
A Genetic Algorithm With Composite Chromosome
for Shift Assignment of Part-time Employees

Ning Xue
ASAP Research Group

School of Computer Science
The University of Nottingham, UK

Ning.Xue1@nottingham.ac.uk

Dario Landa-Silva
ASAP Research Group

School of Computer Science
The University of Nottingham, UK
dario.landasilva@nottingham.ac.uk

Isaac Triguero
ASAP Research Group

School of Computer Science
The University of Nottingham, UK
Isaac.Triguero@nottingham.ac.uk

Grazziela P. Figueredo
IMA Research Group

School of Computer Science
The University of Nottingham, UK

Grazziela.Figueredo@nottingham.ac.uk

Abstract—Personnel scheduling problems involve multiple
tasks, including assigning shifts to workers. The purpose is
usually to satisfy objectives and constraints arising from man-
agement, labour unions and employee preferences. The shift
assignment problem is usually highly constrained and difficult
to solve. The problem can be further complicated (i) if workers
have mixed skills; (ii) if the start/end times of shifts are flexible;
and (iii) if multiple criteria are considered when evaluating
the quality of the assignment. This paper proposes a genetic
algorithm using composite chromosome encoding to tackle the
shift assignment problem that typically arises in retail stores,
where most employees work part-time, have mixed-skills and
require flexible shifts. Experiments on a number of problem
instances extracted from a real-world retail store, show the
effectiveness of the proposed approach in finding good-quality
solutions. The computational results presented here also include
a comparison with results obtained by formulating the problem
as a mixed-integer linear programming model and then solving
it with a commercial solver. Results show that the proposed
genetic algorithm exhibits an effective and efficient performance
in solving this difficult optimisation problem.

Index Terms—personnel scheduling, shift assignment, genetic
algorithms, multiple objectives, multi-skills, flexible shift length

I. INTRODUCTION

The typical process of personnel scheduling consists of sev-
eral stages. Tien and Kamiyama [1] decomposed the problem
into five separate but related stages, while Ernst et al. [2]
divided it into six phases. If the demand is time-based (e.g. 3
workers are required on Tuesday 7am-8am) and the worker
assignment is shift-based (e.g. worker A is on a morning
shift from 7am to 11am), then these stages can be broadly
classified into three main ones as follows. The first stage,
demand modelling determines how many workers are required
at different times over a planning horizon, which is typically
of one week. The second stage, the shift designing involves
designing a set of shifts and calculating their required workers
to meet the demand. The third stage, shift assignment is
to allocate workers to each individual shift, while satisfying

various constraints (e.g. availability, preference and labour
law) in order to achieve certain objective(s) such as minimising
labour cost and maintaining fairness in the assigned workload.

Demand modelling can usually be tackled as a naturally
separate phase [1]. There is a variety of solution methods to
solve the shift design and shift assignment stages, but there are
two main approaches. Firstly, both shift design and assignment
can be solved in one phase where a mathematical model is
formulated and solved with a suitable solution method [15]
(e.g. by a mathematical programming solver). Theoretically,
this approach can provide an overall optimal solution to the
combined problem. The complexity and problem size depend
on a number of factors. For example, the flexibility of shift
patterns (i.e. flexible start time and end time) can result in
a very large problem, which is hard to solve efficiently. For
this reason, exact methods of decomposition and problem-
size reduction [16] [17] as well as heuristic methods [4] [5]
[6] [10] have been proposed to tackle the combined problem.
Secondly, shift design and shift assignment can be solved as
two independent problems [7] [8] [11]. This can make the
problems easier to tackle. However, an overall optimal solution
for shift assignment, given an optimal solution for shift design,
cannot be guaranteed. Studies about the standalone shift design
problem can be found in [9], [12]–[14].

This paper addresses the shift assignment problem, where
for each shift the following information is given: shift lengths,
their start/end times, the number of required workers and the
required skills or roles. Our challenge is to create weekly
schedules for a retail store with up to 50 workers. In this
problem, the term skill and role are interchangeable, for
example, a worker on a cleaning role or with cleaning skills
refer to the same requirement. In addition, in order to meet
the demand on the number of workers and skills for each
shift, the generated schedules have to take into account worker
availability, worker preferences (e.g. not to work with some-
one, preferred working hours) and regional labour laws. The
objectives are to minimise total labour cost, while maintaining

a fair distribution of working hours and unpopular shifts. The
problem has the following characteristics (detailed description
is given in section II):

• Workers are paid according to their age and seniority.
• Each worker usually has multiple skills (roles), e.g.

cleaner, counter, etc.
• The total number of shifts in a week can be over 100 and

the total number of workers can be up to 50.
• The majority of workers are part-time, resulting in great

variability in their availability and preferences.
• The start time of a shift is flexible and the shift length

varies from 3 to 12 hours. For example, a shift can be
6.30am to 10am, 6.30am to 11am, 8am to 2pm and so
on.

• The given shifts (i.e. shift design stage which is not
considered here) were constructed considering working
regulations and practices (e.g. forbidden sequence of
shifts and incompatibility between workers).

A genetic algorithm (GA) with a composite chromosome
representation is proposed in order to tackle the shift assign-
ment problem described above, which involves mixed-skills,
flexible shifts and multiple objectives. GAs have been success-
fully applied to several personnel scheduling problems, such
as nurse scheduling [18]–[21], [37] and doctor rostering [39],
[42], job rotation in manufacture industry [36], transportation
[38], [40], [41], service centres [43], and project scheduling
[44]. In general, the encoding scheme in these GAs is either a
permutation of the workers to be scheduled or a permutation
of the shifts/tasks to be covered. A distinctive feature of the
GA design described in this paper is the solution encoding in
the form of a composite chromosome that contains the day
schedules, the shifts and also the workers suitable for each
individual shift.

The standalone shift assignment problem is usually highly
constrained and difficult to solve. It shares some similarities
with the nurse scheduling problem, which is a variant of
the personnel scheduling problem, and focuses on assigning
shift types to nurses in each day of the planning period. The
nurse rostering problem has been shown to be NP-complete
[24]. Moreover, when multiple criteria and mixed-skills are
involved, the problem becomes very complex to solve [23].
The demand in nurse rostering problem is shift-based and
usually obtained directly from a specification of the number
of nurses required for each shift of the planning period [2]. In
addition, the start and end times of a shift in nurse rostering
are fixed. For example, there are only a few shift types like
morning shift (6am to 12pm), afternoon shift (12pm to 6pm)
and night shift (6pm to 12am). As mentioned above, the
problem tackled in this paper involves flexible shifts in terms
of their length and start/end times. This difference prevent us
from directly applying the techniques (e.g. [20], [21]) used
for nurse rostering to our problem. This is because such
flexibility in the shifts can result in a much larger size of
“shift patterns” [20] especially if workers’ available times are
highly variable. The problem tackled here is also different

from other personnel scheduling problems involving flexible
working patterns (e.g. [10], [22]). Although there are some
similarities in the constraints, the heuristics that have been
developed to tackle those other problems are tailored to take
full advantage of the specific problem. Therefore, the problem
tackled in this paper cannot be solved easily by “off-the-shelf”
approaches from the literature.

The GA method proposed in this paper is tested on a number
of problem instances with different features and sizes. Results
from a comparison with a commercial solver indicate that the
proposed GA is able to obtain high-quality solutions in less
computation time. The remainder of this paper is organised as
follows: the problem and data instances are described in detail
in Section II; the constraint handling and penalty functions
are illustrated in Section III; the solution method is presented
in Section IV; followed by the computational experiments in
Section V. Conclusions are drawn in the last section.

II. PROBLEM DESCRIPTION AND TEST INSTANCES

In this section, we first describe the structure of the problem
instances, followed by the problem description. We also refer
to relevant parts of the data employed in a problem instance.

A. Problem Instance Data
A set of problem instances reflecting characteristics of

the real-world scenarios was generated using historical
data from a local retail store. The data for these prob-
lem instances is available at: https://assets.pxtech.com/misc/
schedulingproblem/WCCI2018Instances.zip. The instances are
classified into small, medium and large size. Five instances of
each size were generated. The instances groups are called I1,
I4 and I8, where the number corresponds to the number of
job skills (roles) that are in demand. For example, I4 are the
instances where 4 different skills or roles are required when
generating the schedule. The data contained in each problem
instance is listed in Table I.

TABLE I
DATA CONTAINED IN AN INSTANCE OF THE SHIFT ASSIGNMENT PROBLEM

Store profile

Max shift length
Night shift end after
Morning shift start before
Max consecutive working days
Incompatible worker set

Worker profile

Hourly Payment
Day start time
Day end time
Max working hours in a week
Max working hours in a day
Max working days in a week
Days on and off

Demand

Weekday
Shift start time
Shift end time
Required role

B. Problem Description
In this paper, we follow the terminology from [25] to define

shift, tour and schedule. Some data from problem instance I4-1
is used next to illustrate the features of the problem.

A shift is specified by the follwing: day of week, required
role (skills), start and end times. The length of a shift ranges
from 3 to 12 hours. An example of shift demand is presented
in Table II. A tour is composed by a sequence of ‘days on’
and ‘days off’, where each day on consists of one shift. A
schedule is a set of tours covering the length of the planning
horizon, which in the case considered in this paper is of one
week.

TABLE II
EXAMPLE OF SHIFT DEMAND WITH EACH COLUMN SHOWING ONE SHIFT

Day of week Monday Monday Monday
Shift start 8 8 11.5
Shift end 12 13.5 15.5
Required role 2 1 0

A solution to an instance of the shift assignment problem is
to assign a tour to each worker. When constructing a workforce
schedule, the primary objective is to provide the staffing
required for each shift, while minimising labour cost. The cost
of a shift is calculated by the shift length (in hours) multiplied
by the hourly payment for the worker assigned to the shift.
The secondary objective is to fairly distribute unpopular shifts
among workers. An unpopular shift is undesirable for most
workers. For our case, those shifts starting before 12pm
or ending after 8pm are identified as unpopular. The third
objective is to ensure that each worker is assigned a similar
total number of working hours across the planning period.

Any feasible solution should cover all the requirements by
official regulations and satisfy the availability and preference
of workers, that is:

• Workers availability: in the problem instance, availability
is expressed by (i) the start and end times that a worker
is available in a working day (see Table III); as well as
by (ii) an indication of whether a worker is available for
duty or not for each day of the week (see Table IV).

• The maximum working hours in a week (see Table III).
• The maximum working hours in a day (see Table III).
• The maximum working days in a week (see Table III).
• The maximum consecutive working days allowed in a

planning horizon (see Table III).

TABLE III
WORKER INFORMATION

Worker ID 0 1 2
Hourly payment 7.7 7.7 5.6
Start time 6 6 6
End time 23 15 23
Max consecutive working day 5 5 5
Max working hours in a week 50 40 40
Max working hours in a day 12 12 12
Max working days in a week 5 7 7

The store manager considers constraints related to employee
satisfaction and working efficiency, that is:

• Workers qualifications: whether a worker has the required
skills (roles) for a given shift. A worker can possess

TABLE IV
WORKER DAYS ON

Worker ID 0 1 2
Monday 1 1 1
Tuesday 0 1 1
Wednesday 1 1 1
Thursday 1 0 1
Friday 1 1 1
Saturday 1 1 1
Sunday 1 1 1

TABLE V
WORKER ROLES

Worker ID 0 1 2
Role 0 1 1 1
Role 1 0 1 1
Role 2 0 1 1
Role 3 1 1 1

multiple skills, e.g. for counter and cleaner roles (see
Table V).

• Sequence constraints: a worker cannot be assigned to a
shift that starts before 12pm on day k immediately after
a shift ending after 8pm on day k − 1. This is to ensure
enough rest time between shifts.

• Incompatible worker constraints: workers that do not
get along with each other will not be assigned to the
same shift. Similarly, workers that are too familiar with
each other will not be assigned to work together. This
is to prevent possible collusion behaviour, which has
a negative impact on sales. For example, in problem
instance I4-1, workers 5 and 6 are identified as mutually
incompatible.

The constraints mentioned above are all treated as hard
constraints in this problem.

III. CONSTRAINT HANDLING AND PENALTY FUNCTIONS

In this section we present the mathematical formulation for
the shift assignment problem considered in this paper. The
terminology is introduced first, followed by the formulation
of constraints and the objective function.

Decision Variables

• xijk :

{
1 if worker i is assigned to shift j on day k.
0 otherwise.

• zik :

{
1 if worker i is assigned to a shift on day k.
0 otherwise.

• bi: number of unpopular shifts assigned to worker i.
• bavg: average number of unpopular shifts assigned con-

sidering all workers.
• ti: number of working hours assigned to worker i.
• tavg: average working time assigned considering all

workers.

Parameters
• pb: penalty cost due to the difference of one shift to bavg .
• pt: penalty cost due to the difference in one hour to tavg .
• Wn: weight associated to the nth component of the

penalty function Pn.

Data Constants

• αtjk :

{
1 if time period t is covered by shift j in day k.
0 otherwise.

• cijk: cost of assigning worker i to shift j of day k.
• ljk: length of shift j on day k.
• limax: maximum number of working hours allowed for

worker i in a week.
• wi

max: maximum number of working days per week
allowed for worker i.

• wi
cons: maximum number of consecutive working days

per week allowed for worker i.
• himax: maximum number of working hours per day

allowed for worker i.

Data Sets
K: set of consecutive days in a planning horizon, k ∈ K.
I: set of workers, i ∈ I .
T : set of time periods of equal length, t ∈ T .
SI : set of subsets S′I of incompatible workers.
S′I : set of incompatible workers, S′I ⊂ SI , SI ⊂ I .
J i
k: set of shifts for which worker i is available in day k.
N i

k: set of night shifts (ending after 8pm) in day k that can
be assigned to worker i, N i

k ⊂ J i
k.

F i
k+1: set of morning shifts (starting before 12pm) in day

k+ 1 that are forbidden for worker i given that the worker is
assigned shift j ∈ N i

k, F i
k+1 ⊂ J i

k+1.

Constraint Handling
In general, there are three widely used constraint handling

methods in a GA. The first approach implements a specialised
encoding scheme and operators, so that the search takes place
over only on feasible regions. The second method repairs the
solution if the genetic operators lead to infeasibility. Thirdly,
penalties to the objective function are adopted to penalise
constraint violations and therefore to reduce the fitness of
unfeasible solutions. Additionally, other constraint handling
techniques can be found in [28]–[31].

Our problem has constraints related to (i) worker’s working
hours (i.e. maximum working hours in a day, maximum
working hours in a week); (ii) working days (i.e. maximum
working days in a week); and (iii) workers compatibility and
shift sequences. All these constraints limit the efficacy of
repair operators, as changing any shift assignment will likely
affect other assignments in the schedule. To overcome this
limitation, the implementation of specialised encoding and
genetic operators (first approach mentioned above) coupled
with the application of penalties (third approach mentioned
above) are adopted here. The mutation and crossover
operations are implemented in a way that a worker cannot

be assigned to more than one shift per day. This avoids, for
instance, workers with lower wages being assigned to the
majority of shifts. The encoding scheme implemented here
(Section IV) automatically handles those constraints related to
worker availability and skill sets. The rest of the constraints
are handled by the penalty approach in the objective function.
The related notations and fitness function are given below:

Objective and Penalty Functions
The labour cost is calculated by: O =∑

i∈I

∑
k∈K

∑
j∈Ji

k

cijkx
i
jk (1)

The penalty for the assignment of unpopular shifts is given
by: P1 = ∑

i∈I
pb |bi − bavg| (2)

The penalty for unfair assignment of working ours is given
by: P2 = ∑

i∈I
pt |ti − tavg| (3)

The penalty for exceeding the maximum number of working
hours in a week is given by: P3 =∑

i∈I

{
max

{
0,

∑
k∈K

∑
j∈Ji

k

xijkljk − limax

}}
(4)

The penalty for exceeding the maximum number of working
hours in a day is given by:P4 =∑

k∈K

∑
i∈I

{
max

{
0,

∑
j∈Ji

k

xijkljk − himaxz
i
k

}}
(5)

The penalty for exceeding the maximum number of working
days in a week is given by:P5 =∑

i∈I

{
max

{
0,

∑
k∈K

zik − wi
max

}}
(6)

The penalty for exceeding the maximum number of consec-
utive working days in a week is given by: P6 =∑
i∈I

{
max

{
0, wi

cons−
k′+wi

cons∑
k=k′

zik

}
, k′ = 1, 2, ..., |K|−wi

cons

}
(7)

The penalty for violating worker incompatibility is given
by: P7 =∑

k∈K

∑
t∈T

{
max

{
0,

∑
i∈S′

I

∑
j∈Ji

k

xijkαtjk − 1
}}

(8)

The penalty for invalid shift sequences (night followed by
morning) is given by: P8 =∑
i∈I

{
max

{
0,

∑
j∈Ni

k

xijk+
∑

j′∈F i
k+1

xij′k+1−1
}
, k = 1, 2, ..., |K|−1

}
(9)

The overall objective function is to minimise the weighted
sum of the above:

obj = min(O +

8∑
n=1

WnPn) (10)

IV. PROPOSED GENETIC ALGORITHM

Our solution approach was inspired by previous successful
applications of GAs on nurse rostering problems [20], [21],
[27]. It differs, however, from nurse rostering solutions, as our
chromosome is not constructed by genes representing indexes
of “shift patterns”. Instead, a composite chromosome is used to
encode the various aspects of a solution in an effective manner;
it also facilitates the application of the genetic operators.

The solution is encoded as a composite chromosome con-
taining seven vectors (i.e. sub-chromosomes). It also varies
from one day to another due to the typical variations in demand
in the retail store. Each vector therefore represents the shift
assignment in a day of the week. The location of a gene
represents a shift and its value indicates the worker assigned to
the shift. Each gene is associated with an allele set containing
all workers that are available and their skill sets to be assigned
to the shift.

Fig.1 shows an example of a composite chromosome con-
structed with 7 sub-chromosomes of index k. The 7th sub-
chromosome contains the 5 required shifts in that day. The
allele set of the first shift (shift1) contains 5 workers who are
available and able to work on shift1. In the example, x117=1
stands for worker 1 (i=1) is assigned to shift 1 (j=1) on day
7 (k=7). Each sub-chromosome behaves differently and is not
affected by genetic operations on the other sub-chromosomes.
The mutation operator assigns a shift to a randomly selected
worker from its corresponding allele set. There are three
types of crossover [35] implemented here: single point, two
point and uniform crossovers. The mutation and crossover
functions are implemented to ensure the constraints regarding
shifts assigned to no more than one worker are met in each
sub-chromosome. Fig.2 shows an example of the one point
crossover operator.

Fig. 1. Example of composite chromosome

Fig. 2. Example of one point crossover

This composite representation is chosen as it automatically
handles constraints related to worker availability and ability.
Those highly restrictive constraints are usually difficult to
handle with a general simple representation. Preliminary ex-
periments conducted in our work show that a two-dimensional
binary representation (i.e. with the gene representing whether
a worker appears on a shift or not) and a one-dimensional
array (i.e. with each gene representing a worker and its value
being the “shift pattern” index, as implemented in [20]) are
less effective for this problem. Another reason for using a
composite chromosome instead of a one-dimensional array
is that there could be more than 100 shifts to be scheduled
in a week. This would require a very long one-dimensional
chromosome to represent a weekly schedule. Some initial tests
demonstrate a very slow convergence rate as the power of
some genetic operators (e.g. single and two point crossover) is
reduced. This is due to the fact that the shift assignment might
remain unchanged after several generations. Although this
issue can be addressed by uniform crossovers, we believe that
high-quality schedules are evolved more efficiently through
single and two point crossovers. As observed in [26], [27],
the success of a GA is usually attributed to the validity of
the building block hypothesis, which relies on the crossover
operator being able to combine good partial solutions (i.e.
building blocks) into complete good solutions. Therefore, in
addition to uniform crossover, single point and two point
crossovers are also implemented and evaluated here.

V. EXPERIMENTS AND RESULTS

A. Algorithm Tuning Experiments

The proposed GA with composite chromosome was im-
plemented in C++ and run on a PC with Intel i7 2.40GHZ
processor and 4GB RAM, which is similar to the retail store’s
equipment. The parameters and penalty weights are given in
Tables VI and VII. The values of W1 and W2 (i.e. penalty
weights for unfair assignment of unpopular shifts and unfair

assignment of total working hours respectively) were set in
consultation with the store manager. The other weight values
were set based on some preliminary experiments over a few
instances, on the understanding that they may not necessarily
be the best penalty weights for the problem.

TABLE VI
PARAMETERS FOR THE GENETIC ALGORITHM

Parameters Settings
Population size 10
Crossover One point crossover
Mutation rate 0.01
Stop criterion 1000 non-improving generations
Selection Elitism

TABLE VII
PENALTY WEIGHTS FOR OBJECTIVE FUNCTION

Weight Value
W1 10
W2 5
W3 50
W4 50
W5 50
W6 100
W7 100
W8 100

Preliminary experimentation revealed that a small popula-
tion size evolved over a large number of generations produces
good solutions in short computation time. The Irace package
[45] was applied to help parameter tuning. Population param-
eters were set by categorical values within (5, 10, 20, 30,
40, 50), while mutation parameters were real values within
range (0.01, 0.5). The max number of experiments was set as
large as 1000; other parameters for Irace were set to default
values. The results suggested that population size of 10 or
30 and mutation rate of 0.01 are the best suited. Some ex-
periment results corresponding to the average objective values
obtained with different settings for mutation rate, population
size and crossover operator are given in Table VIII. These
results suggest that the parameters mutationrate = 0.01,
population = 10 and one point crossover operator are more
suitable in terms of both efficiency and solution quality.
Although populationsize = 30 and one point crossover lead
to the smallest penalty cost, it required much longer computing
time. These results are based on 20 independent runs. It can
also be clearly seen that both one and two point crossovers
perform better than the uniform crossover, confirming the
building block hypothesis [26] [27] for this problem.

In order to illustrate the effect of the composite chromosome
encoding scheme, results on instance I1-1 are compared to
results obtained when using a two-dimensional array for
chromosome encoding instead. As mentioned in Section IV, in
a two-dimensional array chromosome: 1) the first dimension is
associated to shifts and the second dimension is associated to
workers; 2) each gene is a Boolean value indicating whether a
worker is assigned to the given shift or not. The algorithm was
executed with each of the two chromosome encodings using

TABLE VIII
COMPARISON OF RESULTS OBTAINED WITH DIFFERENT SETTINGS FOR

MUTATION RATE, POPULATION SIZE AND CROSSOVER OPERATOR

Mutation Population Penalty cost Time(s)

Uniform crossover

0.01 30 2218.9 344.8
0.01 10 2292.8 118.5
0.02 30 2276.7 336.2
0.02 10 2232.1 114.7
0.05 30 2340.7 391.9
0.05 10 2320.9 157

Two point crossover

0.01 30 2206.7 158.6
0.01 10 2234.6 72.7
0.02 30 2238.7 147.3
0.02 10 2251.8 161.5
0.05 30 2264.3 75.2
0.05 10 2290.7 86.1

One point crossover

0.01 30 2189.4 155.3
0.01 10 2222.6 75.7
0.02 30 2231.5 157.8
0.02 10 2236.6 65.9
0.05 30 2254.5 142.6
0.05 10 2267.7 69.9

the same initial solution as starting point. Parameter values
and penalty weights were as shown in Tables VI and VII.
Results were obtained over 5 independent runs. Results of this
experiment are shown in Fig.1 corresponding to the average
results for problem instance I1-1. It is clear from the graph that
when using the composite chromosome proposed in the paper,
the GA converges faster than when using the two-dimensional
chromosome.

Fig. 3. Results with different encoding schemes on instance I1-1

B. Algorithm Performance Experiments

In order to analyse the performance of the proposed solution
method, we tested the algorithm on 15 problem instances
(described in section II) using the parameter values and penalty
weights given in Tables VI and VII. In order to obtain
statistically sound results, all experiments were conducted
considering 20 independent runs (mean values were recorded)
over all 15 data sets. For each instance, all runs were started
with the same initial solution created at random (Section V-A).
The experiments were also run on a PC with Intel i7 2.40GHZ
processor and 4GB RAM.

A comparison is also made between results obtained with
the GA and results obtained by solving the instances using
a mixed-integer linear programming (MILP) model [32] (LP
approach). The objective of the LP approach is to min-
imise (1)+(2)+(3) while the penalty functions (4) to (9) were
transformed into linear inequalities as constraints. All the
15 problem instances were solved to feasibility by the LP
approach. The values for penalty weights W1 and W2 were
the same for both the GA and the LP approach. An open
source solver (Lpsolve 5.5 [33]) was not able to return any
solution within 12 hours. We then applied the commercial
solver Gurobi 7.5 [34] using the default settings as the LP
solver. Results of this comparison are shown in Table IX.

Table IX shows that the GA consistently obtains feasible
solutions. The Average and Time(s) in the GA columns are
the average objective values and the average running time,
respectively. The Result in the LP column is the objective
function value of the integer feasible solution obtained by
the Gurobi solver at the same computation time as the GA
approach for the same problem instance. LB (lower bound) is
the best known lower bound obtained at 600s by the Gurobi
solver. The solver was stopped at 600s because memory would
normally run out after that time. The same results as in Table
IX are shown in Fig.4 for better visualisation.

From these results, it can be seen that most instances
were solved within 3 minutes. In general, the GA obtained
comparable solutions to those by the LP approach in the
same amount of running time for the small and medium-
sized problem instances (i.e. I1 and I4). The GA exhibits
advantage in solving the large instances more efficiently. We
believe that this is due to the increased search space that
the LP approach faces as the number of job skills increases.
The solver requires far more computational time due to the
difficulty of covering the demand of multi-skills. This issue
however has far less influence on the GA. In fact, thanks to
the composite chromosome encoding, the search space to be
explored by the GA is reduced, as the size of a shift’s allele
set is limited by the restriction of specific skills for that shift.

Due to the high costs of a powerful commercial LP solver
such as Gurobi, this is not a practical solution for many retail
stores. The solutions and running times of the GA approach
are acceptable to the store manager as they are not only
feasible but also comparable to the LP approach and close
to the lower bound. Therefore, we suggest that the proposed
GA is an efficient and economic solution method for the shift
assignment problem studied in this paper.

VI. CONCLUSIONS AND FUTURE WORK

Workforce scheduling is one of the most investigated opti-
misation topics in the literature. However, the variety in the
type and size of this problem makes it difficult to identify
a solution approach that works well across scenarios. In this
paper, we have tackled a shift assignment problem arising in
many retail stores and other places in the services industry.
The problem consists of assigning workers to shifts in each
day of the week. Multiple skills and shift flexibility arise in

TABLE IX
COMPARISON WITH LINEAR PROGRAMMING APPROACH

GA LP
Index Instance Average Time(s) Result LB

1 I1 1 2790.12 141.16 2836.45 2668.24
2 I1 2 2955.05 98.30 2890.35 2799.15
3 I1 3 2525.74 81.03 2494.55 2421.30
4 I1 4 2567.89 104.51 2568.09 2466.67
5 I1 5 3243.68 145.42 3221.74 3086.82
6 I4 1 2288.41 57.49 2321.91 2126.82
7 I4 2 2300.21 146.51 2275.76 2183.33
8 I4 3 2295.91 153.04 2287.09 2090.48
9 I4 4 2668.36 170.78 2760.51 2475.82

10 I4 5 2686.67 155.08 2661.05 2494.88
11 I8 1 3053.93 131.88 3212.04 2899.55
12 I8 2 2841.90 169.96 2983.40 2615.41
13 I8 3 2838.79 170.59 2832.86 2683.58
14 I8 4 2715.20 160.89 2715.72 2478.89
15 I8 5 2751.91 176.43 2897.46 2630.99

Fig. 4. Visualisation of comparison with linear programming approach

the problem. That is, workers have multiple skills, which allow
them to take on different roles. Also, the length and start/end
times of shifts is flexible, giving rise to a large number of shift
patterns over the planning period. In addition, the quality of
the weekly schedule is measured using multiple criteria.

We have proposed a GA that uses an effective composite
chromosome encoding scheme. Experimental results on 15
problem instances have demonstrated the capability and con-
sistency of this solution method in solving different problem
instances. Compared to formulating and solving this problem
as a MILP model using a powerful commercial solver, the
GA approach demonstrated better performance with regards to
efficiency in solving large sized problems (i.e. 8 work skills
involved in the shift demand). The contribution of this paper
is the design of a robust GA for the shift assignment problem
and the creation of a set of problem instances, which are now
publicly available. The algorithm itself is also relatively easy
to implement and provides potential for its application to other
similar optimisation problems.

We outline opportunities for future work. Even though the
current solution quality is acceptable by the store manager,
there is still a gap to the lower bound and hence the pos-
sibility of even better solutions to be found. Also, it will

be interesting to further test the capabilities of the current
composite chromosome encoding, as complexity is added to
the problem. The most challenging constraints in this problem
are worker availability and ability. These are handled well
by our encoding scheme. However, additional objectives and
constraints are being considered by the store manager. Further
tests and possible improvements to the algorithm are therefore
required to handle highly-constrained cases and to deal with
feasibility issues in the future.

REFERENCES

[1] Tien, J.M. and Kamiyama, A., 1982. “On manpower scheduling algo-
rithms,” Siam Review, 24(3), pp.275-287.

[2] Ernst, A.T., Jiang, H., Krishnamoorthy, M. and Sier, D., 2004. “Staff
scheduling and rostering: A review of applications, methods and mod-
els,” European journal of operational research, 153(1), pp.3-27.

[3] Van den Bergh, J., Belin, J., De Bruecker, P., Demeulemeester, E. and De
Boeck, L., 2013. “Personnel scheduling: A literature review,” European
Journal of Operational Research, 226(3), pp.367-385.

[4] Loucks, J.S. and Jacobs, F.R., 1991. “Tour scheduling and task assign-
ment of a heterogeneous work force: A heuristic approach,” Decision
Sciences, 22(4), pp.719-738.

[5] Vakharia, A.J., Selim, H.S. and Husted, R.R., 1992. Efficient scheduling
of part-time employees. Omega, 20(2), pp.201-213.

[6] Alvarez-Valdes, R., Crespo, E. and Tamarit, J.M., 1999. “Labour
scheduling at an airport refuelling installation,” Journal of the Oper-
ational Research Society, 50(3), pp.211-218.

[7] Musliu, N., Grtner, J. and Slany, W., 2002. “Efficient generation of
rotating workforce schedules,” Discrete Applied Mathematics, 118(1),
pp.85-98.

[8] Lau, H.C., 1996. “On the complexity of manpower shift scheduling,”
Computers & Operations Research, 23(1), pp.93-102.

[9] Musliu, N., Schaerf, A. and Slany, W., 2004. “Local search for shift
design,” European journal of operational research, 153(1), pp.51-64.

[10] Brusco, M.J. and Jacobs, L.W., 1993. “A simulated annealing approach
to the solution of flexible labour scheduling problems,” Journal of the
Operational Research Society, 44(12), pp.1191-1200.

[11] Zolfaghari, S., El-Bouri, A., Namiranian, B. and Quan, V., 2007.
“Heuristics for large scale labour scheduling problems in retail sector,”
INFOR: Information Systems and Operational Research, 45(3), pp.111-
122.

[12] Di Gaspero, L., Grtner, J., Kortsarz, G., Musliu, N., Schaerf, A. and
Slany, W., 2007. “The minimum shift design problem,” Annals of
operations research, 155(1), pp.79-105.

[13] Kortsarz, G. and Slany, W., 2001. “The minimum shift design problem
and its relation to the minimum edge-cost flow problem,” Unpublished
manuscript.

[14] Kyngs, N., Goossens, D., Nurmi, K. and Kyngs, J., 2012. “Optimizing
the unlimited shift generation problem,” Applications of Evolutionary
Computation, pp.508-518.

[15] Eveborn, P. and Rnnqvist, M., 2004. “Schedulera system for staff
planning,” Annals of Operations Research, 128(1), pp.21-45.

[16] Jaumard, B., Semet, F. and Vovor, T., 1998. “A generalized linear pro-
gramming model for nurse scheduling,” European journal of operational
research, 107(1), pp.1-18.

[17] Mason, A.J. and Smith, M.C., 1998, July. “A nested column generator for
solving rostering problems with integer programming,” In International
conference on optimisation: techniques and applications (pp. 827-834).
Curtin University of Technology Perth, Australia.

[18] Burke, E.K., De Causmaecker, P., Berghe, G.V. and Van Landeghem, H.,
2004. “The state of the art of nurse rostering,” Journal of scheduling,
7(6), pp.441-499.

[19] Dowsland, K.A., 1998. “Nurse scheduling with tabu search and strategic
oscillation,” European journal of operational research, 106(2-3), pp.393-
407.

[20] Aickelin, U. and Dowsland, K.A., 2004. “An indirect genetic algorithm
for a nurse-scheduling problem,” Computers & Operations Research,
31(5), pp.761-778.

[21] Bai, R., Burke, E.K., Kendall, G., Li, J. and McCollum, B., 2010. “A
hybrid evolutionary approach to the nurse rostering problem,” IEEE
Transactions on Evolutionary Computation, 14(4), pp.580-590.

[22] sgeirsson, E.I., 2014. “Bridging the gap between self schedules and
feasible schedules in staff scheduling,” Annals of Operations Research,
218(1), pp.51-69.

[23] Cai, X. and Li, K.N., 2000. “A genetic algorithm for scheduling staff
of mixed skills under multi-criteria,” European Journal of Operational
Research, 125(2), pp.359-369.

[24] Bartholdi III, J.J., 1981. “A guaranteed-accuracy round-off algorithm for
cyclic scheduling and set covering,” Operations Research, 29(3), pp.501-
510.

[25] Pinedo, M. and Chao, X., 1999. Operations scheduling. McGraw Hill.
[26] Holland, J.H., 1992. “Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and artificial
intelligence,” MIT press.

[27] Aickelin, U. and Dowsland, K., 2008. “Exploiting problem structure in a
genetic algorithm approach to a nurse rostering problem,” arXiv preprint
arXiv:0802.2001.

[28] Srinivas, N. and Deb, K., 1994. “Muiltiobjective optimization using
nondominated sorting in genetic algorithms,” Evolutionary computation,
2(3), pp.221-248.

[29] Coit, D.W., Smith, A.E. and Tate, D.M., 1996. “Adaptive penalty meth-
ods for genetic optimization of constrained combinatorial problems,”
INFORMS Journal on Computing, 8(2), pp.173-182.

[30] Runarsson, T.P. and Yao, X., 2000. Stochastic ranking for constrained
evolutionary optimization. IEEE Transactions on evolutionary computa-
tion, 4(3), pp.284-294.

[31] Coello, C.A.C., 2002. “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state of the
art,” Computer methods in applied mechanics and engineering, 191(11),
pp.1245-1287.

[32] Ning, X. “A MILP model to the multi-objectives shift assignment
problem,” Technical report of automated scheduling, optimisation and
planning (ASAP) Group, University of Nottingham.

[33] Lpsolve 5.5. Open source (Mixed-Integer) Linear Programming system.
URL http://lpsolve.sourceforge.net/5.5/.

[34] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2017.
URL http://www.gurobi.com.

[35] Davis, L., 1991. Handbook of genetic algorithms.
[36] Asensio-Cuesta, S., Diego-Mas, J.A., Cans-Dars, L. and Andrs-Romano,

C., 2012. A genetic algorithm for the design of job rotation schedules
considering ergonomic and competence criteria. The International Jour-
nal of Advanced Manufacturing Technology, 60(9-12), pp.1161-1174.

[37] Beddoe, G.R. and Petrovic, S., 2006. Selecting and weighting features
using a genetic algorithm in a case-based reasoning approach to person-
nel rostering. European Journal of Operational Research, 175(2), pp.649-
671.

[38] Elizondo, R., Parada, V., Pradenas, L. and Artigues, C., 2010. An
evolutionary and constructive approach to a crew scheduling problem in
underground passenger transport. Journal of Heuristics, 16(4), pp.575-
591.

[39] Frey, L., Hanne, T. and Dornberger, R., 2009, May. Optimizing staff
rosters for emergency shifts for doctors. In Evolutionary Computation,
2009. CEC’09. IEEE Congress on (pp. 2540-2546). IEEE.

[40] Hanne, T., Dornberger, R. and Frey, L., 2009, May. Multiobjective and
preference-based decision support for rail crew rostering. In Evolu-
tionary Computation, 2009. CEC’09. IEEE Congress on (pp. 990-996).
IEEE.

[41] Lui, P. and Teodorovi, D., 2007. Metaheuristics approach to the aircrew
rostering problem. Annals of Operations Research, 155(1), pp.311-338.

[42] Puente, J., Gmez, A., Fernndez, I. and Priore, P., 2009. Medical doctor
rostering problem in a hospital emergency department by means of
genetic algorithms. Computers & Industrial Engineering, 56(4), pp.1232-
1242.

[43] Valls, V., Prez, . and Quintanilla, S., 2009. Skilled workforce scheduling
in service centres. European Journal of Operational Research, 193(3),
pp.791-804.

[44] Wu, M.C. and Sun, S.H., 2006. A project scheduling and staff assign-
ment model considering learning effect. The International Journal of
Advanced Manufacturing Technology, 28(11-12), pp.1190-1195.

[45] Manuel Lpez-Ibez, Jrmie Dubois-Lacoste, Leslie Prez Cceres, Thomas
Sttzle, and Mauro Birattari. The irace package: Iterated Racing for
Automatic Algorithm Configuration. Operations Research Perspectives,
3:43-58, 2016.

