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ABSTRACT Vulnerable nature of price forecasts, such as an unpredictability of future and numbers of

socio-economic factors that affect market stability, often makes investment risky. Earlier studies in Finance

suggested that constructing a portfolio can promise risk-spread gains. While Fund Standardization improved

the traditional theories by reducing the computational complexity and by associating every interaction in the

portfolio, such a method still cannot become a winning strategy because it does not measure the current value

or the relative price of each asset. Inspired by the works of finding returns per risk, we attempt to design

an optimal portfolio by searching products that have potential to grow further. More specifically, we first

analyze risk-adjusted returns in the previous periods and use their inertia as a momentum. However, because

historic movements alone do not fully elucidate future changes nor guarantee positive returns, we scored the

relative values of each stock to make more informed estimations. Using the Capital Asset Pricing Model,

we measured the values of each stock and determined those undervalued. In this study, we applied a Genetic

Algorithm to optimize portfolios while incorporating the momentum strategy and the asset valuations. The

proposed GA model was tested in two separate markets, S&P500 and KOSPI200, and projected greater

profits than that from both the previous method with momentum method and the market indexes. From the

experimental results, the proposed CAPM+ method was found to be very effective in financial data analysis

and to lay a groundwork for a sustainable investment execution.

INDEX TERMS Genetic algorithm, machine learning, portfolio optimization, modern portfolio theory,

investment strategy, Sharpe ratio, capital asset pricing model, security market line.

I. INTRODUCTION

Guessing what will happen in the future, or making

predictions always involve uncertainty. In the past, because

we can never guarantee what the future will be like, betting

on luck or simply praying has long been a way for predic-

tions. Afterwards people noticed that patterns may exist when

predicting the future, learned from previous mistakes and

used those lessons to calculate odds for specific events. As

a result, many started to make more informed estimations by

measuring the likelihood, andmany probability theories came

into play. However, predictions with optimization processes

or profit maximizations while calculating the chances make

simple statistics no longer effective or cause the problem to

be more complex.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

In finance, where many different factors affect the mar-

ket, investment decision is even more intricate. For exam-

ple, in equity markets, an annual net profit in cash flow

statement alone does not fully represent this year’s price

movements. In addition to business performances, many

externalities including market growths, geo-political issues,

international trends and many more reasons affect stock

prices.

Preferences for risk-margin ratio may differ with each

individual investor, but as a rational person, the investor wants

to win or maximize their risk-return tradeoffs. More exten-

sively and thoroughly theorized, the ideas of maximizing the

earnings in a given risk are compiled by researchers like

Harry Markowitz. In Portfolio Theory [1], [2], he high-

lighted the importance of constructing portfolios to optimize

expected return on an uncertainty.
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Markowitz’s Nobel Prize Winning theory is widely

acclaimed, but at the same time some studies [28] refuted its

practical usage. Researchers at National Chi Nan University

of Taiwan, for example, supported legitimacy of the portfolio

theory, but at the same time they highlighted its ineffec-

tive computational complexity as well as its unsatisfactory

representation of correlation among financial products in

the portfolio. Instead, they suggested Fund Standardiza-

tion methodology to improve the complexity from O(n2) to

O(1) and to consider every relationship between equities in

portfolio.

Studies of portfolio theory, risk analysis and many follow-

ing investigations deserve acclaim for their contribution to

analyze historic patterns and to measure volatility, but their

applications as an investment strategy in the actual financial

market is yet very limited. Technical analysis of historic

prices within portfolio can be integrated with Momentum

Strategy [10]–[14], where previous movement or positions

are assumed to continue their trajectory. Being successful

during the previous market period, however, does not always

guarantee a portfolio’s durability or continuity with respect

to both its profit size and risk rate: prices may have already

reached to its maximum point and be about to nosedive.

Another possibility is that the repeated downtrendmay finally

hit the bottom and make all-time highs on the very next

day. In that regard, technical analysis based on Momentum

Strategy alone is often not satisfactory as an educated forecast

or as an investment plan.

Therefore, we devised an investment strategy based on

equity allocations and portfolio designs, which can sort out

a list of sound assets in terms of rate of return on investment

with respect to its risk while considering undervalued assets

in the market that may retain growth potentials. More specif-

ically, a gap between the actual rate of return of a given stock

and the expected return from security market line in capital

asset pricing model is expected to evaluate the accuracy of

current market estimations through our research.

An ensemble of portfolio theory, risk-return analysis

[3]–[5] and Capital Asset Pricing Model [6], [7] is effective

only when they are actually calculated. Equity selection

or portfolio optimization in the financial markets, where

hundreds and thousands of different products exist, is often

burdensome. Using a genetic algorithm [16], [17], our study

attempts to examine the fitness of each individual in the

market to design optimal portfolio as a promising investment

initiative. Additionally, many previous studies [17]–[32]

insisted on their computational excellence and use in finance,

but not many of them have validated their applications in

dynamic environments. Here, we tested our methodology in

two different financial markets over a decade and intended to

prove its merit for pragmatic usage.

II. BACKGROUND

As the size of the market expands over time, numbers

of tradable products or indexes to be analyzed both in

domestic and international scales also dramatically increase.

Accordingly, investors, especially individual ones, and their

capabilities have become more limited compared to the

institutional investors. Many preceding attempts of trades and

studies in the corresponding field, therefore, utilized compu-

tational power to acquire analytic competences. Automated

trading methods often use machine learning techniques, such

as Artificial Neural Network [18], [21], [25], [26], Support

Vector Machine [19], [20], Reinforcement Learning

[22], [23] or LSTM [24] and attention mechanism [17], based

on technical analysis to forecast for specific quotes in the

corresponding market.

Volatile and unpredictable characteristics of the financial

market, however, often prevent such attempts to make accu-

rate predictions. History may or may not repeat itself in the

financial market. Moreover, unidentifiable noise in financial

data also hinders the use of algorithmic trading. Unlike its

prominent success in academic experiments, real-life invest-

ment and applicationswithmany traditionalmachine learning

in Finance [17]–[27], is known to be relatively less prevail-

ing [33]–[36] compare to many successes in other fields

of studies and works with traditional machine intelligence

techniques. Even in the winning scenario of having 80% or

90% accuracy in the stock predictions, price pattern based

forecasts may fail investors with large costs if they lose big

in a single estimation with such approaches. As previously

stated, noises, complex dimensionality in financial data, and

various not-descriptive socio-economic factors often bring

limitations in learning the patterns. For example, while the

recent COVID-19 pandemic crashed the entire market, learn-

ing historic price data alone was not fully capable of project-

ing such sudden volatility into the forecasts.

However, unpredictability of future prices due to noise and

dimensional complexity in traditional machine learning can

be redeemed or hedged in fundamentals through diversifica-

tions and using asset valuation models. Building a portfolio

or using a risk considered asset valuation models offer better

returns per risk and to lay a groundwork for a sustainable

investment strategy. Extensive but thorough studies [1]–[9]

on how to measure risk balanced return on assets or how to

evaluate the stock prices have been conducted by economists

like H. Markowitz, W. F. Sharpe, J. Lintner and many more.

Although there is a distinction between the definitions

of uncertainty and risk, with respect to their controllability,

uncertainty in the financial market or any unknowns for future

estimations all are considered as risk in this study. Likewise,

volatility is also used as a risk. In short, risk in this research

includes any unpredictable factor that may hinder price esti-

mations in the market.

A. MODERN PORTFOLIO THEORY

Every rational investor is expected to pursue a higher return,

but because ‘there is no free lunch’ in financial investment,

obtaining a high return as a reward always incurs a larger

cost, or a risk. In more simple terms, if a higher profit

involves a bigger risk, the possibility of not making promising

investment is more likely to happen. Then, not every investor
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will make the same decision of unconditionally following

profits. Each may have different propensity for the level of

risk taking: some may prefer high-risk high-return type of

investment, and others may like a stable risk structure even

if they cannot realize maximized return. It may be optimal

to find a single product that offer a large profit with a low

level of risk in the hypothetical situation. However, it is nearly

impossible to find that single stockwheremarket dynamically

evolves while countless market factors are involved.

Modern portfolio theory [1], [2] assumes that risk-averse

individuals in the market shall pursue a rational behavior of

choosing the most profitable assets in a certain degree of risk.

In other words, one prefers investment decisions on items

that offer the most returns on the same level of risk or on

less risky assets if expected returns are the same between

two options.

Markowitz insists that maximized return for a given level

of volatility can be achieved through diversification while

constructing an efficient portfolio, a set of financial assets,

instead of putting one’s budget on a single commodity.

In such circumstances, securities in each portfolio are con-

sidered to reduce uncertainty: compositions of stock offset

or redeem individual return/risk and form a new synthetic

overall return/risk. We can measure expected return on port-

folio by summing up an individual equity’s return based on

its proportional weight and calculate risk through statistical

measure and correlation via variance and covariance.

B. SHARPE RATIO

William F. Sharpe devised a new simplified model [3]–[5]

which improves the practical aspect of Mean-Variance

approach of Markowitz. Unlike the earlier model, which

required costly and time-consuming computation of vari-

ance and covariance matrix for every individual stock in the

portfolio, Sharpe’s Diagonal Model assesses total risk of a

portfolio in a simple regression analysis and eases the calcu-

lation workloads. Sharpe additionally developed a measure,

the Sharpe ratio, to examine the return on investment per

unit of risk. In equation (1), Sharpe defined the differential

return while R̃A is the return on assets and R̃B is the return

on the benchmark and the expected value of d and sigma d,

the standard deviation of d, derive the expected differential

return per unit of associated risk in equation (2).

d̃ ≡ R̃A − R̃B (1)

S ≡
d̄

σd
(2)

In Sharpe ratio [5], which is also known as Reward-

to-Variability Ratio, excess return of an asset over a bench-

mark or often riskless asset return delineates how much

return is gained for the same level of risk. Therefore, larger

Sharpe ratio indicates a portfolio with a better risk-adjusted

performance, and negative values designate that a benchmark

or risk-free asset offers a greater return than the selected

equities.

C. FUND STANDARDIZATION

Modern portfolio theory [1], [2] and the Sharpe ratio [3]–[5]

are criticized in some aspects despite their foundational

contributions on finance and economics. Chou et al., from

National Chi Nan University of Taiwan, for example, high-

lighted that Mean-Variance model and the Sharpe ratio

demand large amount of calculations to be carried out [28].

In the integrated field of computer science and finance, where

performance with respect to computing resource and time

spent to calculate is critical, having an inefficient complex-

ity is a nuisance especially when complexity exponentially

increases as the stocks in the portfolio accumulates.

The researchers at Chi Nan also stressed that the use of

covariance in MPT to represent interactions among stocks

does not denote every existing relationship in the portfolio.

Markowitz’s portfolio variance for the risk in equation (3),

where wi is the amount of assets allocated to stock i in the

percentage, σij is the covariance between two stocks i and j,

accurately represents the correlation between any 2 stocks in

the portfolio. However, if there exist more than 2 stocks in

the portfolio, which is more likely to happen in real cases,

Markowitz’s approach is incapable of denoting interactions of

multiple stocks more than 2. Here, as depicted in equation (4)

and Fig.1, we provided the case of having 4 stocks and its risk

where it does not consider the interactions of 3 and 4 stocks.

σ 2
p =

N∑

i=1

N∑

j=1

wiwjσij,where σij = σiσjρij (3)

FIGURE 1. Correlation types among 4 stocks that are considered/ not
considered due to covariance-approach in modern portfolio theory.

Chou, et. al proposed Fund Standardization, a measure

for an individual return subtracted from transaction fee and

tax for the allocated stocks, to assess portfolio risk more

thoroughly, as precisely demonstrated in Table 4. Using sim-

ple additions and subtractions can help investors or portfolio

managers to 1) take all interactions among stocks in portfolio

set into account 2) simplify the calculations and improve

the computation complexity from O(n2) of modern portfolio

theory to O(1).

σ 2
p = w2

Aσ
2
A+w2

Bσ
2
B+w2

Cσ 2
C+w2

Dσ 2
D+2wAwBσAσBρAB

+2wAwcσAσCρAC+2wAwDσAσDρAD+2wBwCσBσCρBC

+2wBwDσBσDρBD+2wCwDσCσDρCD (4)
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D. CAPITAL ASSET PRICING MODEL AND SECURITY

MARKET LINE

Return on investment is credited with a reward for taking

risks. Based on many portfolio theories [1], [2], as earlier

introduced, we can spread the risk by increasing the num-

ber of assets allocated in portfolio. Making investment on

non-risky assets through portfolio design sounds promising

but there still exist unidentified danger even after an investor

hedge a risk through diversifications.

In finance and portfolio theory, risk, or total risk, is com-

prised of systematic risk and non-systematic risk. Markowitz

and many researchers suggested the idea of eradicating the

possibility of fluctuations through constructing a portfolio.

The corresponding risk for assets volatility which can be

mitigated through portfolio design is called a non-systematic

risk, or an idiosyncratic risk. On the other hand, a systematic

risk, also known as undiversifiable risk, cannot be spread

because it is inherent to the market, not to the individual

assets.

Expanding the assumptions on Markowitz’s portfolio the-

ory [8], [9], Capital Asset Pricing Model (CAPM), gives the

expected return of an asset with respect to its systematic risk.

In Fig.2, we made a graphical representation of CAPM, or a

Security Market Line (SML) to depict and to evaluate what is

the expected return of themarket for different levels of market

risk in Beta.

Beta or beta coefficient [6], [7] is a measure for the volatil-

ity of an individual stock based on its past performance rela-

tive to its market’s movement as depicted in OLS regression

of stock A in Fig.2 (a) or as in equation (5). In other words,

beta value indicates how the stock moves compare to the

market. A high-beta value larger than 1.0 means that the stock

is more volatile, or riskier than the market, and low-beta stock

of less than 1.0 is less likely to fluctuate. If a stock moves

exactly same as the rest of market, it should have the beta

value of 1.0.

βi =
Cov (Ri,Rm)

Var(Rm)
(5)

Having beta coefficient of the stock on the x-axis, expected

return on the y-axis, we can graph the security market line to

represent risk-return relationship of the capital asset pricing

model. A reward for investors tolerating risks, risk return

tradeoff or the risk-premium in Fig.2 (b) is the excess of the

risk-free rate of return an investment and it is the slope value

of the SML.

Adding risk-free rate of return to the risk premium mul-

tiplied by the beta-value, we can derive expected return at a

FIGURE 2. Representation of capital asset pricing model on security market line.
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systematic risk. If a particular stock positions above the SML,

it should provide a better return against its risk and assumed

to be under-valued. On the other hand, stocks below the SML

where the return is lower at a given risk, is over-valued, and

investors should be reluctant to keep them in their buying list.

III. ENSEMBLE INVESTMENT STRATEGY USING GENETIC

ALGORTIHM

To make investment profitable, we should buy stocks at low

prices and in turn sell them at higher prices. To achieve

such exchanges, we should first judge which stock can offer

a more favorable return. However, it is nearly impossible

for an investor to individually analyze every market factor,

such as financial data, industry trends or economic outlook.

Especially where hundreds of different but interrelated prod-

ucts fluctuate in real-time, individual investors, compare to

institutional ones, are incapable of leading such a movement.

In the earlier sections, we have witnessed the following:

1) risk balanced returns are necessary to realize profits, and

2) both systematic and unsystematic risks can be reduced via

diversifications and valuations. Although such approaches

can be helpful when analyzing market data in a rapidly

changing environment, analytics itself is not sufficient as an

investment tool. In this section, we describe how to apply

these analytical tools into an actual investment strategy.

A. PORTFOLIO DESIGN – MOMENTUM STRATEGY

Since Sir Isaac Newton introduced inertia in his first law

of motion, we have observed the continuity of object move-

ments in various fields. In finance, David Ricardo, a British

economist and a successful trader, is known as one of the first

scholars to develop a theory of continuous movements as an

investment tool. Ricardo insisted that the prices of financial

products tend to continue their previous actions and dropped

a hint regarding future investment opportunities. A number of

subsequent investors, like Jesse Livermore in How to Trade

in Stocks [13] andWyckoff in The Richard D.Wyckoff Method

of Trading in Stocks [14] also supported this theory.

Later, A. Cowles and H. E. Jones drafted the first aca-

demic work onmomentum [10]. They articulated a number of

favorable observations related to continuity in the movement

of prices, quoting that ‘‘the tendency is very pronounced for

stocks which have exceeded the median in one year to exceed

it also in the year following.’’ Additionally, N. Jegadeesh and

S. Titman examined price inertia and realized excess average

return obtained from purchasing past-outperforming stocks

and selling past-underperforming stocks [12].

Positive experiment results from investors following the

market and taking advantage of the existing trends are not

only found in the equity market but also in different financial

markets, like bonds, commodities, or foreign exchange mar-

kets. Moreover, compared to value investing, investors may

also obtain profits with a momentum strategy in a relatively

short term. This strategy is also known to be very accessible

without a deliberate financial analysis.

B. PORTFOLIO DESIGN – CAPM STRATEGY

Despite of its strong theoretical reasoning and evidences,

the use of momentum investing is sometimes criticized for

its incompetency in the flat market. Additionally, in line

with the fact that Newton’s first law of motion applies under

some constraint of not being ‘‘compelled to change its state

by the action of an external force,’’ momentum strategy in

the financial market also operates under certain conditions:

stock prices can be reversed due to, for example, domestic

and international economic matters, or a corporate’s own

financial issues. In such cases, investors with a momentum-

only strategy may suffer and lose big, as it were. Because a

trend-following method lacks deliberate analysis, an investor

can never completely forecast market whims.

Therefore, instead of simply wishing the same return-

and-risk trends to repeat in the coming periods, it is more

reasonable to score the relative values of stocks. One of the

most prescriptiveways of pricing a stock or portfolio takes the

help of the capital asset pricing model [8], [9]. According to

Sharpe and Lintner, we can price the market values of shares

by measuring their risks and their relations to the market.

In CAPM, return on an individual stock i, or E (Ri) , is a value

of risk-free-rate and a premium for accrued risks.

Although the risk-free-rate of return is a return with

zero-risk in theory, because no such investments exist, the

Treasury Bill rate of 2% often replaces it in practice. The

premium here consists of a stock’s relative volatility and

market premium. Market premium is the expected return

from the market minus the risk-free-rate and involves how

an individual stock or a portfolio reacts with respect to the

market, denoted as Beta. Sharpe’s model can be found in

equation (6) and can be converted to equation (7):

E (Ri) − Rf

βi
= E (Rm) − Rf (6)

E (Ri) = Rf + βi(E (Rm) − Rf ) (7)

With the adjusted close prices of individual stocks,

KOSPI200, and the S&P500 index, we initially calculated

their monthly percent changes. We can easily find a single

Beta value for each company. However, CAPMoften encoun-

ters criticism for using a single fixed beta value for differ-

ent time periods. Therefore, we dynamically computed the

3-year-monthly beta of each stock, as shown in Table 1, that

changes over time throughout the testing periods of 10 years

in our experiments. After gathering the Beta values of every

stock, we can complete equation (7) and measure the price

based on its behavior in an efficient market.

C. PORTFOLIO OPTIMIZATION – GENETIC ALGORITHM

Granting funds to the optimal portfolio, which returns

risk-adjusted profits the most while remaining under-

estimated till date, is going to be a goal of our investment

strategy. However, it is nearly impossible for a human to

manually analyze all the existing items in a market and decide

whether or not to include a specific stock in a portfolio.
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TABLE 1. Pseudo-code for 3-year-monthly beta calculation.

Instead, we can more easily find the best combination by

using a genetic algorithm (GA).

Inspired by Darwinian ideas, this heuristic search algo-

rithm [15], [16] follows natural selections to discover an opti-

mal solution among viable candidates. By passing the best

existing ones down to the succeeding generations or a group

of populations, we can gradually find better fitness-scored

solutions. A detailed process of this stochastic optimization

methodology is provided below in Fig. 3 and Table 2. Using

such optimization procedures, our goal is to design a portfolio

with optimal stocks for the investment periods to follow.

FIGURE 3. Flow chart of overall process and a genetic algorithm.

TABLE 2. Pseudo-code for a genetic algorithm.

1) ENCODING AND INITIALIZATION

As a preliminary step of a genetic algorithm, we should define

a problem and an objective function: build a portfolio with

maximum risk-balanced returns that are composed of under-

valued stocks. Then, a defined problem should be trans-

formed into its genotypic form. By assigning each stock from

the index fund to a chromosome in a string or list, phenotypic

variables are encoded as genotypic representations. For the

simplification and fast-computing purposes of this study, this

is done via binary representations.

Table 3 presents a reduced example of six companies

from S&P500 companies under chromosomal representation.

Similar to numerous earlier studies on portfolio management

with a GA [28]–[32], having 1 for Chromosome indicates

that the given company is included in a portfolio. On the

contrary, 0 denotes that a corresponding company does not

contribute to the plan for the coming investing period. For

example, in Table 3, only two companies, American Airline

Group and Amerisource Bergen Corporation, are included in

the portfolio for the next term.

TABLE 3. An example of stocks in genotypic representations.

The experiment conducted in our study deals with data

from two separate markets, KOSPI200 and S&P500, which

include approximately 200 and 500 stocks, respectively.

Therefore, with genetic encoding, each stock is represented

in 200 and 500 binary-bits and each gene group is identified

as a chromosome. During the evolutionary process, a number

of different chromosomes form a population. While later

generations’ populations will acquire their chromosomes and

binary values through genetic operations, the binary geno-

typic value in the initial stage is given arbitrarily.

2) FITNESS CALCULATION

Using a computationally effective portfolio design provided

by a fund standardization approach [28], we optimized

stock allocations. However, the key differences between our

methodology and the traditional GA approach with portfolio

are in the objective functions and the notion of survival of the

fittest. While previous methods, such as Chou’s, focuses on

optimizing a portfolio with high returns and low- risk stocks,

our understanding of portfolio as an investment strategy also

highlights the aspects of stock valuations.

First, we raise either capital or set the amount of initial bud-

get before the trade executions. Then, we equally distribute

the budget over the stocks that are randomly selected as a

part of a portfolio. For instance, if the total budget is $100

and two random stocks are selected, we put $50 on each

stock. After finding the price of those allocated stocks and
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TABLE 4. Pseudo-code for fitness calculation.

computing how many stocks can be bought within a budget,

we deduct the incurred transaction fees and taxes to acquire

the fund standardization of each stock. Similarly, we should

also find CAPM values for every selected stock. Adding fund

standardization and CAPM values of all selected stocks and

remaining budgets, we can get Portfolio Fund Standardiza-

tion and Portfolio CAPM. Finally, using the Sharpe ratio and

Portfolio CAPM, we can measure the fitness of a given chro-

mosome. More detailed procedures of the fitness calculations

can be found in Table 4.

Table 5 provides an exemplary demonstration of Table 4,

which shows how fitness calculation was carried out with six

stocks, AAL, AAP, ABBV, A, ABC, and AAPL, in S&P500

in January 2008. At first, we encoded them into their geno-

typic forms and chose the stocks to trade. Once the encoding

was done, we split the total fund of $10,000 into two and

allocated $5,000 to selected stocks (AAL and ABC) in this

particular scenario. Thereafter, we acquired the necessary

information for the transactions, such as stock prices, han-

dling fees, transaction taxes on particular dates. Then, we

calculated how much the portfolio is worth after the invest-

ment, precisely after 21 days (the available trading dates in

January 2008).

As a result, investing on AAL and ABC as an optimal

chromosome collected from genetic operations with

Jan 2008 financial data, returned $10,389.89 from the initial

capital of $10,000.00, giving approximately 3.90% profits

with a risk rate of 3.02. The CAPM value, obtained from

security market line differences and beta calculation, is 0.13,

and the final Fitness Scores for this portfolio are 1.42 and

1.29 with and without CAPM information, respectively.

TABLE 5. An example of fitness calculation of trading 6 stocks from
S&P500 in January 2008.

3) GENETIC OPERATIONS

Darwinian natural selections that iteratively refine species

and realize the ‘‘survival of the fittest’’ start with random

140240 VOLUME 8, 2020



S. Lim et al.: GA Approach to the Portfolio Design Based on Market Movements and Asset Valuations

guesses through a process known as initialization or encod-

ing. Then, a group of chromosomes composed of stocks or a

population in each generation either evolves or makes natural

variations via genetic operations. The evolutionary stages of a

genetic algorithm that helps tomove chromosomes toward the

ultimate solution of finding the best portfolio in a given period

include three steps, which are also witnessed in the field

of biology: selection, crossover and mutation. The repeated

steps of genetic operations produce offspring with better fit-

ness score values and ultimately lead to global optimal solu-

tions. In our case, each genetic operation gradually searches

an optimal portfolio that is under-valued and has a strong

positive momentum. This will be done by pursuing better

fitness scores in the following genetic operations. A detailed

description of the algorithm used in this research is stated

in Table 6.

TABLE 6. Pseudo-code for 3 genetic operations.

- Selection: After the first populations are created, their

genetic information is passed down to the second gener-

ation. As in genetics and biology, the dominant species

tend to survive longer. By following such an evolu-

tionary theory and preservation for favorable variations,

species with better fitness are devised to have a better

chance of speciating in the next generations. In other

words, a genetic algorithm performs the operation of

searching chromosomes with better fitness scores and

choosing them as more likable candidates for the even-

tual breeding. This process is called selection and it

increases desirable results via repetition in the suc-

ceeding generations. Among many, we used tournament

selection to reduce early convergencewithout re-scaling.

Moreover, tournament selection is expected to have

a better takeover time, compared to the proportional

selection methods.

- Crossover: Another type of genetic operation executed

is crossover. This process, also known as recombination,

imitates the genetic inheritance and the selected parents’

chromosomes by recombining their segments for the

next generations and exploring additional mixtures of

stocks. While selection may largely contribute to the

preservation and breeding of dominant genes, crossover

is expected to ensure the exploration of search space in a

stock list and induce variations in our portfolio combina-

tions. However, without the information on the building

blocks at present, we decided to emphasize more on

exploitations and on sustaining parental genetic infor-

mation while reproducing variations with a two-point

crossover, rather than the larger-size crossovers. In our

case, each crossover got various arbitrary crossover

positions.

- Mutation: Another method of reproduction is to modify

the alleles of individuals. Similar to biological mutation,

which alters the nucleotide sequences, a portion of the

genes in some offspring is subject to be flipped. The

realization of genetic mutation fosters diversity, or at

least prevents early convergence by introducing changes

and generating novel offspring.

- Overlap: We also implemented the idea of overlap to

avoid eradicating the best individuals acquired from

genetic operations. For instance, we forced certain por-

tions of the best chromosomes in the previous generation

to the next one, in order to guarantee that the best

individuals in the coming generation would always be

better than or at least equal to the ones before in terms

of their fitness scores.

We attached examples of genetic operations performed

with six stocks of AAL, AAP, ABBV, A, ABC, and AAPL

from S&P500 in Fig. 4. Because the figure only demonstrates

the general procedures of the genetic operations, chromo-

some size, population size, selection, evolution rates were all

modified in the later experiments. We will state more of the

actual rates and the parameters used in the following section.

IV. EXPERIMENTAL RESULTS

There are many previous studies on the financial appli-

cations of Machine Intelligence with equity investments

using neural networks [17], [18], [21], [24]–[26] sup-

port vector machines [19], [20], or a genetic algorithm

[27]–[32], [37]–[39]. Most of those price prediction prob-

lems, however, were not very successful in the real world,

unlike the expectations [33]–[36]. For instance, even when

the designed model recognized the earlier patterns well

enough, we could not precisely estimate the actual prices

in a different timeframe. Furthermore, many regularization

techniques seem ineffective in this particular field of studies.

Such errors in equity price forecast are even compared to

‘‘A Monkey Throwing Darts.’’
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FIGURE 4. An example of genetic operation with selection, crossover, and mutation processes of six stocks from S&P 500.

Noise in the data is believed to be one of many reasons

behind this unpredictability. This is because not just past price

patterns, but various socio-economic factors also affect the

prices, provided that the data available may not be enough to

make good investments. Moreover, because a designedmodel

has to deal with the events that did not occur yet, it is surely

overwhelming to forecasts solely from historical data.

Therefore, we designed a genuine investment strategy that

identifies and reduces both systematic and non-systematic

risks to succeed in the financial market via machine intelli-

gence, particularly using a genetic algorithm. In the following

sub-sections, we validate portfolios with CAPM and momen-

tum ensembled strategy, with three different analyses: CAPM

Effects Validity Test, Dynamic Market Test, and Overall

Application Analysis. In general, we show the gross and

annual profits as well as the overall analysis.

A. DYNAMIC MARKET ENVIRONMENTS

1) MARKET ENVIRONMENTS

Before digging the details out, we would like to discuss the

experimental universe in which our ensembled portfolio strat-

egy unfolds. Indeed, we conducted experiments on two equity

lists in different financial markets: the constituent stocks of

KOSPI200 from Korea and S&P500 from the United States.

Many applications which expect their models to identify the

market-oriented patterns in a single market, already exist.

However, multi-market application is too challenging to be

completed while using such approaches of detecting patterns.

Our ensembled strategy, on the other hand, does not concern

a single model but a machine intelligence that captures and

analyzes the fluctuating mechanisms of the market using a

theory-based valuation technique. Therefore, we expect that

if our methodology works in one market, it should be appli-

cable in others as well. The operations of our methodology

in two different equity markets are investigated further in the

‘‘Dynamic Market Validity Test’’ section.

First, we performed the ensembled investment strategy test

on the Korean market. According to Korea Exchange (KRX),

the domestic equity market in Korea comprised 1,789 com-

panies as of 2012 and 2,111 companies as of 2018. Despite

its repeated bull-and-bear markets, the Korean stock market

continued its growth andwas worth $2.456 trillion as of 2018.

The Korea Composite Stock Price Index 200 (KOSPI 200) is

the representative index in Korea, which indicates 200 large

capitalization companies and their equities.

According to the World Bank and World Federation of

Exchanges database, the world’s total traded stocks is worth

approximately $68.212 trillion. Our next target market is

the largest stock market, the U.S. stock market, which takes

up a 48.41% share of the world market and is worth about

$33.027 trillion. Since the operation of its first official

stock market, the Board of Brokers of Philadelphia in 1790,

and the Buttonwood Agreement in 1792, which turned into

today’s New York Stock Exchange, the U.S. Stock Market

has also witnessed repeated expansions and recessions. The

Standard & Poor’s 500 Index (S&P500 Index or S&P500) is

a representative indication of the U.S. stock market: its index,

comprising 500 large-cap companies that trade on either the

NYSE or NASDAQ, takes up 80% of the total market value.

We picked these two markets due to a number of reasons.

First, both markets are large enough, well-institutionalized,

and not severely manipulated. Extreme market movements

from political corruptions, or market manipulations that

may arise in many smaller markets, could hinder legitimate

analysis from the informed estimations and discourage rea-

sonable investment opportunities. Additionally, arbitrarily

repeated uptrends, downtrends, or flats in both markets made

the test universe complicated in relation to analysis and

provided real-world like environments for future analyses.
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Last, the independence of the markets with respect to their

price movements can be also helpful when verifying the

applications of our strategy in multiple markets. Although the

Korean stock market is often influenced by the U.S. economy

and its financial market, its own geo-political and industrial

backgrounds, with exclusive strengths and weaknesses, make

it a unique and independent market in itself.

We conducted experiments with stock price data listed on

bothKOSPI 200 and S&P500, particularly for 2008 and 2018.

This specific timeframe includes both the global 2008 finan-

cial crisis, the worst economic disaster since the Great

Depression of 1929, and the stock markets’ record rally of

both markets repeatedly reaching all-time highs. Under these

two extreme investing environments, we investigated how our

methodology survives and operates.

2) PARAMETERS AND SETTINGS

Throughout the tests, we set out to incur trading fees and

transaction taxes of 0.015% and 0.3%, respectively. Although

there is a popular trend where many stock brokerage firms

or trading platforms that offer 0% commissions and different

countries may have different standard for taxes on trading,

we settled those values as a conventionally incurring fare

in both the Korean and U.S. markets. Additionally, all tests

were conducted with stock price data listed in KOSPI200 or

S&P500 for 2008 and 2018. Some stocks, however, did not

go public before 2008 and may have missed several prices

for some periods in our dataset. Selecting those missing value

stocks in a given period is probably futile, and in most cases

the heuristic optimization will automatically not select those

stocks with no prices in certain periods.

For operations in a genetic algorithm, we also set a muta-

tion rate of 1% and a crossover rate of 100% [40], [41], except

for two overlapping individuals who are forced into the next

generation to maintain the previous generation’s best values.

Because we use only the best individuals in the next trading

period after the GA analysis, not many identical individuals,

even when they have good fitness values, are required to pass

down to the coming generations.

In the following experiments, we used financial data

in 1- 3- 6- month time frame for a GA analysis. For example,

as depicted in Fig. 6, we first perform a genetic algorithm in

timestamp t0. After the proposed genetic operation is com-

pleted with financial data in time t0, we use a set of stocks

that are returned from the analysis to make investments in the

next period of t1. Such process is repeated until tn+1 when

last investment is made based on a GA analysis from time tn.

B. ENSEMBLED EFFECTS VALIDITY TEST

In this section, we compare the results following the method-

ologies of CAPM and Momentum Ensembled Strategy

(CAPM+) and Momentum Only Strategy (NO-CAPM) to

the movements of stock index prices during 2008 and 2018,

using KOSPI 200 data. Although this data often comprised

200 large-cap stocks, for data continuity, we acquired the

stock price data of 190 companies during a given time

FIGURE 5. Historical price movements data of KOSPI200 and S&P500.

FIGURE 6. An example of time windows for CAPM+ and momentum
analysis and investments in each timestamp.

period (tickers of constituent companies are presented in the

Appendix). Using this comparison, we examined the valida-

tion of our approach and expected to see CAPM+’s superi-

ority, in terms of generating profits, over a momentum-only

strategy, while such NO-CAPM strategy still outperformed

the movements of the index fund.

Before analyzing the results of each investment plan,

we confirmed whether the GA can achieve optimal portfo-

lio allocations, that includes the devised fitness evaluation

methodologies on CAPM and fund standardization. Each

sub-plot in Fig. 7 shows the changes in average, maximum,

or minimum fitness values of the designed portfolio over gen-

erations. In this example of genetic operations, different color

lines represent distinct months of the year 2013. Although

the values were all different, throughout the 11 months of

FIGURE 7. An example of 1-month analysis in Jan, 2013.
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FIGURE 8. Cumulative ROI movements and annual ROI percentile Distributions between 2008 and 2018 in KOSPI market.

analysis, their scores improved with successive generations

and finally converged before the 150th generation. As men-

tioned earlier, overlapped individuals guaranteed the best

fitness scores and the maximum fitness value never worsened

across generations. Additionally, because the intended varia-

tions induced by the genetic operations, minimum fitness val-

ues are not as stable as average and maximum fitness values,

showing that the implemented algorithm preserves variations

but prevents premature convergences. We can conclude that

our GA can complete optimal stock allocations.

Fig. 8 shows how the proposed trading technique per-

formed throughout 2008 and 2018, compared to how the

index fund changed. Among six subplots, each column refers

to an analysis period of one, three, or six months. While

the three graphs on the top row demonstrate the cumula-

tive Returns on Investment (ROI), the three boxplots on the

bottom row show the annual ROI percentile distributions.

Within each analysis, we conducted three identical trials for

CAPM+ and applied the NO-CAPM strategy on the same

data. This was done to settle concerns about a GA having

non-deterministic features. Although the results did not per-

fectly match, regardless of the analysis periods, each trial

provided very similar results.

Except for one case, all our investments based on both

CAPM+ and NO-CAPM strategies made positive returns.

However, returns from the index funds for 11 consecutive

years outperformed some of our investment trials. For exam-

ple, when using theNO-CAPMmomentum strategy, although

we can find some positive results and obtain positive profits,

it cannot evidently outperform index funds nor be treated as a

good investment plan. Especially, the ROIs on the NO-CAPM

strategy was found to drop severely when the market was

either on a downturn or did not offer strong upward trends

during the flat market.

On the contrary, CAPM+ initiatives provided distinctive

ROIs. In all three different trials of the one-month CAPM

analysis, we obtained over 400% returns over 10 years.

While a recent market instability caused a significant drop

in 2018 even with our methodology, trading a portfolio of

less-risky and undervalued assets was still twofold better

compared to the returns from index fund investments.

Although it is less profitable than a 1-month model,

a 3-month CAPM+ analysis still offered more profits com-

pared to returns from both the NO-CAPM strategy and the

index trading. Here, we observed that it is less likely to make

better margins if the periods of analysis become larger with

CAPM+. We believe that this is due to the characteristics

of valuation in capital asset pricing model. The stock price

converges to a point where an efficient market witnesses

decisions made according to theories on CAPM and beta.

Therefore, selecting undervalued stocks no longer remains

effective as we consider a longer period of time.
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The fact that a 6-month NO-CAPM analysis outper-

forms CAPM+ also supports the notion that a CAPM-based

approach is more prominent only if it is analyzed for a shorter

term. Because the momentum-only approach of NO-CAPM

does not concern market- and beta-based valuations as much

as CAPM analysis, NO-CAPM works better for longer peri-

ods. At the same time, it is also notable that a NO-CAPM

method based on a portfolio composed of outstanding stocks

of the last six months can provide good investment outcomes.

We believe that momentum-only trading in a longer term

made the portfolio more stable, while avoiding the selection

of stocks that have good scores only temporarily from a sharp

increase during short-term fluctuations.

Investors in most real-world cases, however, would not

put their funds for 10+ consecutive years and wait for the

cumulative returns to become 500%. They are more likely to

expect successful results from their investments on a monthly

or at least on a yearly basis. Therefore, we assessed how our

method works in relation to annual returns.

The boxplots above draw the percentile distribution of

annual returns and compares three individual trials of each

technique with index fund investment. Similar to the cumu-

lative return results, the three boxplots with whiskers, from

the minimum to the maximum of annual returns as per our

tactics, display a preferable investment opportunity. Here,

we realized that not only the average values but the overall

quartiles from the boxplot of the 1-month CAPM analysis

also provides better annual returns than the market index,

on average. Moreover, both the maximum and minimum

annual returns of our devised method are always better than

those of the NO-CAPM strategy or KOSPI200. We found

a similar result for the CAPM+ of the 3-month analysis,

but it was not as effective as the 1-month version. Like-

wise, as the period in study gets longer, momentum strategy

becomes more desirable. However, it seems that we need

more cumulative years, instead of executing investment every

other year, to make a suitable 6-month momentum analysis of

the cumulative ROI case.

In order to acquire such boxplots, we first obtained the

annual return during 2008 and 2018 using different models.

Then, we measured how much we had gained in percent-

age throughout each year; every year’s investment started in

January and its trade was terminated by the end of December.

We recorded how much profit we generated after one

month of CAPM+ and NO-CAPM GA analyses, compare to

the annual returns from the index funds presented in Table 7.

Although there were a few exceptions, especially during the

bear market years, where we did not win it, CAPM+ mostly

beat the market and gave good annual returns. Similar to the

cumulative returns, we observed that CAPM+ outperforms

NO-CAPM. However, unlike the earlier tests of cumulative

returns, analyzing six months of inertia effect seemed less

promising with this annual measure and did not lead to a win.

In short, the CAPM+ of finding undervalued and histori-

cally outstanding stocks prevailed with respect to the market

index fund and the momentum-only strategy of using risk and

TABLE 7. Annual ROI in percentage after 1 month analysis.

returns only. It worked better if the stock price data was long

enough to find a valuation of the portfolio, and the outcome

became worse if analysis became too long. On the contrary,

the momentum-only strategies worked better when analyzing

longer periods of data. With efficiently designed portfolios

(as a result of employing a genetic algorithm) via historic

price data analysis, we were able to discover viable options

to outperform the index.

C. DYNAMIC MARKET VALIDITY TEST

In order to verify our CAPM+ portfolio works in different

markets, as briefly introduced earlier, we conducted the same

tests in the U.S. stock market. At first, we did not change

any condition except the stock price data from KOSPI200 to

the S&P500 index. However, we obtained some results that

were not as successful as the KOSPI cases after completing

the identical genetic operations. After reviewing the acquired

numerical data, we realized that the chromosome of the sec-

ond test is longer, because they have about 300 more listed

stocks in S&P500 compared to those in KOSPI200. Thus,

the best solutions we found at the 150th generation may not

have yet reached the global optimum point within the search

space.

Thus, we performed additional tests with expanded iter-

ative periods of generations, specifically 300th and 450th.

Because it is widely known that the generation size is propor-

tional to the problem size, or the number stocks in the index

for our study, linearly increasing or tripling the size of gener-

ations seems reasonable. However, because the computation

time also accordingly increases as the iterating procedure

becomes more complicated, we tested the case of conver-

gences at the 300th generation, to find a difference in value

between the initial attempt and the improved one.

While the basic structure of graphs, three line-plots of

cumulative returns on the top and the annual ROI box plots

on the bottom remain the same, while each line and box in the

subplot represents a different value. Unlike the previous plot

in Fig. 8, where each line and box indicate the different trials
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FIGURE 9. Cumulative ROI movements and annual ROI percentile distributions between 2008 and 2018 in S&P500 market.

of each strategy, the lines and boxes in Fig. 9 denote different

trails based on the number of GA generations iterated.

Similar to the KOSPI200 case, although S&P500 usually

includes 500 large-cap stocks, here we used only 464 actively

traded stocks during a given test period (tickers of the con-

stituent companies are presented in the Appendix).

In general, the CAPM+ experiments on S&P500 listed

stocks, similar to those on KOSPI 200, offered positive ROIs.

Due to the years witnessing the bull market rallies, espe-

cially after the 2008 recession, we had a very strong and

winning momentum in the market. In the winning market,

as long as we could identify which stocks had the potential

of continued growth in the next trading period, we were able

to profit from our predictions. For example, the 1-month

analysis of CAPM+ methodology provided more than 400%

profits. Although it was less profitable, investors still could

have earned about 300% of cumulative returns from 11 years

of investments with either the 3- or 6-month analyses of

CAPM+. However, having more stocks in the list or having

greater market growth do not necessarily entail or guarantee

greater returns than those from obtained stock portfolios in

the KOSPI market.

The NO-CAPM methodology of using the momentum-

only strategy did not do any better even under several years

of such upward trends. First, the line plots seem to have

been able to recover from the initial drop during 2008 and

2009. Similar to the KOSPI 200 case, ROIs from the 1-month

NO-CAPM merely converged to that generated by the index

fund trading after long periods, with S&P500 data. Addition-

ally, unlike the KOSPI case, longer periods of analysis did

not aid the momentum-only approach work better in these

particular market circumstances. Although they were able

to capture the inertia in the market and followed the herds,

the NO-CAPM strategy returns stayed behind the movements

and remained more vulnerable to any downturn signals.

Although the recession years led to negative returns annu-

ally, the Annual ROI Percentile Distribution with month-long

use of both CAPM+ and NO-CAPM strategies showed pos-

itive returns in most of the years. It seems that having longer

periods of analysis is less effective in relation to the Annual

ROI box, similar to the KOSPI 200 scenario.

Having a larger generation size definitely proved to be

helpful in the search for optimal portfolios with S&P data

in this research. For instance, the case of 450th or 300th

generation size returned better profits as per both Cumu-

lative ROI and Annual ROI. However, first two lines and

boxes in each graph, which respectively represent the genetic

operations with 450th- or 300th- generation sizes, did not

show a big difference between two. We believe that this indi-

cates, after a certain level and around the 300th generation,
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that the fitness values of the portfolio allocation have reached

their convergence point and that additional generation is

not required. Without further optimization, extra genera-

tions might just consume the computing resources unless

an additional convergence test helps them exit the process.

Therefore, we observed that the generation size of 300 for

464 stock optimizations worked more efficiently while pro-

viding almost the same results.

D. SELF-ANALYSIS

To sum up, we were able to successfully utilize the CAPM+

strategy while outperformed both KOSPI200 and S&P500,

the representative index funds. Moreover, it is noteworthy

that we succeeded in both bull (the U.S.) and flat (the

Korean) markets and the both produced over 300% gains

over 11 years. Considering the fact that we were able to

grasp promising investment opportunities even without any

positive impacts or market trends, we believe that our strategy

is very strong. Although we were able to earn some gains

from investments with the NO-CAPM methodology as well,

it was neither as profitable as the CAPM+ nor significantly

better than the market index trading in either the Korean or

the U.S. markets.

We also tested our works in light of the more realistic

scenarios of annually evaluating the investments and gained

impressive profits (>15%) in most of the test years. One

impressive result from the experiments on annual ROI is that

our trading strategy worked better than the market index in

both markets for the year 2008, when the returns on index

trading dropped by more than 20% due to the global eco-

nomic recessions. Although our strategy could not turn the

negative movements into positives, it could have reduced the

degrees or the impacts of negative market shifts by searching

those combinations of stocks that have more potential in the

future.

In short, our method of designing a portfolio, constituted

by risk-return balanced stocks with high potential, is capable

of generating profits in both bull and flat markets. Suffering

along with the market is inevitable when recessions or

crises come, regardless of our informed estimations, because

our tasks and assumptions depend on market movements.

Nevertheless, we can provide a combination of stocks with a

future that can at least reduce the amount of losses incurred.

In course of these experiments, we also observed that

having a greater number of stocks in the list or larger market

growths did not meaningfully make our approach become

more successful. Because we simply identify stocks that are

low-risk with high return and have high potentials in relation

to the CAPM+ strategy, market growth or the number of

stocks is not necessarily related to the profits generated by

our method.

V. CONCLUSION

The recent years of bull market rallies provided winning

opportunities to many investors in both the U.S. and Korean

stock markets. For example, investing on widely-renowned

TABLE 8. List of stock codes(tickers) used in the experiments.

companies like Amazon (AMZN) or Netflix (NFLX) could

have brought investors abundant profits in the last 10 years,

while their stock price went up more than 2500% and 3500%,

respectively. Throughout those years, many public media
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continuously announced the public how good the market

was. Additionally, companies like Regeneron Pharmaceuti-

cals, Inc. (REGN) or Alexion Pharmaceutical, Inc. (ALXN)

could have brought investors profits worth more than their

initial funds multiplied by 24, during a recent bull rally in the

S&P market.

At the same time, the values of companies like Apache

(APA), CenturyLink (CTL), Devon Energy (DVN), and

Exelon (EXC) all significantly dropped despite the bull ral-

lies. There are many more companies which lost their market

capitals and their statuses as 500-large cap companies. Many

companies in bio/pharmaceuticals or technology industry ral-

lied, while companies in the energy sector started to lose

their market caps. Such analysis of who did well or bad,

unfortunately, can be completed only after the results came

out. Investors, especially individual ones, cannot easily fig-

ure out which stocks will be the future winners of the market,

so to speak.Without insider information or industry expertise,

investments are often compared to no better than ‘‘A Monkey

Throwing Darts.’’

Through the experiments, we first acquired historic stock

price data from the Korean and U.S. stock markets. With

the obtained data, we calculated beta values for each stock

and measured its valuations. After, we applied them in a

genetic algorithm to search which stocks have potential to

grow further and to form an optimal portfolio in a next period.

Thereafter, we observed how the combinations of such stocks

performed in the succeeding trading periods. Although the

proposed method did not offer 3000% profits, it hedged the

risk by building a portfolio and by selecting undervalued

assets. As a result, our ensembled investment strategy of

asset valuations and momentum strategy was considered as

capable of offering a better opportunity of searching out an

optimal portfolio that entails high returns, low risks and has

the potential to grow without deliberate analysis of experts or

domain knowledge.

In the next step, we plan to test our investment strategywith

real-time data, in order to verify its feasibility and market

usability. We believe that our attempts to find an optimal

portfolio can be further extended to Fama-French’s Factor

Model, which improves Capital Asset Pricing Model and

more empirically used in practice. In the future works, market

volatility indexes can also be used to analyze the overall

market behavior and act as a part of a multi-objective genetic

algorithm.

APPENDIX

See Table 8.
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