684 53 47 0 −0.719 −0.669

0.2 −0.438 48 52 0 −0.435 −0.409

0.5 −0.091 57 43 0 −0.050 −0.043

0.8 0.184 70 30 0 0.272 0.275

1 0.342 83 17 0 0.428 0.428

8 0 −0.637 27 73 0 −0.712 −0.648

0.2 −0.391 29 70 1 −0.417 −0.386

0.5 −0.059 34 65 1 −0.031 −0.021

0.8 0.217 42 57 1 0.272 0.274

1 0.368 60 40 0 0.414 0.414

9 0 −0.612 15 80 5 −0.709 −0.631

0.2 −0.353 14 81 5 −0.407 −0.368

0.5 −0.019 16 81 3 −0.019 −0.008

0.8 0.254 27 70 3 0.283 0.287

1 0.404 40 58 2 0.435 0.436

10 0 −0.549 9 80 11 −0.699 −0.616

0.2 −0.294 6 80 14 −0.390 −0.350

0.5 0.019 12 74 14 −0.006 0.003

0.8 0.310 14 79 7 0.297 0.300

1 0.454 24 68 8 0.440 0.440

15 0 −0.461 0 17 83 −0.644 −0.530

0.2 −0.167 0 15 85 −0.316 −0.268

0.5 0.103 0 17 83 0.032 0.044

0.8 0.372 0 16 84 0.291 0.294

1 0.546 1 18 82 0.406 0.407

20 0 – 0 0 100 −0.564 −0.449

0.2 −0.035 0 1 99 −0.246 −0.204

0.5 0.243 0 1 99 0.066 0.074

0.8 0.520 0 1 99 0.297 0.299

1 – 0 0 100 0.417 0.417

The evaluation of the robust BAP + QCAP model pre-

sented in Sect. 3, as a multi-objective optimization problem,

requires the study of the dominance of solutions as well as the

Pareto front. Thus, for each instance, a set of non-dominated

solutions after a timeout of 10 s was obtained. Figure 12

shows the Pareto front for two representative instances of 10

and 20 vessels, respectively. This Pareto front is an important

tool for the decision maker (the container terminal opera-

tors) to assess the trade-off between T̂s and R̂ of the different

schedules obtained according to their preferences. The Pareto

front of the CPLEX consists of the non-dominated solutions

obtained by solving the mathematical model with different

λ values ranging from 0 to 1 in steps of 0.1. Note that the

(a)

(b)

Fig. 12 Pareto front for representative instances

GA obtained a large set of solutions over the Pareto front.

Moreover, in the case of ten vessels, the solutions obtained

by the GA dominates the ones obtained by CPLEX (Fig.

12a). Figure 12b shows the Pareto front for a representative

schedule of 20 vessels. In this case, CPLEX was not able to

reach feasible solutions.

The performance (robustness) of the schedules obtained

by the GA with a timeout of 10 s was evaluated by generating

actual scenarios with some incidences in the actual handling

time of the vessels. An incidence over a vessel i is modeled

as a delay d in the handling time of this vessel i . An incidence

is absorbed if there is enough buffer time behind the vessel i

so as to not alter the mooring time of the subsequent vessels.

For each instance, the vessels that vary their handling times

were uniformly chosen among all the vessels.

In this experiment, 100 instances of 20 vessels were eval-

uated. For each instance, four different schedules were cho-

sen from the set of efficient solutions of the multi-objective
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Table 6 Average of incidences absorbed in schedules of 20 vessels

Range Rm R1 R2 RM

d ∈ [1, 0.2 hi ] 29.37 45.67 60.71 71.95

d ∈ [1, 0.5 hi ] 26.25 43.10 59.14 71.29

d ∈ [1, 0.8 hi ] 22.44 37.53 54.63 66.55

d ∈ [1, 1.0 hi ] 20.42 37.17 53.53 65.50

d ∈ [1, 1.2 hi ] 19.49 35.15 50.79 62.79

GA according to their robustness: the one with the minimum

robustness (Rm), the one with the maximum robustness (RM )

and two intermediate robust schedules (R1 and R2).

The incidences (delays, d) introduced were randomly cho-

sen from a range. This range varies from a minimum value

(1) to a maximum value, which is related to the handling time

(hi ) of the vessel affected by the incidence (first column of

Table 6). For each range, 100 incidences were uniformly cre-

ated and applied to the four schedules (Rm , R1, R2 and RM )

of each instance.

Table 6 shows the percentage of incidences absorbed by

each type of schedule. It can be observed that the more the

robust schedule, the more are the incidences absorbed. For

instance, with delays d ∈ [1, 0.5 hi ], the Rm schedule only

absorbed 26.25 % of incidences on average, but the RM

schedule absorbed up to 71.29 %. Note that as the delay

became larger, fewer schedules can absorb the incidences.

With delays between ranges of [1, 0.2 hi ], the RM sched-

ule can absorb 71.95 % of incidences on average. However,

with larger ranges, the incidences absorbed decreased down

to 62.79 % on average.

8 Conclusions

The competitiveness among container terminals causes the

need to improve the efficiency of each one of the subprocesses

that are performed within them. However, this efficiency is

affected by the uncertainty of the environment such as bad

weather, breakdowns of the engines, delays, etc. This paper

focuses on two of the main related problems, the berth allo-

cation and QCAP, in an integrated way. To this end, a mixed

integer lineal programming model and a GA were developed

in a dynamic and continuous BAP + QCAP. The MILP model

was unable to get optimal solutions when a reasonable time-

out is set or when the problem becomes harder (more than

ten vessels). Moreover, many of the instances were solved but

without any guarantees of being the optimal ones since the

timeout was reached. However, the GA approach was able to

obtain near-optimal solutions in lower computational times

and it also maintained a rapid convergence of the results even

with large vessel queues. From these results, it is concluded

the adequacy of a metaheuristic approach based on GA for

solving the BAP + QCAP problem.

These two approaches, the MILP model and the GA,

were extended as a multi-objective optimization problem

to cope the uncertainty by obtaining robust schedules.

The robustness of a schedule is related to the operational

buffer times between the vessels. This new problem (robust

BAP + QCAP) becomes harder and even instances of 5 ves-

sels were not optimally solved by the MILP model in a rea-

sonable time. Since the two objectives considered in this

study, ’service time’ and ’robustness’, are opposite, there is no

single optimal solution for these scheduling problems such

that it is necessary to evaluate the trade-off between these

objectives functions. Thereby, the multi-objective GA was

able to obtain a set of efficient solutions and a study of the

Pareto front was presented. Visualizing this Pareto front helps

to the container terminal operators to decide which schedule

is better depending on the actual state.

The robustness, that is tackled in this study, is related to

the use of berth as resource. This is a clear contribution to the

adequate resolution of robust BAP + QCAP. From this point,

since there is no previous knowledge about incidences, it

could be analyzed how to distribute the operational buffer

times among the vessels equally. To this end, other evo-

lutionary multi-objective algorithms, such as NSGA-II [3]

or SPEA2+ [14], might be employed to introduce this new

objective function into the model. Furthermore, robustness

related to shared QCs is an interesting problem to be stud-

ied. When QCs are considered for robustness, a delay in the

arrival or handling time of a vessel might be propagated to

those vessels with QCs in common although they do not

occupy the same berth space. In this case, a further analysis

is needed to re-allocate the QC correctly, which gives rise to

a new re-scheduling problem.
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