

A genetic algorithm for the partial binary constraint
satisfaction problem: an application to a frequency
assignment problem

Citation for published version (APA):

Kolen, A. W. J. (2006). A genetic algorithm for the partial binary constraint satisfaction problem: an
application to a frequency assignment problem. METEOR, Maastricht University School of Business and
Economics. METEOR Research Memorandum No. 045 https://doi.org/10.26481/umamet.2006045

Document status and date:
Published: 01/01/2006

DOI:
10.26481/umamet.2006045

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Aug. 2022

https://doi.org/10.26481/umamet.2006045
https://doi.org/10.26481/umamet.2006045
https://cris.maastrichtuniversity.nl/en/publications/61f04ac9-be8d-434f-80d3-4fd63e9aec0a

Antoon Kolen

A genetic algorithm for the partial binary

constraint satisfaction problem: an application to

a frequency assignment problem

RM/06/045

JEL code: C61

Maastricht research school of Economics

of TEchnology and ORganizations

Universiteit Maastricht

Faculty of Economics and Business Administration

P.O. Box 616

NL - 6200 MD Maastricht

phone : ++31 43 388 3830

fax : ++31 43 388 4873

A genetic algorithm for the partial binary constraint

satisfaction problem: an application to a frequency

assignment problem.

Antoon Kolen ∗

October 12, 2006

Abstract

We describe a genetic algorithm for the partial constraint satisfaction problem.
The typical elements of a genetic algorithm, selection, mutation and cross-over, are
filled in with combinatorial ideas. For instance, cross-over of two solutions is performed
by taking the one or two domain elements in the solutions of each of the variables as
the complete domain of the variable. Then a branch-and-bound method is used for
solving this small instance. When tested on a class of frequency assignment problems
this genetic algorithm produced the best known solutions for all test problems. This
feeds the idea that combinatorial ideas may well be useful in genetic algorithms.

1 Introduction

A constraint satisfaction problem (CSP) is a problem defined by a finite set of variables,
each of which has a finite set of possible values (the domain). Next, a set of constraints
defined on these variables is given, which determine feasible combinations of domain el-
ements of multiple variables. We consider only binary constraints, where the number of
variables involved in each constraint is restricted to two. So, a constraint may forbid only
pairs of domain elements. A solution of a binary constraint satisfaction problem con-
sists of exactly one domain value in the domain of each variable, such that no forbidden
combinations are present. We add one more feature to the binary constraint satisfaction
problem (BCSP), namely penalties for domain values in the domain elements and penal-
ties for pairs of domain elements. The value of a solution is the sum of the penalties.
The objective of this partial binary constraint satisfaction problem (PBCSP) is to find a
solution of minimum value. Note that standard constraints can be modeled with penalties
by incurring very high penalties for forbidden combinations. Therefore, in the sequel we
will only consider constraints with penalties.
In [3] genetic algorithms have been described for CSP problems. We develop a genetic
algorithm specifically suitable for PBCSP. The main feature of this algorithm is the pro-
cedure for cross-over. Here two solutions, the parents, are selected from a population.
The one or two values of each variable in these solutions are taken as the domain of the
variable. Then, an exact algorithm will solve this small PBCSP to optimality. Note that

∗Antoon Kolen deceased on October 3, 2004. This manuscript has been updated by Stan van Hoe-

sel, Faculty of Economics and Business Administration, University Maastricht, P.O. Box 616, 6200 MD

Maastricht, The Netherlands, Email: s.vanhoesel@ke.unimaas.nl

1

this means that the offspring solution is at least as good as each of the parents. Thus,
if each of the solutions in the parent population is selected at least once, the offspring
population is at least as good as the parent population. The genetic algorithm is tested
on a set of problems, arising in frequency assignment.
In section 2 we will formally describe the PBCSP, and give examples. In Section 3 we
describe the genetic algorithm for the partial constraint satisfaction problem, where as in
Section 4 we solve the cross-over problem, and in Section 5 we apply the genetic algorithm
to the RLFAP and discuss computational results for the CALMA -instances.

2 The PBCSP and examples: Frequency Assignment and

MAX-SAT

Formally, a PBCSP can be described with the following tuple: (G = (V,E),DV , QV , PE).
Here,

1. G = (V,E), an undirected graph called the constraint graph, the vertices correspond
to the variables, and the edges correspond to the constraints.

2. DV = {Dv|v ∈ V }, where Dv is a finite set, called the domain of variable v ∈ V ,

3. QV = {Qv : Dv 7→ R | v ∈ V } , where Qv defines a variable penalty function which
assigns a real value to every domain value in Dv, v ∈ V ,

4. PE = {P{v,w} : Dv×Dw 7→ R | {v,w} ∈ E}, where P{v,w} defines a constraint penalty

function which assigns a real value to every pair of domain elements in Dv × Dw,
{v,w} ∈ E.

A solution is defined to be a vector (dv)v∈V containing exactly one domain element dv ∈
Dv for every vertex v ∈ V . The value of a solution (dv)v∈V is defined to be the sum of all
vertex and edge penalties, i.e.,

∑

v∈V Qv(dv) +
∑

{v,w}∈E P{v,w}({dv , dw}). The objective
is to find a solution of minimum value.
The PBCSP can be formulated as a {0,1}-programming problem. Let us define for all
v ∈ V and all dv ∈ Dv the {0, 1}-variables

y(v, dv) =

{

1 if dv ∈ Dv is selected
0 otherwise

(1)

and for all {v,w} ∈ E, dv ∈ Dv and dw ∈ Dw the {0, 1}-variables

x(v, dv , w, dw) =

{

1 if {dv, dw} ∈ Dv × Dw is selected
0 otherwise

(2)

Furthermore, let us define for all v ∈ V and for all dv ∈ Dv q(v, dv) = Qv(dv) and for all
{v,w} ∈ E, for all dv ∈ Dv and for all dw ∈ Dw p(v, dv , w, dw) = P{v,w}({dv , dw}).
Then PBCSP can be formulated as a

2

min :
∑

v∈V

∑

dv∈Dv

q(v, dv)y(v, dv)+

∑

{v,w}∈E

∑

dv∈Dv

∑

dw∈Dw

p(v, dv , w, dw)x(v, dv , w, dw)

s.t.
∑

dv∈Dv

y(v, dv) = 1 ∀v∈V

∑

dw∈Dw

x(v, dv , w, dw) = y(v, dv) ∀{v,w}∈E ∀dv∈Dv

y(v, dv) ∈ {0, 1} ∀v∈V ∀dv∈Dv

x(v, dv , w, dw) ∈ {0, 1} ∀{v,w}∈E ∀dv∈Dv
∀dw∈Dw

(3)

The first set of constraints expresses that exactly one value in the domain of every variable
must be selected. The next set of constraints expresses the following: if dv is selected then
for exactly one combination dv dw ∈ Dw is selected. If dv is not selected, then also none
of the combinations dv dw ∈ Dw is selected.

2.1 Frequency assignment

A straightforward example of a PBCSP is the radio link frequency assignment problem
studied in the CALMA-project. In the CALMA (Combinatorial ALgorithms for Military
Applications)-project researchers from England, France, and the Netherlands tested dif-
ferent combinatorial algorithms on a set of 11 frequency assignment problems. The genetic
algorithm to be described in this paper found the best known solutions to all test problems
and for some test problems outperforms other solution techniques. Results of the CALMA-
project as well as all test problems are described in [2] and available by anonymous ftp
from ftp.win.tue.nl in the directory /pub/techreports/CALMA.
The radio link frequency assignment problem (RLFAP) is defined by a set of radio links
partitioned into pairs, where each pair consists of a receiver and a transmitter radio link.
Associated with a radio link is a set of frequencies which can be assigned to it. The
distance between the frequencies assigned to the receiver and transmitter must be equal
to a fixed distance. For some pairs of radio links there is an interference constraint which
states that the distance between the two assigned frequencies should be greater than a
given required distance. It is a soft constraint because it may be violated at a certain
interference cost. Both the required distance and the associated cost depend on the two
radio links involved. For some receiver-transmitter pairs a preferred pair of frequencies
is given. It is possible to deviate from these preferred frequencies at a certain mobility
cost which depends on the receiver-transmitter pair. The objective is to find a frequency
assignment that minimizes total cost, i.e., the sum of total interference cost and total
mobility cost. An overview on models and algorithms for frequency assignment can be
found in [1].
To model RLFAP as a PBCSP we introduce a variable for every receiver-transmitter
pair. The domain of a variable consists of every pair of frequencies, one from the domain
of the receiver radio link and one from the transmitter radio link, which satisfy the fixed
distance requirement. The variable penalty of a pair of frequencies is equal to the mobility
cost. There is a constraint for two receiver-transmitter pairs when there is at least one
interference constraint between two radio links one from each receiver-transmitter pair.

3

The constraint penalty for a pair is equal to the sum of the interference cost of the four
involved radio links (two receivers-transmitter pairs). For two receiver-transmitter pairs
the mutual distance requirements and interference cost are given below.

r2 t2
r1 351 518

t1 201 351

distances

r2 t2
r1 1000 10

t1 1 1000

costs
For the CALMA instance the distance between the frequencies assigned to a receiver
pair must be equal to 238. If we assign (72,310) to (r1,t1) and (414,652) to (r2,t2), then
according to the tables above the corresponding constraint penalty is 1000 (for r1 and r2)
+1 (for t1 and r2) = 1001.

2.2 MAX-SAT

The maximum satisfiability problem (MAX-SAT) can be modeled as a PCSP. Let C1,C2, ..., Cm

be a set of clauses defined on the boolean variables x1, x2, .., xn. Each clause is a disjunc-
tion of literals, where a literal is either a boolean variable xi or its negation xi. The
objective is to assign to each boolean variable the value true or false so as to satisfy the
maximum number of clauses or equivalently minimize the number of clauses that are not
satisfied. A clause is satisfied if and only if at least one literal in the clause has the value
true. An example of the maximum satisfiability problem is given by

Example 1.

(x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3)

C1 C2 C3

To model the maximum satisfiability problem as a PBCSP we introduce a variable for each
clause and a variable for each boolean variable. The domain of a clause variable contains
the literals in the clause. We denote a domain element by the index of corresponding
literal. The domain of a variable corresponding to a boolean variable consists of the
values true and false. There is a constraint between a variable corresponding to a clause
and a variable corresponding to a boolean variable whenever the boolean variable or its
negation occurs in the clause.

(x1 ∨ x3) (x1 ∨ x2 ∨ x3) (x2 ∨ x3)

x1 x2 x3

Figure 1: Constraints in example MAX-SAT instance.

The constraint penalty of any pair of conflicting domain values is equal to one; all other
constraint penalties are zero. So, the domain pair {xi, false} is conflicting, and thus incurs
a penalty of one. The same holds for the pair {xi, true}. There are no other penalties.
Figure 2 shows the variables and constraints corresponding to Example 1 where conflicting
pairs of domain values are indicated by a line.

4

C1

(x1 ∨ x3)

C2

(x1 ∨ x2 ∨ x3)

C3

(x2 ∨ x3)

x1

true false

x2

true false

x3

true false

Figure 2: Penalties in example MAX-SAT instance.

Theorem 1. Consider an instance of MAX-SAT with n variables and m clauses. Then,

MAX-SAT has value k if and only if the corresponding instance of PBCSP has value m−k.

Proof. Consider a truth assignment of the boolean variables of the maximum satisfiability
problem that satisfies k of the m clauses. In the corresponding partial binary constraint
satisfaction problem we select the domain values of the variable corresponding to boolean
variables as defined by the truth assignment. For the k clauses that are satisfied we select
a literal that has the value true. For the m − k clauses that are not satisfied we select an
arbitrary literal. Then the value of this solution is m− k. This proves that, if the optimal
value of the maximum satisfiability problem is k, then the optimal value of the partial
binary constraint satisfaction problem is at most m − k.
Consider an optimal solution of the partial constraint problem with value m − k. Then
there are exactly m − k. clauses for which the selected literal is involved in a conflict
and since the solution is optimal any other literal selected in the same clause would result
in a conflict as well. Hence the domain values of the variables corresponding to boolean
variables define a truth assignment that satisfies exactly k clauses.We conclude that if the
optimal value of the partial binary constraint problem is m− k, then the optimal value of
the maximum satisfiability problem is at least k.

If for Example 1 we consider the truth assignment x1 = true, x2 = false, x3 = false, then
C1 and C2 are satisfied, and C3 is violated. For the partial binary constraint satisfaction
problem we select true for x1, false for x2, false for x3, x1 for C1, x1 for C2, and x2 for
C3. If in Figure 1 we select x1 for C1, x1 for C2, x2 for C3, true for x1,true for x2, and
false for x3, then we have the optimal solution of the partial binary constraint satisfaction
problem of value zero. The corresponding truth assignment x1 = true, x2 = true, and
x3 = false satisfies all clauses.
We conclude from the above results that the optimal value of the partial binary constraint
satisfaction problem is m−k if and only if the optimal value of the maximum satisfiability
problem is k.

3 The genetic algorithm.

Local search algorithms, such as simulated annealing and tabu search, construct a sequence
of solutions, where the successor of a given solution in the sequence is a so-called neighbor
of that solution. The definition of the neighborhood of a given solution is a basic ingredient
of any local search algorithm.

5

A genetic algorithm constructs a sequence of populations of solutions, where the succes-
sor of a given population in the sequence is a so-called neighbor of that population. A
population consists of a set of solutions. The basic ingredients of a genetic algorithm are
selection, cross-over, and mutation procedures. A population is called a neighbor of a given
population if it can be obtained from that population by applying these procedures to the
given population. A new population is constructed from an old population by repeatedly
applying cross-over to pairs of elements of the old population selected by the selection
procedure. The idea of cross-over is to use the genetic material of the two input elements
to construct two elements of the new population, which are hopefully better than the two
input elements. The mutation procedure changes a given solution. For a more detailed
discussion of genetic algorithms we refer to the book by Goldberg (1988). No previous
knowledge of genetic algorithms is required to understand the description of our genetic
algorithm.
Let us call two solutions neighbors if they differ in exactly one component, i.e., one domain
element. A 1-optimal solution is a solution with the property that no neighbor exists with
a smaller value. An element of our genetic algorithm is defined to be a 1-optimal solution.
A population of our genetic algorithm consists of a fixed number (called the population
size) of (not necessarily distinct) elements. The initial population of our genetic algorithm
is constructed by generating random solutions, and by applying a local optimization algo-
rithm to each solution to make it 1-optimal. Our genetic algorithm consists of a number
of generations. Each generation starts with a given population, called the parent pop-
ulation, and constructs a new population of the same size, the offspring. This offspring
population is the parent population of the next generation. The offspring population will
have the property that it is at least as good as the parent population in the sense that
every element of the parent population is replaced by an element with a value which is
less than or equal to the value of the element it replaces. The genetic algorithm returns
the element of minimum value in the last population.
To construct a parent population from the offspring population we randomly select for
each element of the old population a partner element from the offspring population. This
partner element is selected with a probability which is proportional to the reciprocal of its
value. This means that elements with a small value are preferred in the selection procedure.
Next we apply the cross-over function to the given element and the random selected partner
element. The cross-over function takes as input two elements (called parents) and returns
an element (called offspring) with a value that is less than or equal to the value of both
input elements. So, in this cross-over only one offspring is created, in contrast with the
two offspring in traditional cross-over. After applying a local optimization procedure (the
mutation procedure) to make this offspring 1-optimal it will replace the given element
in the parent population. The construction of the parent population from the offspring
population is summarized below.
for i:=1 to PopSize do
{

(Selection)
Select ParentPopulation[i] and random select ParentPopulation[j] with a
probability that is inverse proportional to its objective value.

(Cross-over)
OffspringPopulation[i] := CrossOver(ParentPopulation[i],ParentPopulation[j]);

6

(Mutation)
Local optimize OffspringPopulation[i] to make it 1-optimal;

}
The idea of the cross-over is that each domain value of the offspring will be inherited from
one of its parents. Given two parent solutions we can consider the restricted PBCSP where
the domain of a variable contains the set of domain values assigned to it in one of the two
parents. So the domain of a variable contains exactly one domain value if it is assigned
the same domain value in both parents, otherwise the domain consists of the two different
domain values assigned to it in both parents. The offspring of our cross-over procedure
will be the optimal solution of this restricted partial constraint satisfaction problem. Since
both parents are solutions of this problem, the optimal solution, i.e., the offspring, will
have a value which is less than or equal to the minimum value of its parents. We will
discuss an exact solution method of the restricted PBCSP in Section 4.
Our genetic algorithm as described above differs from more traditional genetic algorithms
in two aspects. In a traditional genetic algorithm a cross-over produces two offsprings
instead of the one offspring as in our cross-over. In a traditional genetic algorithm both
parents to which the cross-over is applied are selected randomly. The probability of being
selected is determined by a so-called fitness function. In our genetic algorithm the fitness of
an element is defined as the reciprocal of its value. Although we have experimented with
more traditional genetic algorithms using our cross-over the best results were obtained
using the version as described above. An intuitive explanation for the success of our
algorithm may be that every element of the population is involved in a cross-over at least
once, while good solutions have a high probability of being involved in more than one
cross-over. So although we prefer good genetic material (i.e., domain values) we do not
exclude any genetic material beforehand. The local optimization procedure we apply to
the offspring of the cross-over procedure to make it 1-optimal is used as the mutation
operator of our genetic algorithm.

4 The cross-over

Consider the {0,1}-programming formulation of PBCSP of section 2. Before solving this
problem we first apply some preprocessing techniques to reduce the size of the problem.
During the preprocessing we will always make sure that for every edge {v,w} ∈ E with
Dv = {av , bv} and Dw = {aw, bw} the edge penalties satisfy min{p(v, av , w, aw), p(v, av , w, bw)} =
0, min{p(v, bv , w, aw), p(v, bv , w, bw)} = 0, min{p(v, av , w, aw), p(v, bv , w, aw)} = 0, and
min{p(v, av , w, bw), p(v, bv , w, bw)} = 0.
Assume that these conditions do not hold, say min{p(v, av , w, aw), p(v, av , w, bw)} > 0.
Then we can increase the vertex penalty q(v, av) with min{p(v, av , w, aw), p(v, av , w, bw)}
and decrease both p(v, av , w, aw) and p(v, av , w, bw) with min{p(v, av , w, aw), p(v, av , w, bw)}
without affecting the total penalty of a solution.
We use five different types of preprocessing techniques, namely deleting constraints, delet-
ing variables with a domain of cardinality one, deleting variables of degree one in the
constraint graph, deleting variables of degree two in the constraint graph, and deleting
dominated domain values. Although we will discuss these preprocessing techniques in the
context of our cross-over problem, they apply to any partial binary constraint satisfaction
problem.

1. A constraint is deleted whenever all constraint penalties are equal

7

2. Consider a variable v ∈ V with a domain of cardinality one, say Dv = {av}.

For an edge {v,w} ∈ E the edge penalty only depends on which dw is selected from
Dw. Therefore the edge penalty p(v, av, w, dw) can be viewed as a vertex penalty
for dw. If we define q(w, dw) := q(w, dw) + p(v, av , w, dw) for all {v,w} ∈ E and for
all dw ∈ Dw, and delete vertex v and all edges incident to it from the constraint
graph, then there is a one-to-one correspondence between solutions of the reduced
problem and solutions of the original problem. The objective value of a solution to
the original problem is equal to the objective value of the corresponding problem of
the reduced problem plus q(v, av).

3. Consider a variable v ∈ V of degree one in the constraint graph, and let {v,w} the
edge incident to v.

If dw ∈ Dw is assigned to w, then the domain value d∗v ∈ Dv assigned to v will be
selected so as to minimize the sum of the vertex penalty of v and the edge penalty
of {v,w}, i.e., q(v, d∗v) + p(v, d∗v , w, dw) = min{q(v, dv) + p(v, dv , w, dw)|dv ∈ Dv}. If
we define q(w, dw) := q(w, dw) + min{q(v, dv) + p(v, dv , w, dw)|dv ∈ Dv}, and delete
vertex v and the edge {v,w}, then the optimal value of the reduced and original
problem are the same. Given an optimal solution of the reduced problem with dw

assigned to w we can find an optimal solution to the original problem by assigning
the domain value d∗v defined above to v.

4. Consider a variable v ∈ V of degree two in the constraint graph, and let {u, v} and
{v,w} the edges incident to v.

If du ∈ Du is assigned to u and dw ∈ Dw is assigned to w, then the domain value
d∗v ∈ Dv assigned to v will be selected so as to minimize the sum of the vertex
penalty of v and the edge penalties of {u, v} and {v,w}, i.e, p(u, du, v, d∗v)+q(v, d∗v)+
p(v, d∗v , w, dw) = min{p(u, du, v, dv) + q(v, dv) + p(v, dv , w, dw)|dv ∈ Dv}. If there is
no edge {u,w} then we add the edge {u,w} with all edge penalties equal to zero
to the constraint graph. Clearly this does not affect the value of any solution. If
we now delete the edges {u, v} and {v,w} from the constraint graph and define
p(u, du, w, dw) := p(u, du, w, dw) + min{p(u, du, v, dv) + q(v, dv) + p(v, dv , w, dw)|dv ∈
Dv}, then the optimal value of the reduced and original problem are the same. Given
an optimal solution of the reduced problem with du assigned to u and dw assigned to
w we can find an optimal solution to the original problem by assigning the domain
value d∗v defined above to v.

5. Our last preprocessing technique deals with dominated domain values.

For a variable v ∈ V we say that domain value bv ∈ Dv dominates domain value
av ∈ Dv whenever for every solution in which av is assigned to v we can find a
solution in which bv is assigned to v, and for which the latter solution has a value
that is less than or equal to the value of the former solution.

If bv dominates av, then av can be deleted from the domain Dv of vertex v. If the
original domain Dv has cardinality two, then the reduced domain has cardinality
one and vertex v can be deleted using preprocessing technique 2.

We will formulate a sufficient condition for dominance.
If {v,w} is an edge, then the worst increase in the edge penalty for this edge if av in a
solution is replaced by bv is given by c(v,w) = max{p(v, bv , w, dw) − p(v, av , w, dw)|dw ∈

8

Dw}. If q(v, bv) +
∑

{v,w}∈E c(v,w) ≤ q(v, av), then bv dominates av because replacing av

by bv in any solution will result in a solution which is at least as good. For any variable
with a domain of cardinality two we check whether one domain value is dominated by
the other domain value by checking the sufficient condition described above. If a domain
value is dominated, then it is deleted from the domain.
After application of all preprocessing techniques the {0,1}-programming problem of the
remaining partial binary constraint satisfaction problem is solved by a partial cutting
plane algorithm. The class of valid inequalities that we use in the cutting plane algorithm
is one of the classes defined in [4]. The inequalities are called 3-cycle inequalities.
Given vertices u, v, and w which form a 3-cycle in the constraint graph. Let the domains
be given by Du = {au, bu},Dv = {av , bv}, and Dw = {aw, bw}. Then it is easy to see that
the following 3-cycle inequality is a valid inequality

x(u, au, v, bv) + x(v, av , w, bw) + x(w, aw, u, bu) <= 1.

For a given 3-cycle there are four 3-cycle inequalities of this type which are facet defining
for the convex hull of solutions of the partial binary satisfaction problem.. We start the
solution procedure by first solving the linear programming relaxation. Then we add all
3-cycle inequalities that are violated by the current optimal linear programming solutions
and re-optimize. This is repeated until all 3-cycle inequalities are satisfied. In almost all
problems we solved we end with an integer optimal solution at this stage. If the optimal
linear programming solution is fractional, then we solve the original {0,1}–programming
problem with all added 3-cycle inequalities using CPlex 4.0 as mixed integer optimizer.

5 Computational results.

In the CALMA project two sets of problem instances were used. The CELAR instances are
provided by the French ministry of defense. The GRAPH instances are random instances,
generated by a group of researchers from Delft University of Technology, which have the
same characteristics as the CELAR instances.
There were four problem instances (CELAR 9, CELAR 10, GRAPH 7, and GRAPH 12)
which involved mobility penalties. These problem instances turned out to be very easy,
and all tested solution techniques found the same answers (CELAR 9: 15571, CELAR
10: 31516, GRAPH 7: 4324, GRAPH 12: 11827). The genetic algorithm already found
these solutions within 5 generations with a population size of 10. Therefore these problem
instances are left out of the computational tests.
In Table 1 we list for each problem instance of our problem type its name as referred
to in the CALMA project, the number of vertices (|V |) and the number of edges (|E|),
the number of y-variables, which can be calculated from

∑

v∈V |Dv |/|V |, the number of
x-variables, which can be calculated from

∑

{v,w}∈e |Dv| ∗ |Dw|/|E|, and the best known
solution value (O) for each problem. The best known solutions are obtained by the genetic
algorithm described in the previous section.
Our genetic algorithm was implemented in C++ and run on a workstation (DEC 2100
A500MP). All linear and mixed integer program are solved using CPLEX 4.0. Although
the computational time of our genetic algorithm already is very impressive, the code for
the cross-over function is not yet fully optimized. Since the cross-over function is called
many times, there is still room for improvement.

9

Name |V | |E|
∑

v∈V

|Dv | / |V |
∑

{v,w}∈E

(|Dv ||Dw|) / |E| O

CELAR 6 100 350 40.10 1622.58 3389

CELAR 7 200 817 39.88 1619.43 343592

CELAR 8 458 1655 39.52 1510.91 262

GRAPH 5 100 416 37.08 1372.40 221

GRAPH 6 200 843 37.71 1416.48 4115

GRAPH 11 340 1425 37.70 1417.52 3080

GRAPH 13 458 1877 38.40 1481.52 10110

Table 1: Statistics problem instances.

Pop Size Best Value Worst Value Mean Value

10 3739 5506 4359.3

40 3404 3575 3500.1

70 3391 3554 3449.5

100 3389 3407 3392.5

150 3389 3404 3391.9

Table 2: Results CELAR 6 for 10 runs.

Extensive computational experiments have shown that the best solution found by the
genetic algorithm is always found within 10 generations for the CELAR instances and for
the problem instance GRAPH 5, and within 15 generations for all other GRAPH problem
instances.
Let us first demonstrate for problem instance CELAR 6 how the solution quality depends
on the population size. For different population sizes we have generated 10 runs, where
each run corresponds to applying the genetic algorithm for 10 generations. The best
solution value, the worst solution value, and the mean solution value for these 10 runs are
given in Table 2.
It can be seen from Table 2 that the genetic algorithm for CELAR 6 is very stable for
population sizes greater than or equal to 100. Tables 3 and 4 show the results of the genetic
algorithm with a population size of respectively 100 and 150 for all problem instances. We
list the best value, the worst value, the mean value, the number of generations, and the
average CPU time per run.
To demonstrate how the solution quality depends on the number of generations we have
used the best run with population size 150 for every problem instance. In Table 5 we list
the best solution value found after every generation. Note that the best solution value for
generation 0 corresponds to the best 1-optimal solution in the initial population.
We can conclude from these computational results that for population sizes of at least 100
the genetic algorithm is very robust, i.e., there is only a small variance in the objective
value of the solution produced in each run.
Since no optimal solutions or good lower bounds are known for these problems we can
only compare the results with those obtained by other groups in the CALMA project.
The genetic algorithm produced the best known solutions to all problem instances. For
some problem instances (GRAPH 11 and GRAPH 13) the best objective value found is

10

Name Best Value Worst Value Mean Value Nr Gen CPU min

CELAR 6 3389 3407 3392.5 10 3

CELAR 7 343593 353693 344784 10 9

CELAR 8 262 263 262.1 10 24

GRAPH 5 221 269 240.4 10 3

GRAPH 6 4138 5145 4431.1 15 5

GRAPH 11 3126 4045 3468.2 15 19

GRAPH 13 10234 11012 10486.2 15 36

Table 3: Results for 10 runs with population size 100.

Name Best Value Worst Value Mean Value Nr Gen CPU min

CELAR 6 3389 3404 3391.9 10 5

CELAR 7 343592 343794 343643 10 13

CELAR 8 262 263 262.2 10 36

GRAPH 5 221 236 232.5 10 4

GRAPH 6 4125 4166 4130.7 15 7

GRAPH 11 3088 3138 3109.5 15 29

GRAPH 13 10110 10350 10223.1 15 55

Table 4: Results for 10 runs with population size 150.

Gen C6 C7 C8 GR5 GR6 GR11 GR13

0 8021 10272611 944 6223 14814 32106 50999

1 5686 3911098 527 2927 9997 25185 36809

2 4062 748798 392 1049 8104 15186 31115

3 3710 465445 299 427 6667 11221 24936

4 3430 375109 278 263 5699 6812 20818

5 3423 353911 270 246 5251 4785 15985

6 3392 344603 266 231 4879 4100 13928

7 3391 343697 264 231 4434 3677 11736

8 3389 343697 262 224 4187 3422 10829

9 3389 343592 262 221 4132 3298 10459

10 3389 343592 262 221 4130 3249 10240

11 4127 3208 10239

12 4127 3129 10152

13 4127 3124 10110

14 4125 3223 10110

15 4125 3088 10110

Table 5: Best solution value per generation.

11

10% better than the best known solution found by another technique. It still remains a
challenge to solve these problem instances to optimality.

References

[1] K. I. Aardal, C. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano.
Models and solution techniques for the frequency assignment problem. 4OR, 1(4):261–
371, 2003.

[2] K. I. Aardal, C. A. J. Hurkens, J. K. Lenstra, and S. R. Tiourine. Algorithms for radio
link frequency assignment: The CALMA project. Operations Research, 50(6):968–980,
2002.

[3] D. Goldberg. Genetic algorithms in search, optimization & machine learning. Addison
Wesley, 1989.

[4] A. M. C. A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The partial constraint
satisfaction problem: Facets and lifting theorems. Operations Research Letters, 23(3–
5):89–97, 1998.

12

