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This paper starts by studying the performance of two inte"elated genetic 

algorithms (GA) for the static Single Machine Scheduling Problem (SMSP). 

One Is a single start GA, the other, called MetaGA, is a multi-start version 

GA. The performance is evaluated, for total weighted tardiness, on the basis 

of the quality of scheduling solutions obtained for a limit on computation 

time. Then, a scheduling system, based on Genetic Algorithms is proposed, for 

the resolution of the dynamic version of the same problem. The approach 

used adapts the resolution of the static problem to the dynamic one in which 

changes may occur continually. This takes into account dynamic occu"ences 

in a system and adapts the cu"ent population to a new regenerated 

population, 

1. INTRODUCTION 

The SMSP is a class of scheduling problems that deals with sequencing a set of jobs 

on a single processor or machine. 

The study of SMSP is important by itself and also, among other reasons, because 

it can provide help and insight into the resolution, understanding, managing and 

modelling more complex multi-processor problems. In fact, quite often, the single

machine problem appears as a component in larger scheduling problems (Baker, 

1974). Sometimes SMSP are independently solved and results incorporated into 

larger and more complex problems. For example, in multistage multiple machine 

problems there are often critical machines, i.e. bottlenecks, whose processing 

capacity are lower than the necessary. The analysis and treatment of bottlenecks as 

single-machines may determine the properties of the entire schedules for complex 

systems (Goldratt, 1986), (Adams, 1988), (Brownie, 1988) This treatment can be 

applied to manufacturing systems comprehending a network of distributed 

manufacturing units, or virtual enterprises (Camarinha-Matos, 1999). Here too, a 
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critical unit may be identified in which the work schedule can restrict the properties 

of the work schedule in the entire network of units. 

Manufacturing activity is frequently subject to several sorts of random 

occurrences and perturbations, such as random job releases, machine breakdowns, 

jobs cancellation and due date and time processing changes. Thus, the scheduling of 

manufacturing operations in practice is, essentially, a dynamic problem. 

Due to their dynamic nature, real scheduling problems have an additional 

complexity in relation to static ones. In many situations these problems, even for 

apparently simple situations, are hard to solve, i.e. the time required to compute an 

optimal solution increases exponentially with the size of the problem (Morton, 

1993). 

In the static SMSP all jobs are known before processing starts. In the dynamic 

SMSP job release times are not fixed at a single point in time, i.e. jobs arrive to the 

system at different times. Scheduling problems can also be classified as 

deterministic, when processing times and all other parameters are known and fixed, 

and stochastic, when some or all parameters are uncertain (French, 1982). Here, we 

deal with these two cases. The adequacy and efficiency of the Genetic Algorithms 

(GA), for a particular version of this class of problems, is studied. 

Some previous GA studies for the static case of the SMSP are referred in (Davis, 

1991) (Madureira, 1999) (Michalewicz, 1992) (Morton, 1993). 

2. TOTAL WEIGHTED TARDINESS SMSP 

First we start with the static SMSP for minimising total Weighted Tardiness. The 

following assumptions are considered: a set of n independent jobs (j=l, ... ,n) is 

available for processing at time zero and job attributes are known in advance; a 

machine is continuously available and is never kept idle if working is waiting; a 

machine can handle one job at a time; job set-up times are independent of job 

sequence and included in job processing times; jobs are processed to completion 

without pre-emption. 

For each job j, let p1 be its processing time, "' its due date and w1 the penalty 

incurred for each unit of time late. The processing of the first job begins at time t=O. 

The tardiness of a job is given by Tr Max {t1+pr"'· 0} where is the start time of 

job j. The objective is: 

Min Ewlj, with 1j= Max {t1+pr"'· 0} (1) 

This problem is a combinatorial optimisation NP-complete problem (Lawer, 

1977). Optimal algorithms for this problem would require a computational time that 

increases exponentially with the problem size (Baker, 1974), (Rinnooy Kan, 1975), 

(Abdul-Razaq, 1990), (Potts, 1991). 
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3. A GENETIC ALGORITHM FOR THE SMSP 

Genetic Algorithms (GA) were originally proposed by Holland (Holland, 1992). In 
discovering good solutions to difficult problems, these algorithms mimic the 
biological evolution process. 

A GA is based on populations of solutions. Initially a population is selected by 
some mechanism. Then, the GA generates other solutions, which tend to be better, 
by combining chromosomes, i.e. solutions, through the use of genetic operators for 
selection, crossover and mutation. 

The interest of GA is that although guarantees of optimal solutions to problems 
cannot be given, good solutions are likely to be obtained within the time available to 

get one when using GA (Crauwels, 1998). So, GA can be both robust and flexible in 
solving hard problems such as the one here considered. 

In developing a genetic algorithm we must have in mind that its performance 
depends largely on careful design and set-up of the algorithm components, 
mechanisms and parameters. This includes genetic encoding of solutions, initial 
population of solutions, evaluation of the fitness of solutions, genetic operators for 
the generation of new solutions and parameters such as population size, probabilities 

of crossover and mutation, replacement scheme and number of generations. 

3.1 Solution Encoding 

In this study, solutions are encoded by the natural representation (Bagchi, 1991). 
In this representation each gene represents a job index. The gene position in a 
chromosome represents the job position in a scheduling solution, i.e. in a sequence, 
defining, therefore, the job processing order or priority. The number of genes in the 
chromosome represents the number of jobs in a solution. 

3.2 Initial Population Generation 

An initial solution is generated by a procedure, which we call Randomized 

Earliest Due Date (REDD). This generates solutions by exchanging pairs of jobs, 
represented by their indexes, randomly chosen from a sequence of jobs established 
by the Earliest Due Date rule. 

Thus, we expect to generate a good initial solution from which an initial 
population will be developed. This is done using a neighbourhood generating 
mechanism which exchanges jobs not apart more than afpositions. The distance af 

is dependent on problem size and is given by af= p*n, where p is a percentage and n 

the number of jobs. This generating mechanism produces a population size of N 

different individuals or solutions, with: 
n-2 

N=(n-1)+ (2) 
i=n-qf 

Thus, in a solution with n jobs, new solutions are successively generated by 
exchanging the first job with the next afjobs, then the second with the next afjobs, 
and so on, until the last solution is obtained by exchanging the (n-J)th job with job 
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nth. For example, if the initial solution is x1 = [5 4 2 3 1], and p =60% than the 

population N (xJ is generated by exchanging 2 jobs not apart more than 3 positions, 

i.e. af= 60%*n, with n=5. Therefore the following 9 solutions are obtained: [4 52 3 

1], [2 4 53 1], [3 4 2 5 1], [52 4 3 1], [53 2 4 1], [5 1 2 3 4], [54 3 2 1], (54 1 3 2], 

[54 2 1 3]. 

In GA the quality of results tends to increase with population size. However, the 

time required for the search procedure also increases. Therefore, when using GA the 

size of the population can inhibit obtaining satisfactory solutions within an 

acceptable time frame. Having this in mind, a sub-population with size N' is used in 

this work, which is a quarter of the population size N above referred. The N' 

solutions are randomly chosen from the whole population. The parameter defmition 

presented in this section was based on previous work (Madureira, 1999). 

3.3 Genetic Operators 

Selection 
Individuals, i.e. solutions, are selected from the population and combined to produce 

descendants. 

We start by comparing two selection methods, namely the Roulette Wheel 

Selection (RWS) (Davis, 1991) and Random Selection (RS). 

The computational tests involved some instances of the Weighted Tardiness 

problem with 40 and 50 jobs extracted from OR-Library (in website1). 

From the tests carried out the advantages of the RWS in relation toRS, were not 

clear. In fact, there were minor differences between both selection mechanisms. 

Moreover, both obtained the best solutions on the same number of instances. We 

noticed, however, that the RS method was faster and simpler to implement than 

RWS. For this reason we used this method. 

Crossover 
Depending on the problems to solve and their encoding, several crossover operators 

may be used namely one point, two points, uniform and order crossover (Davis, 

1991). 

Here, we use the order crossover operator. This chooses randomly two points in a 

chromosome between which the characters, i.e. the genes, and their relative positions 

are kept unchanged in the offspring, (Pirlot, 1992). The order crossover operator will 

be applied to M pairs of solutions randomly chosen, with M=N/2, where N is the size 

of the population. 

Mutation 
As mutation operator we use the inversion mechanism to prevent the lost of 

diversity. Thus, two points in a chromosome are randomly selected between which 

the order of genes, i.e. the processing order of the jobs, is reversed. 

In this work some computational tests were carried out for establishing the value 

of the mutation probability, which determines the mutation rate. 
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The tests were perfonned involving several instances of the Weighted Tardiness 
problem for 40 and 50 jobs as previously referred. The values of the probabilities 
tested were 0.1, O.ol and 0.001. 

Probability of 0.1 proved to be better for the tests carried out. This may be 
explained by the larger diversity of individuals generation due to the larger 
probability. 

3.4 Replacement Scheme 

When creating a new population by crossover and mutation we must avoid loosing 
the best chromosomes or individuals. To achieve this, the replacement of the less fit 

individuals of the current population by offspring is based on elitism (Davis, 1991) 
(Michalewicz, 1992). Thus, the best individuals, i.e. solutions, will survive into the 
next generation. However, duplicated solutions may occur. To minimise this, the 
inversion operator is applied to all duplicated solutions. 

4. COMPUTATIONAL RESULTS 

This section presents the results of the GA on the resolution of a set of instances of 
the Weighted Tardiness problem. 

A software tool was developed to perfonn the computational study. The GA was 

coded in C language and the computational tests were carried out on a PC Pentium 
Pro 180Mhz 

The behaviour of the different parameters of the GA was evaluated through a set 
of preliminary computational tests and their values were tuned according results. The 
computational tests involved 10 instances of the Weighted Tardiness problem with 
40 and 50 jobs. As stopping criteria for the GA search we use a limit on the number 
of generations. 300 and 450 were used respectively for the 40 and 50 job problems. 

In order to analyse and discuss the perfonnance of the GA, the best value of the 
Weighted Tardiness and its deviation from the optimal were compared, Table 1. 

Table 1 C 1 ul fr GA - omputationa res ts om 
.......... __ ,wt40e-.!WI48ewt401-.-b-I-J 

- _, - - - - wt5Gs - wt501 wt50J 
0- 913 1225 537 -,., 6955 024 - 16225 9737 2134 "" Z5l3 :1691 1511 26276 11413 1499 9114 1H55 

'*'Value 1012 1477 537 2094 990 71511 7005 7133 IIZ98 11557 2447 2009 2619 2878 1640 26904 11431 9071 10556 10964 

Dev.BcotVoiiiC 10.1% 20.6% 0.0% 0.0% 0.0% 2.9% 10.11% 3.9% IZ.I% 11.7% 14.7% 0.7% 1.4% 6.9% 1.0% 2.4% 0.2% 6.7% 6.11% 2.9% 

The results show that the algorithm achieved good perfonnance for most 
instances of the problem. Optimal solutions were even obtained for instances wt40c, 
wt40d and wt40e. The GA achieved an average deviation of 7% from the best 

solution to the optimal. The computation times were 7 and 24 minutes respectively 
for problems with 40 and 50 jobs. 

Large variations can be noticed on the results. This may be due to the strong 
randomness introduced in the algorithm and premature convergence. With a higher 
mutation probability, to introduce more diversity and avoid premature convergence, 
the perfonnance of the algorithm might improve. 
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4.1 The MetaGA Algorithm 

In an attempt to improve the quality of the GA a multi-start version of the GA, called 
MetaGA, was tested. With this version we run independently the GA, several times, 
with different initial populations. In this case, we define three generations. From the 
obtained results, two further measures were collected, i.e. the average value and its 
deviation from the optimal. 

An important improvement in the results was obtained with the MetaGA, for the 
same problem instances, Table 2. Deviations were on average less then 3% from the 
best to the optimal solution and 7 optimal solutions were found. 

TbllC "al lfroMGA a e - amputation resu ts m eta 

"""' ... wHic wt40d wt40e- wt4GB -h WNOI-J WI!OaW1511b--- -wt5G&W15Gitwt501 wiSOJ 
913 1:125 537 20M ,. 055 6lJ4 61165 16225 m7 21:14 I"' 25113 201 1511 26376 mu .., !1114 IISII 

"""Value 13 1373 537 lll94 990 7151 6603 '7046 17003 10621 JD56 Z009 2513 2691 1511 26441 11431 9071 9913 10!164 

pev.Bat Value p.O% 12.1% 0.0% 0.0% 0.0% 2.1% 4.4% 2.6% 4.1% 9.1% 10.4% 0.7% 0.0% 0.0% 0.0% 0.6% 0.2% 6.7% 1.0% 2.1% 

j96o 1466 m 2479 1111 7359 7073 7099 17741 10979 ln., 2049 269 2791 1571 26113 12202 9200 10191 12161 

pev.A- .1% 19.7% 2.1% 11.4% 19.0% 5.1% 11.1% 3.4% 9.4% 12.1% ll.t% 2.7% 2.1% 4.0% 4.0% 2.3% 7.0% 1.2% 3.2% 14.2% 

As we can see from the results presented m Table 2, the obtained average values 
were better than the values obtained from single start GA, presented on Table I, in 

most of the instances. The deviations from the average value to the optimal were on 
average less then 8%. This may be considered a relatively good performance 
considering the extreme behaviours of the algorithm. 

The set of tests carried out suggests that applying this MetaGA approach to 

genetic algorithms may improve their performance. This tends to offer progressive 
improvements of solutions with moderate additional computational effort. In this 
way, good balance between computational effort and quality of solutions can be 

achieved. 

5. DYNAMIC SINGLE MACHINE SCHEDULING PROBLEM 

The static SMSP refers to the situation in which all jobs are simultaneously available 
for processing. The complexity increases when the dynamic problem is to be solved. 

Considering different job release times, the completion time q of a job j in a 
sequence can be given by: 

y = Max{y-J. rj} + PJ (3) 

where rj is the release time ofj. 
Some machine idle time may result from unavailability of the next job in the 

sequence. The machine idleness betweenjobj andj-1 can be given by: 

Idleness O.j-1) = Max{(rr q_J), 0} (4) 

We can see the static SMSP as a relaxation of the dynamic SMPS by considering 

release times equal to zero, i.e. rro. for allj. 
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S.l Scheduling Dynamic SMSP 

In a dynamic environment frequent rescheduling of work is necessary due to 
variations on working conditions and requirements over time. This is due to many 
random events or disturbances as previously referred. 

In this work, a scheduling system based on a GA is designed to react to such 

random events. These could be classified in two categories: 

• Partial events, which imply changes in job attributes, such as job 
processing times, due dates and release times; 

• Total events, which imply changes in population structure, such as new job 
arrivals and jobs cancellation. 

While partial events only require a modification procedure to redefme job 
attributes and a re-evaluation of the fitness function of solutions, total events require 
a modification on chromosome structure and size, by inserting or deleting genes, as 
well as the re-evaluation the fitness function. Therefore, under a total event the 
modification of the solutions population is imperative. In this work, this is carried 

out by the mechanisms described in section 3.2. 

Rescheduling from the beginning is normally to be avoided, considering the 
processing times involved and the frequency of the rescheduling. However if work 
has not yet started and time is available, then an obvious and simple approach to 
rescheduling would be to restart the scheduling from scratch with the new modified 

population resulting from a disturbance, i. e. a new job arrival. When there is not 

enough time to reschedule from scratch or job processing has already started, a re

use approach must be considered which builds on the current schedule. 
These views are imbedded in our proposed approach embodied into a dynamic 

scheduling system structured in three modules, namely pre-processing, scheduling 
and rescheduling modules, Figure I. 

I External eventl 

GA based Schedullng System \J 
.I Currentpopulolion 

GAbased 
_Prc!IIOmDorfWOnl Pre-processing I Rescheduling 

I 'I Scheduling 

I. 
Modilledpop.Jio · 

I SOlution },. 

Figure 1 - Dynamic Scheduling System based on GA 

Pre-processing module 

I 

The pre-processing module deals with processing input information, namely problem 

definition and instantiation of algorithm components and parameters. With the input 
information the pre-processing module generates the initial individual and the initial 
population, following the procedures described in section 3.2. 
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Scheduling module 

The scheduling module is concerned with the application of the genetic algorithm for 

fmding a near-optimal solution to a deterministic problem, where all job attributes 

are known in advance. 

The algorithm described in section 3 and its MetaGA version, can be applied 

after some adaptations to take into account job release times. One of these has to do 

with the fitness function. 

Thus, whenever new events occur, deterministic problems are generated by the 

rescheduling module and then solved by the scheduling module. 

Rescheduling module 

Rescheduling due to new events can be based on two approaches. The first discards 

the current population and generates a new population from the beginning whenever 

a new event, changing the problem conditions, occurs. This is achieved by restarting 

the scheduling module with the new problem. In real scheduling problems, 

continually subject to several changes over time, on occasions this approach may not 

perform well, because it implies many successive restarts, lost of inherit genetic 

characteristics from current population of individuals and is likely to be time 

inefficient. 

With the other approach, a new population is created through modification of the 

existing one to take into account changes that have occurred on individuals. This 

modification of the current population is carried out between successive random 

events. This means modifying the current individuals and population size taking into 

account problem changes due to external events, allowing the schedule module to 

continue the search process based on the new modified or regenerated population. 

This procedure, leads to inheritance of good characteristics of schedules and is likely 

to be more efficient. 

When the random event is a new job arrival then it must be inserted into the 

sequence of existing jobs. To carry this out two procedures can be implemented: 

• Randomly select one position to insert the new gene into the chromosome, 

i.e. randomly schedule a new job among the existing jobs; 

• Use some intelligent mechanism to insert the new job into the sequence. 

When a job is cancelled, the correspondent gene has to be deleted from every 

chromosome. 

After the insertion or deletion of genes is carried out, population updating is done 

by updating the size of the population and ensuring a structure identical to the 

existing one. Thus, either some further chromosomes have to be generated through 

some procedure, i.e. REED rule, or some existing chromosomes have to be deleted. 

In this case either the choice could be random or fall on the less adapted 

chromosomes. After this is done, the scheduling module can apply the search process 

with the new updated population. 
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6. CONCLUSIONS 

In this paper two interrelated genetic algorithms for the minimisation of the static 
weighted tardiness SMSP are proposed. One is a single start GA, the other, a multi
start version GA, called MetaGA. The obtained results show that these GA perform 
well for the cases studied, being possible to find good solutions in a short time, i.e. a 
few minutes of CPU time. Substantial performance improvements with the MetaGA 
were obtained in relation to single start GA. 

We also propose a scheduling system based on genetic algorithms to solve the 
dynamic version of the problem. A population regenerating mechanism is put 
forward. This adapts the population to a new population, which increases or 
decreases according to new job arrivals or cancellations. 

In studying the dynamic problem we are particularly concerned with evaluating 
the adequacy of the GA approach to real world scheduling problems. Thus, our work 
is being further developed to consider other relevant objective functions. Having in 
mind that finishing a job early, i.e. when tardiness is zero, does not necessarily 
means good performance, one such function, which seems important, is the accuracy 
of achieving due dates. 

These developments will permit to construct multi-criteria analysis procedures 
that may be used in Decision Support Systems for scheduling. 
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