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A GENETIC ALGORITHM MODELLING FRAMEWORK AND SOLUTION 

TECHNIQUE FOR SHORT TERM OPTIMAL HYDROTHERMAL 
SCHEDULING 

S O .  Orero and M.R. Irving 

Brunel Institute of power Systems, Brunel University, Uxbridge, UB8 3PH, U.K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract: A Genetic algorithm is applied to the 

problem of determining the optimal hourly schedule of 
power generation in a hydro thermal power system. A 
multi-reservoir cascaded hydro-electric system with a 
non-linear relationship between water discharge rate, 
net head and power generation is considered. The water 
transport delay between connected reservoirs is also 
taken into account. The main control parameters that 
affect the genetic algorithm performance are discussed 
and a summary of the theoretical basis of the genetic 
algorithm method is presented. It is shown that a 
multiple step genetic algorithm search sequence can 
provide the optimal hourly loading of the system 
generators. 

I. INTRODUCTION 

Economic operation and control of interconnected power 
systems involves the solution of difficult optimisation 

problems that require good computational tools. 

Evolutionary computation is one such tool that has shown 

its ability in solving complex problems. Evolutionary 
computational methods mimic biological population 
genetics in a search for the optimal solution, and can be 
implemented in various forms such as genetic algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 11, evolutionary programming [2] and evolution strategies 
[3]. In this work, the genetic algorithm is applied in the 
solution of the problem of optimal generation scheduling in 
a hydrothermal power system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PE-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA88-PWRS-0-12-1997 A paper recommended and approved 
by the IEEE Power System Engineering Committee of the IEEE 
Power Engineering Society for publication in the IEEE Transactions 
on Power Systems. Manuscript submitted June 20, 1996; made 
available for printing December 16, 1996. 

The optimal scheduling of generation in a hydrothermal 

system involves the allocation of generation among the 

hydro-electric and thermal plants so as to minimise total 
operation costs of thermal plants while satisfying the various 

constraints on the hydraulic and power system network. In 
short term scheduling it is normally assumed that the target 
dam levels at the end of the scheduling period have been set 
by a medium term scheduling process that takes into account 
longer term river inflow modelling and load predictions. The 

short term scheduler then allocates t h s  water (power) to the 
various time intervals in an effort to minimise thermal 

generation costs while attempting to satisfy the various unit 

and reservoir constraints. 

The main constraints include: the time coupling effect of the 
hydro sub problem, where the water flow in an earlier time 
interval affects the discharge capability at a later period of 

time, the varying system load demand, the cascade nature 
of the hydraulic network, the varying hourly reservoir 
inflows, the physical limitations on the reservoir storage and 
turbine flow rate and the loading limits of both thermal and 

hydro plants. Further constraints could be imposed 

depending on the particular requirements of a given power 

system, such as the need to satisfy activities including; flood 
control, irrigation, fishing, water supply etc. 

The hydrothermal scheduling problem has been the subject 
of intensive investigation for several decades now. Most of 
the methods that have been used to solve the hydro-thermal 
co-ordination problem make a number of simplifying 
assumptions in order to make the optimisation problem 

more tractable. Some of these solution methods include: 

variational calculus based techniques zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] ,  dynamic 

programming [6-71, functional analysis [8-lo], network flow 

and linear programming [ 11-14], non-linear programming 
[ 15-16], mathematical decomposition [ 17-19], heuristics, 
cxpert systems and artificial neural networks [20-231. 
Genetic algorithms have a number of advantages over other 
conventional optimisation and search techniques. In the 
present work, the genetic algorithm technique is applied to 
the hydro-thermal scheduling problem. The GA has 
attractive features such as: the simplicity of the algorithm, 
the ability to handle all sorts of functional representations of 
problems, including problems with very complex 
inter-functional and intra-functional relationships and its 

0885-8950/98/$10.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1997 IEEE 
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robustness, enabling one set of general zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGA control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 System active load 
parameters to solve a wide range of problems. 

The total active power generati 

11. PROBLEM STATEMENT 

Composite cost function 

fuel cost of i thermal unit 

loading of ith thermal unit at time t 

generation level of ith hydro unit at time t 

storage volume of ith reservoir at time t 

water discharge rate of ith reservoir at time t 

load demand at time t 

total transmission line losses at timet 

spillage of of ith reservoir at time t 

inflow rate of ith reservoir at time t 

net head of ith reservoir at time t 

thermal generation cost coefficients 

hydro power generation coefficients 

water transport delay from reservoir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc to i 

set of upstream units directly above ith hydro 

th 

set of hydro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ thermal plants in the system 

i, m 
of the i reservoir 

t, T 
V,ibegin 

V,iend 

reservoir index, index of reservoirs upstream 

time index, scheduling period 

initial storage volume of ith reservoir 

final storage volume of ith reservoir 

th 

B. Mathematical Formulation 

Hydro-thermal scheduling involves the optimisation of a 

problem with a non-linear objective function, with a 

mixture of linear, non-linear and dynamic network flow 
constraints. The problem difficulty is compounded by a 
number of practical considerations and unless several 
simplifying assumptions are made, this problem is difficult 
to solve for practical power systems. The basic optimal 
hydrothermal scheduling in the short term, involves 
minimising the thermal cost function, F, over a given 
scheduling period, T, 

subject to a number of unit and power system network 
equality and inequality constraints. These constraints 
include: 

- 
predicted power demand plus losses, at each time interval 
over the scheduling horizon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t € T  

B. 2 Thermal plant loading limits must be satisfied, 

P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i ,  t )  min 5 P, (i, t )  5 P, (i, t> (3) 
t E T  

B. 3 Hydro plant loading limits must be satisfied, 

t E T  

B. 4 Hydraulic network constraints 

The hydraulic operational constraints 
balance (continuity) equations for each hydro unit (system) 

as well as the bounds on reservoir storage and release 

targets. These bounds are determined by the physical 
reservoir and plant limitations as well as the multipurpose 

requirements of the hydro system. These constraints 
include: 

0 physical limitations on reservoir storage volumes and 
discharge rates, 

Vh i,;"'" 5 Vh t,t5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvh i,t"" 
(5) 

min 
Qh i, t Qh i, t Qh i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt"" 

t E T  

The desired volume of water to be discharged by each 
reservoir over the scheduling period, 

0 

0 The continuity equation for the hydro reservoir 

network 
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B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPower generation characteristics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The power generated from a hydro plant is related to the 
reservoir characteristics as well as the water discharge rate. 

A number of models [4] have been used to represent this 

relationship. In general, the hydro generator power output is 
a function of the net hydraulic head, H, reservoir volume, 
V, and the rate of water discharge, Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ph (i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 t)  =f (,(i, t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, Vh(i 9 t )  ) 
(8) 

and V, (i , t )  = f (Hi, *) 
The model can also be written in terms of reservoir volume 
instead of the reservoir net head, and a frequently used 

functional is 

(9) 

Net head variation can only be ignored for relatively large 

reservoirs, in which case power generation is solely 
dependent on the water discharge. In setting the generation 
levels of the thermal plants, a quadratic cost function is 

used to model the fuel input / power output characteristic of 

thermal units. 

111. GENETIC ALGORITHM SOLUTION METHOD 

A. Overview of Genetic Algorithms 

Genetic Algorithms (GA) are evolutionary 

computation techniques that work with a population of 
potential solutions to a problem, mimicking some of 

nature’s evolutionary process. Individuals in the GA 

population mate and reproduce as in nature. Different 
population members are assigned reproduction rates 

proportional to their fitness. The fitness is derived from the 
problem objective function. A GA solution to a problem 
frequently uses a representation similar to biological gene 
structures. The population of a GA is a subset of a larger set 
of individuals whose members include all the possible 
solutions to the problem. This larger set of possible 
solutions is usually too large to be enumerated and hence 

the need for a technique such as GA to sample this large 
search space. A GA uses a combined set of genetic 
operators to search for an optimal solution over the coded 

parameter space. A flow chart for a simple genetic 

algorithm cycle is shown in figure 1. 

gen= 1 + 
create an initial population I 

Evaluate fitness of each pop. member 

and perform fitness scaling, if necessary 

i 
I I  

create new offspring using selection, 

crossover and mutation operations 

create new offspring using selection, 

crossover and mutation operations 

generation gen=gen+ 1 

Fig 1. A basic genetic algorithm cycle 

A brief description of the main components of the genetic 

algorithm process is presented in the following sections. 

A. 1 Selection 

The selection step of the GA cycle is the process of 
determining the number of copies of each individual parent 
that can participate in the reproduction or mating process. 

There are several ways of implementing the selection 
mechanism. The main ones are; ’roulette wheel’ selection 

[24], tournament selection [25] and stochastic remainder 
selection [26]. The stochastic remainder selection approach 

has been used in this work. Fitness scaling is usually 
applied to the fitness values to prevent premature 
convergence, which is caused by a lack of diversity in the 
population due to a decrease in the variance of fitness. 

A. 2 Crossover and mutation 

The crossover operator is mainly responsible for the global 

search property of the GA. The operator basically combines 

substructures of two parent chromosomes to produce new 
structures, with a chosen probability. The most commonly 
used crossover methods are single point, two point and 
uniform crossover zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27]. The main reason for using the 
mutation operator is to prevent the permanent loss of any 
particular bit value, as without a mutation there is no 
possibility of re-introducing a missing bit value. 

A. 3 Population Size and Initialisation 

A genetic algorithm is a population based search technique 
that derives its power from the fact that it advances its 
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search based on feedback obtained from a number of 
potential solutions to the problem, each searching different 
regions of the search space at the same time. The initial 
population of solutions is usually generated randomly, 

although sometimes the search can benefit from inclusion 

of good previous solutions, if available, but this must be 

done with utmost care, since lack of sufficient diversity in 
the initial population can easily result in premature 
convergence. The size of the population is one of the major 

GA control parameters. A number of theoretical and 
empirical studies [28] provide guidelines on the choice of 

appropriate population sizes. However there is no empirical 
formulae linking the population size to other GA variables 
or any problem specific parameters. In this study the 

population size is chosen as a function of the string length, 

and the value used has been set after a number of empirical 

trials. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Parent replacement method 

In moving from one generation to the next, the old 
population should be replaced by the newly created 

offspring population in some optimal way that keeps the 
search €or better solutions on the appropriate track. Ttus 
step is important for the GA because it determines the 

degree of exploitation of the new search material in the 

advancement of the search for the optimal solution. 

Sometimes, it is good to keep track of the best solution 

obtained so far as the optimisation progresses. This is 
achieved in GA by an "elitist" strategy that retains intact a 
copy of the best solution in successive generations. 

B. Theoretical Basis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Genetic Algorithms 

Although genetic algorithms have shown high success rates 

in solving a number of complex problems previously 
unsolved by other methods, the theoretical basis of their 

performance is still the subject of intensive research. 

B. 1 Schema Analysis 

The genetic algorithm uses a population of candidate 

solutions to the problem, which individually and in 
combination with other members of the group provide 
information about the various sub-structures making up the 
complete solution string. Through the process of selection 

and recombination, the number of instances of a substring 
(building blocks), changes in proportion to the relative 
observed performance of each string in each generation. If 
a fitness proportional selection method is used, as is usually 
the case, then an exponentially increasing number of copies 
are made of the substrings of above average fitness, 
enabling them to dominate future populations. The basic 
explanation of the robust performance of the genetic 
algorithm is based on the schema theorem, [l], which 

postulates that while the 
on the performance of 
gathered about all the CO 

string. 

A schema is a sub 

similarities at certain 

provides a lower b 
population. Consider 

a given time t. A 
according to 

valuated based 
information is 

and after crossover, mutation and other operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 1 --E(, 

where 

M(H,t) is the number o s with schema H at time t, 
M(H,t+s) the number ngs with schema H after 

selection, f the average fitness of the strings in the 

population and &(H,t) the probability that a schema has 

been disrupted by an operator such as crossover or 

mutation. Using the theorem, the minimum proportion of a 
particular schema that is expected to be present in the 
succeeding generation of the trial can be evaluated. 

Although the schema theorem has provided many insights 

on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGA performance and has e 
advancement of the work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon genetic a1 
give an exact distribution of the sche 
The mathematical expression is an 

string gains created by crossover 
string losses. It is b 

population, a condition 
generation before the p 
other GA operators, 
GA behaviour in the first generation. M 
can be used to compl 
and provide better insig 

B. 2 Modelling GA Pevormance With Markov Chains 

Since a GA uses stochastic control par 
search in a random initial popul 
theory can be used to model its 
process is specified by a matrix of 
which give the probability of moving from one state to the 
next. The GA can be modelled as a Markov process in 
which the state of the GA in any given generation is given 

avg 
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during each optimisation interval is used as the main control 

variable. Knowing the water discharge at each plant, the 

reservoir inflows and the unit characteristic equations, the 

change in reservoir storage and the hydroelectric power 

outputs can easily be evaluated. In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACA binary problem 
representation, the various water discharge rates at each 
reservoir for each time interval are represented by a given 
number of binary strings. The number of binary bits 
representing each reservoir depends on the required 

(resolution) accuracy within which the turbine discharge 

level can be varied. The total solution string length is 

obtained by concatenating all the sub-strings that represent 

the individual reservoirs in the various time intervals. 

In a CA optimisation process using binary encoding, the 

solution accuracy depends on the number of bits used to 
represent the decimal equivalent of the control parameter. 
The higher the number of bits used, the finer the resolution. 
The precision required is chosen according to the solution 
accuracy desired. The binary solution string must represent 
the whole scheduling period, to take into account the river 

flow dynamics resulting from the hydraulic coupling effects 

between hydro plants on the same stream. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, 

by the contents of the current population [29-301. The size 

of the matrix will depend on the granularity of the 

modelling required, for example it can be at string level, 

schema level or class level, where a class is a group of 
schema or strings sharing a common property. The state 
space of all possible population members representing any 
given problem solution provides the total region to be 
searched by the CA and an analysis of the population 
trajectories as the GA search proceeds should provide some 
insights into the algorithm performance. 

The main limitation of the Markov chain analysis method is 

the high computation burden implied by the treatment of the 

large matrices used for computing the transition 

probabilities, that are crucial in determining the population 
trajectories. Such models become unwieldy with increasing 

population size and string length, since the size of the 
transition matrix grows exponentially with increasing string 
length. However, Markov chain modelling of GAS on small 
scale systems has provided important insights into the 

fundamental functioning of GAS. Using matrix analysis, 

without manipulating the individual matrix elements [29] 
provide a steady state convergence analysis based on the 
assumptions of infinite population size, while [30] perform 

an analysis of the transient behaviour of a finite population zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. Fitnes Function 
CA that attempts to answer questions pertinent- to GA 
performance such as: the probability that a GA will contain 
a copy of the optimum solution at generation k, the 
probability that a GA will have a fitness value greater than 
some value at generation k and what is the expected best 
individual at generation k. 

A genetic algorithm conventionally searches for the optimal 
solution by maximising a given fitness function, and 
therefore an evaluation function which provides a measure 
of the quality of the problem solution must be provided. For 
the hydrothermal co-ordination problem, the evaluation 

function is a combination of the thermal cost function and 

C. Genetic Algorithm Problem Representation 

The solution to the short range hydrothermal scheduling 

problem can be defined by specifying the actual load 

allocated to various hydro and thermal plants at each time 
step, over the scheduling period. In hydro generation, the 

basic performance curve is expressed in terms of the water 
input versus power output hence the turbine water discharge 
can be used as the problem decision variable. In this work, 

it is assumed that the thermal unit commitment decision is 

known a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori and that the thermal generation provides the 

generation that cannot be supplied by the hydro sub-system. 
The basic optimal hydrothermal scheduling sequence is: 
assuming a given thermal unit commitment, load demand, 
and hydraulic inflows, allocate load to the various hydro 
and thermal units, while satisfying the individual unit 
loading limits, hydraulic constraints and power network 
constraints so that the total operation cost is minimised. 

Included with hydraulic constraints is the desire to satisfy 
end point conditions for the scheduling period in order to 
conform to medium term water release targets. For the GA 
solution method, the water discharge through the turbines 

penalty function terms that take into account the various 

system, unit and hydraulic network constraint violations. 

The evaluation function should differentiate between good 
and poor solutions, both in the feasible and infeasible 

search domains. The fitness value is critical to the 
functioning of the genetic algorithm, since it is this function 

that determines an individual’s ability (chance) to undergo 
selection hence propagate its features to future generations. 
Since a CA maximises the fitness function, the 

minimisation objective function must be transformed into a 

maximisation problem. Solution of the scheduling problem 

involves a minimisation of the composite function, F; 

where: 

Fi ( P  .) is the optimal dispatch cost of the thermal plants, 

@, the penalty function for reservoir storage capacity limits 
violation, Y, the penalty function for final (end conditions) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
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reservoir levels violation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, the penalty function for hydro 
unit loading limit violations, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, the penalty function for 
thermal unit loading limit violations. 

The thermal fuel cost is implicitly related to the sum of the 

hydro power generation (hence discharge) and the load 

demand according to the system load balance given in 

equation 2. The fuel cost I power output characteristics of 

the composite thermal plant is represented by, 

(13) 
F, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPs,i =5000+19.2P,,i+0.002Ps,~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

and 500 <Ps,i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 2500 

while the power output of a hydro unit during any given 

time interval as a function of reservoir volume and 

discharge is given by equation 9. 

The decoded binary solution string gives the actual decimal 

values of the plant discharge over the whole scheduling 

period, which is then used to obtain the fitness function 

value through a sequence of events as shown in figure 2. 

values for each plant over the scheduling 

the thermal generation and hence 

evaluate cost of thermal generatio 

reservoir storages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat the beginning of a time 

interval, the plant discharges and time delays, 

calculate the reservoir storage levels at the end zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( Use the evaluated reservoir storage levels -) 

and unit generations to determine the constraint 

violatlons and penalty costs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

established penalty costs. 

Fig 2. The hydrothermal Scheduling GA evaluation sequence 

D. I Penalty Function ach For Handling 

Finding a solution that satisfies all the hydrothermal 

scheduling problem constraints is quite difficult. A penalty 

function approach [31-321 that takes into account the 

violation of the problem constraints is 

The penalty functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtry to force the unconstrained 

optimum towards the feasibility boundary by incorporating 

penalty terms into the fitness functio 
that violate the constraints. 

With the penalty function, the evaluati 
written in the generic form, 

i= 1 

where c(x) is the thermal cost function hi and Oi the it” 

penalty coefficient and penalty functions respectively, for 

the m constraints. The choice of the penalty term can be 

significant, for, if the penalty term is 
strings that carry useful information 
outside the feasible region will largely 
information lost while if the penalty 
enough, the GA may search only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAam0 

and miss out on the feasible solutions. 

A quadratic penalty function is adopted in the present work 
and the penalty terms are set so that all feasible strings are 

always awarded a higher fitnes than infeasible ones, an 

approach that avoids the difficulties usu 
choosing appropriate penalty coeffi 

allowing infeasible solutions into the population. 

The penalty boundaries for the hydraulic reservoir are 

shown in figure 3. For example, the same violation of either 
the reservoir maximum or minimu 

awarded the same penalty cost, o 
penalised more, the population will te 
less penalised side. The GA treats the 
levels (end volume) as soft constraints which can be 
violated or relaxed, while the maximum (minimum) 

allowable reservoir levels must not be 
the hydro and thermal unit loading 1 
violated. The plant discharge limits are never violated 
because they are implicitly made to vary 

allowable limits as the encoded GA decision v 



RESERVOIR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Apply zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 penalty zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt -.- .- .- .- .- .- .- .- .- ._._._._ 
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Fig 3. Reservoir Constraint Penalty Boundaries 

From figure 3, it should be noted that the Y penalty is only 
invoked in the final time interval, while the @ penalty is 
applied to all the time intervals in the scheduling period. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. Implementation of Hydro-Thermal Genetic 
Algorithm 

Once a method of awarding a fitness to each member of the 
population has been determined, the standard CA search 

sequence of population creation, selection, crossover, 
mutation and parent replacement can be applied to the 
chosen CA model. A canonical GA model, based on 

Holland’s genetic plan [l] has been implemented for the 

hydrothermal co-ordination problem. In addition to the 

usual CA techniques of GA control parameter tuning, a 
number of enhancements, mainly derived from the 

hydrothermal scheduling problem structure, have been 
incorporated in the standard CA search mechanism to 
enable it to solve a wide range of hydrothermal scheduling 
problems. 

In any optimisation process, an appropriate step length for 
changing each parameter variable at each stage of the 
optimisation sequence, must be chosen. If the step lengths 

are too small, it can take a large number of iterations to 

reach the optimal solution, while if step lengths are too 
large, the optimum solution can only be crudely approached 
and the optimisation can easily get stuck at a local 
optimum. For a GA search, the smaller the resolution, the 
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longer the string lengths, which results in longer solution 

times. 

The GA can performance can be greatly enhanced by 
performing a multiple step search using different string 
lengths for different stages of the optimisation. This allows 
a coarse grained search in the initial stages of the CA 
process, which are used as starting points for later runs with 
finer resolutions. These enhancements are described in the 

next section. 

E. 1 Multiple Step GA Using Variable Time Steps 

Exploiting the relationships between the hydrothermal 
scheduling problem structure over successive time intervals 
can reduce the problem size, by providing approximate 
solutions based on an intuitive time decomposition. This 
basically involves varying the step time interval for the 
scheduling process. For example two hour time intervals 

can be used instead of one hour, reducing the problem size 

by half. The solutions obtained from the longer time 
interval are then used as the optimisation starting point for 

the desired final time step, a process that should result in a 
shorter overall solution time, with possible improvements in 

the solution quality. It is to be expected, that the longer the 
time interval, the less accurate the results, due to the loss of 
precision in modelling of the load demand and river 
inflows. However, the longer time intervals are able to 
reach the more promising areas of the search space much 

faster, because of the smaller problem dimension, and their 

results can be used as favourable starting points for the 

searches based on shorter time intervals, resulting in a 

speed up of the overall optimisation process. 

E. 2 Multiple Step GA Using Variable Control Parameter 
Resolution 

The multiple step search uses different string lengths 
(parameter resolutions) for the various stages of the CA 

run. This involves a change in discharge resolution, in 

which the search starts off with short string lengths, which 

are progressively increased in the course of the 

optimisation. If a binary representation is used, then at the 
end of each step, the best solution already obtained is 
converted to the equivalent binary representation required 
for the next step of the CA run. 

The performance of the GA depends on the resolution 
chosen for the control variable. If, the resolution is too 
large, the GA will tend to converge prematurely, while if it 

is too fine, the convergence might take too long, and 

therefore a reasonable balance must be made between the 

resolution accuracy and the convergence time. 

Using multiple steps in the search reduces the computation 
time, and often leads to improved solutions over single 
resolution runs, but the appropriate resolution steps and 
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number of generations for each step must be carefully 
chosen. The variation of the size of the scheduling time 

intervals and parameter resolution can be combined in an 

optimal manner to produce an efficient GA search 

mechanism able to solve a wide range of hydro-thermal 

scheduling problems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. 3 Genetic Algorithm Control Parameter Settings 

While the fitness function is derived from the problem 
objective function, as has been described in the previous 
section, the other GA control parameters such as selection 

method, population size, crossover method, crossover rate 

and mutation rate, are chosen based on the theoretical 

foundations of GA, guidance from previous experience in 

the application of GA in other problem domains and 

performance of empirical trial runs on the hydro-thermal 
scheduling problem. The genetic algorithm operators used 
for the hydrothermal scheduling are summarised in table 1. 

Table 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGA parameter list for the hydrothermal scheduling problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I selection I stochastic remainder I 

fitness scaling I sigma (truncation) I std. dev.=l.O I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I crossover I uniform I rate =I.O I 

F, Test System 

The test system [17], [19] used to evaluate the performance 
of the GA consists of a multi-chain cascade of 4 hydro 
units, and a number of thermal units represented by an 

equivalent thermal plant. The scheduling period is 24 hours, 

with one hour time intervals. The cost of thermal generation 

can be obtained in two ways: 

1. by using a standard economic dispatch technique to 
find the optimal operation cost of the on-line thermal 
generators, or 

by assuming the thermal generation is represented by 
an equivalent single plant, whose characteristics can be 
determined as described in [33]. 

The hydraulic sub-system is characterised by the following: 

2. 

a multi-chain cascade flow network, with all the plants 
on one stream, 

river transport delay between succe 

variable head hydro plants, 

variable natural inflow rates into each reservoir, 

variable load demand over scheduling period. 

The hydro sub-system configuration and network matrix in- 
cluding the water time delays are shown in figure 11, in ap- 
pendix. This hydraulic test network models most of the 

complexities encountered in practical hydro networks. The 

load demand, hydro unit power generation coefficients, 

river inflows and reservoir limits for the test network are 

also given in tables 7, 8 and 9 respective1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IV. SIMULATION AND RESULTS 

A genetic algorithm provides a final population of 
solutions. The best solution, in terms of the fitness 
function, is usually taken as the optimal solution. This 

mathematically best solution might not necessarily be the 

best option for the decision makers, who may wish to take 

some other factors, not implementable in the mathematical 

formulation, into account. The GA can act as a decision 

support tool by providing the analyst with a range of 
optimal or near optimal solutions upon which they can base 
their judgement. 

In the short term hydrothermal scheduling problem, the two 
important parameters that can be allowed to vary are the 
satisfaction of the final reservoir storage levels and the cost 

of thermal generation. These two objectives can be ’ 

conflicting and by providing final solutions showing the 

best of both variables, the decision maker can be helped in 
making better decisions. A number of tests were carried out 
to validate the performance of the hydrothermal scheduling 

GA on the test network. In one set of experiments, each GA 
trial was allowed to run for 2000 generations, while in the 
other set, the GA run was terminated after 5000 
generations. Each experiment was run 10 times, starting 
with a different random initial population. Further tests 
were carried out to determine the combined effects of 

multiple parameter resolution and variable time step GA 

search sequence. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Multiple Resolution, Single Time Step GA 

The effect of using different parameter resolutions for 
different stages of the GA was investigated. Table 2 shows 
the GA performance for 5000 generations, for the single 
and multiple step resolution respectively. The column 
showing the violation of reservoir end volume indicates the 
sum of the violations of all the plants. The corresponding 
variations between the schedule cost and total final 
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Trial 

reservoir storage violations are shown in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The 
results show that the multiple resolution GA performs 
significantly better than the single resolution algorithm, and 
also takes less CPU time to obtain the results given. 

From figure 4 it can be seen that the GA with multiple 

resolution consistently perfoms better than that with single 

resolution in terms of scheduling cost and also takes much 

less CPU time to obtain improved results. It is also worth 
noting that the best cost solution does not necessarily result 
in the least violation of end volume storage requirements. 
The decision maker should be able to choose the best 
solution from those provided by the GA. 

When the performance of multiple parameter resolution GA 
for runs terminated after 2000 and 5000 generations were 

compared, it was found that increasing the number of 

generations of the run from 2000 to 5000 provides a 0.57 

percent average improvement in scheduling cost and a 

slight improvement in meeting the end volume constraints. 

This improvement, was however accompanied by almost an 
80% increase in computation time. The GA user must 
decide the degree of accuracy required of the solutions, as 
well as the computation time which can be tolerated, since 
the solution quality is usually improved by increasing the 
number of generations 

Single resolution Multiple step resolution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thermal Total violation Thermal Total violation in 

cost in end volume cost end volume 

Table 2. Scheduling results (Multiple parameter resolution, 5000 

generations ) 

1 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

947,846 0.091 939,734 0.215 

945,221 0.086 936,451 0.169 

942,600 0.071 935,721 0.493 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 

7 

4 1943,024 10.099 1936,625 I 0.233 I 
946,611 0.079 938,551 0.445 

946,767 0.093 936,567 0.219 

945,768 0.098 938,420 0.376 

9 

10 

8 1951,087 10.140 1937,141 10.221 I 
948,513 0.134 937,749 0.204 

948,654 0.122 932,734 0.115 

I 

Average resolutions [2.7, 1.2,0.1] 

Number of bits, [240,336,696] 

Generations per stage [710, 1430, 

28601, Total CPU time [20 min.] 

Average resolution [0.1], 

Number of bits [696], 

Average CPU time [32 min.], 

Generations [SOOO] 

single resolution 
( 5000 generations 

sum of end volume 
violation 

0.16 

0.14 

0.12 

0.10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.08 

0.06 

0.04 

0.02 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 . 0 0  

COSt 

0.16 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

sum of end volume 
violation 

multiple resolution 
( 5000 generations ) 

cost 

Fig 4. Relationship between total reservoir final volume violation and 

cost of thermal generation 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 shows the variation of the scheduling cost with the 

number of generations, while Figure 6 shows the variation 
of the total end volume violations with the number of 
generations. From figure 6, it can be seen that the GA has 
nearly converged by generation 500, after which the 
scheduling cost changes very slowly as the number of 

generations is increased. It is important to observe the 

effects of the end volume constraints as well, as shown in 
figure 6, otherwise the GA might be prematurely terminated 

I I 
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before optimal results that also satisfy the problem 

constraints are obtained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'heduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- single resolution 
)S t I upto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2000 gen. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Undreds 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 7 8 9 10 1112 1 3 1 4 1 5  161718 1 9 2 0  
hundreds 

generations 

Fig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Vanation of hydrothermal scheduling cost with the number of 

generations 

sum of end 
vol violation 

upto 1000 gen. 
in steps of 50 

generations 

Fig 6 Variation of total end volume violations with number of 

generations 

B. Multiple Time Step, Single Resolution GA 

Table 3 shows the results of a 3 stage GA run with different 
time intervals at each stage, for a total GA run of 5000 
generations, with the number of generations at each stage 
shown in the table. The corresponding variations between 
the scheduling cost and total reservoir end storage violation 
are shown in figures 7 and 8. 

Table 3. Scheduling results (multiple time step CA, 5000 generations ) 

Average CPU time [32 min.], Generations per stage [710, 

Generations [5000] 

Single time step 
(5000 generations1 

sum of end volume 
VlOlatlOn 

1 0 1 6 .  d 0.16 I 
0 14 0 14 

0 12 0.12 

0 10 0 10 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA08 0 08 

0 06 0 06 

0 04 0 04 

0 02 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02 

0.00 0 00 

thermal generahon (single time step) 



sum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAend volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v i o l a t i o n  

Multiple time Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 5000 gnerations) 

Final 
storage 

Expected 

final storage 

I 0.14 . 0.14 I 

119.96 70.03 170.03 140.0 

120 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO 170 140 

0.12 0.12 

0.10 0.10 

0.08 0.08 

0.06 0.06 

0.04 0.04 

0.02 0.02 

0.00 0.00 

938 938 939 939 940 941 943 944 945 945 
rhoumands 

cost I I 
Fig 8. Relationship between reservoir end volume violation and cost of 

thermal generation (multiple time step) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Results of Combined Effects of Multiple 
Resolution, Multiple Time Step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGA Search 

The variation of the size of the scheduling time intervals 
and parameter resolution can be combined in an optimal 
manner to produce improved results. Table 4 shows the 

results obtained by incorporating both a multiple control 

parameter resolution and a variable time step search in the 

GA. The results demonstrate the superior performance 

obtained by combining the multiple time step and multiple 
resolution GA search mechanisms. 

Table 4. Final results for multiple resolution, multiple time step GA 
search zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Reservoir 1 1 I 2 1  3 I 4 I 

I GA parameters: [popsize=100, pcross=l.O, pmUt=0.001, elitist 
copies =lo] I 
Other simulation variables: 
Time steps (hours) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2, 11, Generations per step [500, 5001 
Parameter resolution [ 2, 1,0.5,0.25,0.125] Generations per 

stage [1000, 2000,4000,8000, 16000] 

Average CPU time [ l  hr: 12 min.], 
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outputs, during each time interval. These quantities are 

calculated using the water discharge rates, the hourly river 

inflows, water transport delays and the load demand at each 

time interval, over the scheduling period. The hourly unit 

power outputs and the water discharge levels for the sample 

results in table 4 are given in tables 5 and 6 ,  while the 

hourly turbine discharge and hydro power generation 

trajectories are given in figures 9 and 10 respectively. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Hydro plant power outputs and total thermal generation 

Hour 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
20 
2 1  
22 
2 3  
24 

hydro power generation (MW) Thermal 

plant 1 
7 2 . 4  
7 2 . 9  
8 2 . 6  
8 6 . 7  
8 5 . 4  
8 4 . 0  
6 9 . 8  
7 3 . 9  
8 3 . 9  
6 9 . 7  
7 4 . 0  
7 6 . 9  
7 7 . 5  
8 8 . 7  
7 4 . 5  
7 0 . 5  
9 0 . 6  
7 3 . 0  
6 8 . 2  
9 0 . 2  
7 0 . 7  
6 2 . 7  
6 5 . 7  
6 4 . 7  

4 9 . 6  
5 0 . 7  
5 2 . 1  
6 7 . 9  
5 3 . 8  
5 4 . 6  
6 9 . 2  
6 1 . 5  
7 9 . 5  
6 6 . 1  
7 3 . 7  
7 8 . 3  
6 2 . 6  
6 7 . 0  
6 9 . 6  
7 3 . 6  
7 3 . 5  
7 3 . 7  
7 0 . 6  
7 2 . 7  
7 3 . 5  
4 1 . 0  
4 3 . 6  
5 0 . 8  

4 3 . 3  
0 . 0  

3 4 . 5  
0 . 0  
0 . 0  

4 0 . 1  
0 . 0  

3 8 . 7  
1 8 . 3  
3 5 . 6  
3 9 . 2  
3 8 . 7  
4 0 . 9  
2 5 . 0  
2 5 . 5  
3 6 . 6  
2 6 . 4  
4 6 . 5  
4 8 . 9  
4 8 . 5  
5 1 . 0  
5 4 . 8  
5 6 . 0  
5 8 . 4  

2 0 5 . 8  9 9 9 . 0  
1 9 4 . 0  1 0 7 2 . 4  
1 8 0 . 8  1 0 1 0 . 0  
1 6 5 . 4  9 7 0 . 0  
1 6 1 . 4  9 8 9 . 4  
1 7 6 . 8  1 0 5 4 . 4  
1 9 1 . 0  1 3 2 0 . 0  
2 0 4 . 4  1 6 2 1 . 5  
2 2 2 . 4  1 8 3 5 . 9  
2 3 0 . 8  1 9 1 7 . 9  
2 4 5 . 2  1 7 9 8 . 0  
2 5 2 . 0  1 8 6 4 . 2  
2 6 1 . 6  1 7 8 7 . 4  
2 7 6 . 9  1 7 4 2 . 4  
2 6 2 . 8  1 6 9 7 . 6  
2 5 5 . 9  1 6 3 3 . 4  
2 9 7 . 6  1 6 4 2 . 0  
2 9 6 . 0  1 6 5 0 . 9  
2 8 8 . 0  1 7 6 4 . 3  
2 9 8 . 2  1 7 7 0 . 4  
2 9 3 . 3  1 7 5 1 . 7  
2 9 0 . 6  1 6 7 0 . 8  
2 6 7 . 7  1 4 1 7 . 1  
3 0 5 . 3  1 1 1 0 . 7  

In addition to the turbine discharge, which is given as the 
hydrothermal scheduling GA solution, it is also useful to 
provide as an output, quantities such as reservoir storage 
levels, total thermal generation and hydro unit power 
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Table 6. Hourly plant discharge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx IO4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Hour 
1 

7.519 
7.519 
9.094 
10.039 
10.039 
10.039 
7.519 
8.149 
10.039 
7.362 
7.834 
8.149 
8.149 
10.039 
7.519 
6.889 
10.039 
7.204 
6.574 

10.039 
6.968 
5.944 
6.259 
6.102 

Hydro Reservoirs 
2 

6.000 
6.000 
6.000 
8.267 
6.000 
6.000 
8.267 
7.133 
10.535 
8.055 
9.401 
10 ~ 535 
7.700 
8.409 
8.834 
9.685 
9.968 
10.535 
10.464 
11.669 
12.803 
6.141 
6.283 
7.275 

3 

19.960 
30.000 
19.411 
30.000 
29.921 
13.137 
28.823 
13.764 
20.039 
15.019 
13.764 
15.176 
15.019 
20.039 
20.039 
17.529 
20.039 
11.254 
12.509 
15.019 
10.313 
12.509 
11.098 
12.823 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 

13.000 
13.000 
13.000 
13.000 
13.000 
13.000. 
13.000 
13.000 
13.000 
13.000 
13.755 
13.755 
14.511 
16.023 
14.511 
13.755 
19.047 
19.047 
17.629 
19.047 
18.291 
18.291 
15.929 
23.677 

p l a n t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 
P 

p l a n t  1 

p l a n t  3 p l a n t  4 
I s_ 

Plant  t u rb ine  

water d i scharge  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30  

25 

20 

15 

10 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 6 9 1 2  15 1 8  2 1  2 4  

Fig 9. Hourly plant discharge trajectories 

- plant  1 p lan t  2 

Hydro plant  __r plant  3 p lan t  4 
generation (Mtiw) 

350 

300 
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100 

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Fig 10. Hourly hydro plant power generations 

V. USSION 

The empirical success netic algorithms on hitherto 
unsolved complex problems has made them very attractive 
for the solution of difficult non-linear optimisation 

problems. The GA, must however be carefully designed in 

order to be able to solve any particular class of problems. 

This design involves the appropriate choice of the GA 

control parameters and problem representation. The GA is 
best applied in an innovative way to any specific problem, 
by using as much problem knowledge as possible. For 
example, as has been show this work, a single change in 
the GA such as the use of multiple resolution instead of 
single resolution results in vast improvements in solution 
quality. Further tuning of the GA control parameters such 
as population size, crossover and mutation rates can also 

result in improved solutions. Most of these GA parameters 

are set after considerable experimentation, and it is the lack 

of a solid theoretical basis for their setting which is one of 
the main drawbacks of the GA method. Theoretical research 
is continuing on the appropriate choice of GA parameters 
and if this succeeds, the GA method will become much 
more acceptable for industrial applications, as the design of 
the algorithm will no longer be an exclusive domain for the 
GA expert. 

The GA method is able to provi number of 
quasi-optimal solutions to a problem, by repeated 
trials with different initial populations or by taking a sample 
of the best solutions from the final generation. These 
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alternative solutions can sometimes provide some very 

practical solutions that might otherwise have escaped the 

attention of the analyst. 

The nature of the GA allows their implementation on 
parallel computers, with possible significant decreases in 
computation time. 

VI. CONCLUSIONS 

In the hydro-thermal scheduling problem, the complexity 
introduced by the cascade nature of the hydraulic network, 
the scheduling time linkage, non-linear relationships in the 

problem variables and the water transport delay factors, has 
made the problem very difficult to solve using standard 
optimisation methods. This problem is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAepistatic in GA 
terms, since a schedule at an earlier time interval affects 

that at a later time, and therefore the whole scheduling 

period must be treated as a single solution or entity. The 

GA, on the other hand is able to take into account all the 

problem variables without making the usual simplifying 

assumptions, required by conventional techniques. Once the 
problem has been formulated in the GA framework, the 
only other issue to be resolved is the choice of GA control 
parameters. Large scale hydrothermal scheduling problems 
can be solved using intuitive techniques such as multiple 

resolution in parameter variables or multiple time interval 

decomposition, to speed up the search process. 

The genetic algorithm approach provides a good solution to 

the short term hydrothermal scheduling problem and is able 
to take into account the variation in net head and water 

transport delay factors. Once good GA control parameters 
have been obtained, the solution to the problem under 
different operation scenarios can easily be obtained. The 
genetic algorithm method results in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa simple hydro-thermal 
scheduling problem formulation and solution method which 

can easily be extended to other challenging operation and 

control problems facing electricity utilities. 
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Plant 1 2 

Table 7. Load demand and hydro power generation coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Where: 

Ii - natural inflow to reservoir i 

Qi - discharge of plant i 

Table 8. Reservoir inflows ( x 10 4 3  m ) 
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Fig 11. Hydraulic system test network 
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Table 9. Reservoir storage capacity limits, plant discharge limits plant 
generation limits and reservoir end conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4’ m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
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Discussion S.O.Orero and M.R.Irving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

A. J. Conejo, J. M. Arroyo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Jim6nez Redondo 
(Universidad de Mblaga, MBlaga, Spain): The authors 
have written an interesting and lengthy paper. We would 
like them to comment on the following issues: 

1. The short-term hydrothermal scheduling considers 
start-up and shut-down thermal unit decisions (unit 
commitment problem) simultaneously with hydro 
scheduling decisions (hydro scheduling problem). To 
consider these two problems successively renders in 
general sub-optimal solutions. Quite a few of the 
cited references considers both problems simultane- 
ously. Could the authors explain why they have cho- 
sen to consider thermal unit commitment separately 
from hydro scheduling? 

2. The authors use a penalty strategy to meet con- 
straints. It is well known from optimization theory 
that relevant numerical instability problems arise as a 
result of using penalties to handle constraints. Have 
the authors considered the possibility of using an 
interior point genetic algorithm based on feasibility 
heuristic procedures to always preserve the feasibility 
of the solutions? 

3. The authors use a 0/1 coding technique to represent 
many real variables. This results in high comput- 
ing times if good accuracy is required. It should be 
noted that the computing time required for the dif- 
ferent numerical experiments performed in the case 
study is very high. Have they tried alternative coding 
strategies, such us using the actual real numbers? 

4. The number of generations required is about 5000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  

6. 

in some of the numerical experiments performed on 
the small case study presented. In our experience, 
a smaller number of generations is usually good 
enough. Could the authors comment on the sensi- 
tivity of the quality of the best solution found with 
respect to the number of generations considered? 

The case study presented is a very small example. 
Have the authors any evidence that the results and 
conclusions drawn from the analysis of the small ex- 
ample presented will hold for large-scale real-world 
case studies? 

The paper would have benefited from a comparison 
with a conventional procedure able to get either the 
exact solution or lower and upper bounds of the ex- 
act solution. Have the authors tried to compare the 
performance of their algorithm with the performance 
of a conventional one? 

We thank the discussors for their interest in our paper and 
would respond to their questions as follows: 

1. This study assumes that the thermal unit commitment 
(UC) problem has been solved, and only the dispatch 

sub-problem is considered, in order to concentrate on the 

complex problem of the hydro sub-system and to provide a 

genetic algorithm (GA) model that considers all the 

non-linearities in the resulting scheduling equations. The UC 

problem could be incorporated through a co-ordination 
scheme between the UC and the hydro sub-problem. 

2. We are also aware of the numerical instabilities that can 
arise with the use of penalty functions. This problem is 
perhaps less severe for GAS, in comparison with 

conventional optimization theory based techniques, since 

GAS do not impose stringent requirements on the objective 

function (e.g. differentiability, continuity, convexity etc.). 
Nevertheless, it is important to select and grade the penalty 

terms for each type of constraint carefully. All feasible 

strings must be awarded a fitness value greater than any 
infeasible string, and the penalty level should be proportional 
to distance from the constraint boundary. 

3. The 011 coding technique was found useful and 

straightforward in demonstrating the use of the GA 

technique. There is considerable debate regarding the 

relative merits of binary and other codings (e.g. real 
numbers), see for example [reference Cl]. There are two 
basic arguments against the use of real number 

representation. Firstly, there will be fewer hyperplane 
partitions, as compared to binary encoding which maximises 
the number of hyperplanes available for schema processing. 
Secondly, the alphabetic characters (e.g. real numbers) 
associated with higher cardinality alphabets will not be as 

well represented in a finite population, diminishing the 

effectiveness of the statistical sampling. 

4. Figures 5 and 6 of the paper show that good solutions are 
obtained after about 400 generations, and that there are no 
significant improvements after 1000 generations. The 
algorithm was run for 5000 generations simply to illustrate 
that no further improvements could be obtained. Good 

solutions can therefore be produced in about one tenth of the 
reported computer times. 

5. The example considered was small, but included all the 

modelling complexities that provide major challenges in the 

hydrothermal co-ordination problem. Certainly, one of 
current problems with GAS is that as problem sizes are 
scaled up GAS tend to suffer from convergence difficulties 
(premature convergence). In our approach, we have - -  

Manuscript received June 2, 1997. incorporated modifications such as multiple time step and 
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multiple step control parameter resolution that should help 
when solving larger examples. 

6. As the discussors mentioned the paper was already a 

lengthy one, and we felt that comparison with another 

method would be outside the scope of this paper. We agree 

that this is an important issue, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlook forward to future 

comparative studies. 

{Reference C l ]  Antonisse, H.J., "A new interpretation of the 
schema notation that overturns the binary encoding 

constraint", Proc. Third Int. Conf. on Genetic Algorithms, 

Morgan-Kaufmann, 1989. 

Manuscript received September 16, 1997. 




