
A Genetic Algorithm with New Local Operators for
Multiple Traveling Salesman Problems

Kin-Ming Lo 1 ∗, Wei-Ying Yi 1 Pak-Kan Wong 1 Kwong-Sak Leung 1 Yee Leung 2 Sui-Tung Mak 3

1 Department of Computer Science and Engineering, The Chinese University of Hong Kong
Hong Kong, China

E-mail: kmlo@cse.cuhk.edu.hk
2 Institute Of Future Cities, The Chinese University of Hong Kong

Hong Kong, China
3 Department of Electronics and Computer Science, University of Southampton

University Road, Southampton SO17 1BJ, United Kingdom

Abstract

Multiple Traveling Salesman Problem (MTSP) is able to model and solve various real-life applications
such as multiple scheduling, multiple vehicle routing and multiple path planning problems, etc. While
Traveling Salesman Problem (TSP) focuses on searching a path of minimum traveling distance to visit
all cities exactly once by one salesman, the objective of the MTSP is to find m paths for m salesmen
with a minimized total cost - the sum of traveling distances of all salesmen through all of the respective
cities covered. They have to start from a designated depot which is the departing and returning location
of all salesmen. Since the MTSP is a NP-hard problem, a new effective Genetic Algorithm with Local
operators (GAL) is proposed in this paper to solve the MTSP and generate high quality solution within a
reasonable amount of time for real-life applications. Two new local operators, Branch and Bound (BaB)
and Cross Elimination (CE), are designed to speed up the convergence of the search process and improve
the solution quality. Results demonstrate that GAL finds a better set of paths with a 9.62% saving on
average in cost comparing to two existing MTSP algorithms.

Keywords: Multiple Traveling Salesman Problem, Genetic Algorithm, Branch and Bound algorithm,
Local operators

1. Introduction

Traveling Salesman Problem (TSP) is a widely stud-
ied optimization problem. Given a set of cities and
the distances between them, the TSP is defined as
a path searching problem for a salesman to visit all
cities exactly once, starting and ending at the same
city. The objective of a TSP is to minimize the trav-
eling distance of the salesman. Many real-life appli-

cations can be modeled as a TSP, such as the printed-
circuit-boards drilling problem 1, the order-picking
problem2 and the wallpaper minimization problem
3.

Multiple Traveling salesman Problem (MTSP) is
an extension of the TSP, which has more than one
salesman deployed concurrently to visit the cities.
All salesmen depart from and return to the same de-
pot. Except for the depot, each of the cities can only

∗ Corresponding author

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

692

Received 20 June 2017

Accepted 21 January 2018

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).



be visited by exactly one salesman. Minimizing the
total cost of all paths taken by the salesmen is the
goal of an MTSP. Some typical applications of the
MTSP are path planning 4, scheduling 5and school-
bus routing 6.

Our work is motivated by the multiple quad-
copter paths planning problem. Compared to fixed-
wing aerial vehicles, quadcopters have different
aerodynamics. As the flight time is highly lim-
ited by the internal batteries, an effective path plan-
ning algorithm can help to accomplish as many tasks
as possible within a deployment of multiple quad-
copters. Such a problem can be modeled as a three-
dimensional MTSP.

The MTSP can also be extended with different
constraints or objectives, such as the multiple ob-
jective 7, multiple depot 8, multiple vehicle routing
problem 10, traveling salesman problem with multi-
ple Stacks?etc. Designing efficient algorithms for
the MTSP can also benefit these problems. Cur-
rently, the existing works mostly focus on modeling
real-life scenarios into MTSP but only a few have
the potential to solve the MTSP efficiently.

Because the MTSP is a NP-hard problem 11,
there is no known polynomial-time algorithm for
the MTSP. Therefore, it is more realistic to resolve
the problem by heuristic algorithms. In this pa-
per, an efficient algorithm based on genetic algo-
rithm(GA), called Genetic Algorithm with Local op-
erators (GAL) is proposed and developed to solve
the MTSP. The major contributions of this paper are:
1) we have designed a GA-based algorithm for solv-
ing MTSPs effectively and; 2) we have proposed two
novel local operators for the GA to improve its con-
vergence speed.

We organize the paper as follows. Section 2 re-
views the related research. In Section 3, the problem
definition and formulation are discussed. The algo-
rithm is described in detail in Section 4. Experimen-
tal results and discussions are reported in Section 5.
The conclusion is presented in Section 6.

2. Related Work

The practical algorithms to solve the MTSP can
be categorized into exact and meta-heuristics algo-

rithms. The selection of an algorithm mainly de-
pends on the problem size. Exact algorithms are
suitable for small-scale problems to get the optimal
solution. Due to the NP-hard nature of the MTSP,
heuristic algorithms are more popular in solving
large-scale MTSPs. The cutting-planes algorithm 12

was used to optimally solve the problem with less
than 100 cities.

An extended simulated annealing algorithm 13

was developed to solve augmented TSPs and MT-
SPs. The proposed algorithm does not require trans-
formation 14 from an MTSP form to the standard
TSP form before solving the problem.

A modified Genetic Algorithm (GA) 15 with a
new crossover framework, which balances the com-
putation time and the quality of the solution, was in-
troduced in the paper to model the hot rolling prob-
lem into the MTSP and handle by GA.

A two-part chromosome encoding scheme 16 for
GA was proposed. By eliminating redundant solu-
tions, the size of solution space reduces and con-
vergence is improved. The experiments indicated
that this encoding method produces the best solu-
tion, comparing to the existing encoding methods
with the same execution time. For this reason, sub-
sequent works on solving MTSPs using GA mostly
adopted this chromosome encoding method in their
work.

GA with 2-opt local operator 17 for solving the
MTSP was invented. In the paper, the initial popula-
tion is generated using the nearest neighbor method
to introduce greedy initial population to enhance the
convergence speed in the early stages. 2-opt lo-
cal operator was adopted to avoid pre-mature con-
vergence of the algorithm. Various mutation and
crossover operators for MTSPs were designed and
compared by the authors 18. The result showed
proper operator design can boost the performance.

When the number of cities in an MTSP is rel-
atively large (>500 cities), Ant Colony Optimiza-
tion (ACO) 19 was likely to produce better solutions
comparing to GA on MTSPs. The result had been
further improved by using the elite ACO 20. The
initial paths are generated by the Sweep Algorithm
to cluster the cities by the polar coordinate angles
between the cities and the depot, which creates a

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

693



greedy initial population. A 3-opt local operator is
also applied to speed up the convergence. To en-
hance the capability to escape from local optimum
points, the same authors designed an insert, swap,
and 2 opt algorithm 21. Five local search schemes 22

were introduced by the authors to improve the result
without much increased time complexity.

Inspired by the existing works mentioned above,
the work done in this paper further improves the con-
vergence speed of using GA to solve the MTSP with
two novel local operators.

3. Methodology

3.1. Problem Definition and Formulation

The MTSP is defined as follows: given m salesmen,
n cities and the visiting cost C (an n by n matrix)
between the cities, search the visiting sequences for
the m salesmen such that the total visiting cost of all
salesmen is minimized. Each city can only be visited
exactly once by one of the salesmen. All salesmen
start from and return to the same depot (which is not
counted as a city to be visited). Each salesman has
to visit at least 1 city and at most P cities.

The assignment-based integer programming rep-
resentation for the MTSP is presented as follows:
The cities and the visiting routes can be represented
as an undirected and complete graph G = (V,E)
which contains a set V of n vertices (the cities) and a
set E of n2 (the routes between cities) edges, where
V0 ∈V is denoted as the depot for the salesmen. The
rest of the n−1 vertices V \{V0} represent the cities
to be visited. Each vertex Vi is associated with a po-
sition (xi,yi) in the Cartesian-coordinate system. Ei j
∈ E is the edge traveling from vertex Vi to Vj associ-
ated with a traveling cost Ci j, which is the Euclidean
distance between the vertices Vi and Vj. Therefore,
the visiting cost is symmetric, i.e. Ci j = C ji.

A binary variable Xi j is defined to indicate the
usage of an edge from vertex Vi to Vj in the solution.
It equals to 1 if edge Ei j is included in the solution
path and 0 otherwise. P is the maximum number of
cities that one salesman can visit in a path. There-

fore, the problem is formulated as

minimize
n−1

∑
i=0

n−1

∑
j=0

Ci jXi j

subject to

xi j ∈ {0,1},∀ei,e j ∈ E (1)

n−1

∑
j=1

X0 j = m (2)

n−1

∑
i=1

Xi0 = m (3)

n−1

∑
i=0

Xi j = 1, j = 1...n−1 (4)

n−1

∑
j=0

Xi j = 1, i = 1...n−1 (5)

ui−u j +P ·Xi j 6 P−1 , f or 1 6 i 6= j 6 n−1
(6)

Constraints (2) and (3) ensure that there are ex-
actly m salesmen departing from and returning to
the depot. Each vertex is entered and exited by ex-
actly one salesman, as ensured by constraints (4) and
(5). Constraint (6) is called the subtour elimination
constraints 23, which prevents the paths from being
formed without depot, where ui represents the num-
ber of cities visited from the depot up to vertex i for
any salesman.

3.2. Genetic Algorithm Solution

GA is a mulitpoint stochastic search algorithm
which was first proposed by Holland 24. It simulates
the natural evolution process to generate solutions
and search the optimal solution(s) for optimization
problems. Considerable amount of researches on us-
ing GA to solve TSP or MTSP have been done suc-
cessfully with satisfactory results.

In GA, the candidate solution is usually encoded
in a numeric vector called ’chromosome’. Each
number inside the chromosome is considered as a
gene. Then a set of individuals containing the ran-
domly generated chromosomes forms a population.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

694



Each individual is evolved by selection, mutation
and crossover operators. The mutation operator ran-
domly changes one or more genes to keep the di-
versity of the population, where the crossover oper-
ator attempts to combine the advantages of the par-
ent chromosomes to form the child chromosome. A
fitness value is computed to evaluate the quality of a
chromosome. For the MTSP, the fitness value equals
to the total traveling costs of all salesmen. Hence,
the optimal solution is found when the fitness value
is minimized.

Our proposed algorithm is also a GA. The com-
plete process of the proposed algorithm is shown in
Figure 1. The termination criteria can be set as fixed
number of generations, fixed execution time or ter-
mination time if no significant improvement can be
made compared to the preceding generations.

Fig. 1. Evolution process the proposed GA algorithm

3.2.1. Chromosome Representation

There are several ways to encode an MTSP solution
into a chromosome, including one chromosome15,
two chromosomes 25, two-part chromosome 16 etc.
With the condensed solution space, experimental re-
sults have demonstrated that two-part chromosome
performs the best in terms of convergence speed and
quality of solution. Hence, two-part chromosome
representation is adopted in this work.

Each chromosome is composed of a numeric
vector with length n+m− 1. The first n− 1 genes
represent the visiting permutation for the salesmen.

The remaining m genes represent the number of
cities for each salesman to visit. One of the chromo-
some representation examples is shown as follows,
where Gi represents each city visited and L j is the
number of cities visited by salesman j.

Chromosome= [G1,G2, ...,Gn−2,Gn−1,L1,L2, ...,Lm−1,Lm]

Because all salesmen must depart from and re-
turn to the depot (V0), this city is not included inside
the chromosome to save the memory usage. A chro-
mosome representation example with 11 cities and 3
salesmen is illustrated in Figure 2. In this example,
the first salesman is responsible for visiting 5 cities
as stated in the second part of the chromosome. The
visiting cities’ permutation of the first salesman is 0
(Depot)→ 9→ 8→ 1→ 3→ 6→ 0 (Depot). The
visiting cities’ permutation of the second salesman
is 0 (Depot)→ 7→ 2→ 10→ 0 (Depot). Finally,
the visited cities’ permutation of the third salesman
is 0 (Depot)→ 4→ 5→ 0 (Depot).

Fig. 2. An example of two-part chromosome representation
for 10 cities and 3 salesman from the same depot

3.2.2. Initial Population Generation

A better quality of initial population can improve the
search efficiency since random permutation of cities
is unlikely to produce informative routes in the evo-
lution. A method modified from the Sweep Line al-
gorithm 20 is adopted in our work. The algorithm
generates a sweep line (dotted line in Figure 3) from
the depot to an arbitrary city. By sweeping the line
clockwise with the depot as center, a path ordered
by the polar angle is built as shown in Figure 3. This
approach assumes that if the cities have similar po-
lar coordinate angles, they tend to be closer to each
other.

Half of the initial population contain the gener-
ated paths using the Sweep Line algorithm, while the

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

695



remaining paths are randomly generated as random
permutations to maintain the diversity in the popula-
tion. After that, for each chromosome produced by
the Sweep Line algorithm, a segment of genes (i.e.
1% genes of the chromosome) is selected randomly,
the genes inside the segment are re-ordered using the
nearest neighbour method as follows: For the genes
in the selected segment, one of the genes is chosen
randomly as the starting gene. For the next gene,
the gene closest to the previous gene in the selected
segment will be chosen. When all the genes in the
newly constructed segment are re-ordered, they re-
place the original segment in the chromosome.

Fig. 3. An initial path generated by the Sweep line algo-
rithm

Next, the number of cities for each salesman en-
coded in the second part of the chromosome are ini-
tially evenly distributed. It avoids the paths having
excessive lengths at the beginning. The size of the
initial population is much larger than the population
size of later generations, and only 1.5% (50 over
3000) of the initial chromosomes are selected to be
evolved based on their diversity and fitness value.

3.2.3. Genetic Operators

Genetic operators are essential for GA to evolve
the chromosomes. They significantly influence the
search ability and convergence speed. Proper de-
sign of the genetic operators can further prevent
pre-mature convergence, which means the solution
is stuck in a local optimum. Hence, the choice of
proper genetic operators is essential.

As aforementioned, there are constraints on the
final solution. The cities inside the first part of the
chromosome must appear only once to ensure that
each city is visited only once. Besides, the sum of
the values in the genes of the second part of the
chromosome must be equal to the total number of
cities to be visited. Also, there is a maximum num-
ber of cities for each salesman to visit. Due to

these constraints, canonical genetic operators can-
not be directly adopted in this chromosome encod-
ing scheme. Therefore, modified genetic operators
are used to evolve the chromosomes.

Since the first and second parts of the chromo-
some contain different information and should not
be mixed, separate genetic operators for each part
are required.

There are two mutation operators for the first part
of the chromosome, which are the random swap and
the reverse swap operators. For the random swap
operator, two random distinct positions (Gi and G j)
are selected, where i 6= j, the genes in these two po-
sitions are exchanged. For the reverse swap oper-
ator, two random distinct positions are selected to
define segment, the position of the genes inside the
segment are reversed. Examples are shown in Fig-
ures 4 and 5 respectively.

Fig. 4. Random swap operator

Fig. 5. Reverse swap operator

For the second part of the chromosome, which
controls the number of cities for each salesman to
visit, random distribution mutation is applied as mu-
tation operator. Two random distinct positions (i and
j, where i 6= j) from the second part of the chromo-
some are selected. The gene in Gi will be incre-
mented by one, and the gene in G j will be decre-
mented by one as shown in Figure 6. Then we have
to check whether the result chromosome still fulfills
the number of cities per salesmen constraint, which
means Gi >= 1 and G j <= P, where P is the maxi-
mum number of cities allowed to visit for each sales-
man.

In the example shown in Figure 6, originally,
salesman 2 has to visit 7 cities while salesman 4 has
to visit 9 cities. After mutation, salesman 2 now vis-
its 8 cities while salesman 4 visits 8 cities.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

696



Fig. 6. Random distribution mutation operator for the sec-
ond part of a chromosome

Edge recombination crossover operator 26 is
modified to crossover the first part of the chromo-
some. This operator has been validated to be effi-
cient in solving the TSP. The key idea of this oper-
ator is that if an edge appears in both parent chro-
mosomes, it is believed to be a good edge and has
higher chance to be present in the optimal solution.

The neighboring information is stored in an edge
table. The table size is n ∗ 4, where each row rep-
resents a vertex, and the columns contain the neigh-
boring vertices information of that vertex. As each
vertex appears once in both parent chromosomes,
and it contains at most two neighbours in each parent
chromosome, hence the column size is determined
to be 4. The detail of this operator is presented in
Algorithm 1.

Algorithm 1: Edge recombination
crossover operator

Data: Two parent chromosomes P1,P2
Result: Two offspring chromosomes C1,C2

1 Record the neighbour vertices of both P1 and
P2 in the edge table;

2 for Each row in the edge table do
3 if repeated vertices are found in that row

then
4 This vertex has appeared in both

parents, mark it;
5 end
6 Copy the first 1/3 genes from P1 to C1 ;
7 Put the remaining vertices into an available

vertex list;
8 while C1 is not completed
9 Use the last gene of C1 as index, look up

that row in edge table;
10 if marked vertex(es) is found and at least

one is in available vertex list then
11 Select it as next gene. If there exists

more than one marked vertex, pick the
next gene randomly among them;

12

13 else if only unmarked vertex(es) is found
and at least one is in available vertex list
then

14 Select it as next gene. If there exists
more than one unmarked vertex, pick
the next gene randomly among them;

15 else
16 Look up the nearest 5 neighbour

locations using last gene of C1 as
index;

17 if at least one is in available vertex list
then

18 Select the closest available
neighbour as next gene

19 else
20 Randomly pick a location from

available vertex list
21 Remove the next gene vertex from

available vertex list;
22 Put the selected next gene behind the last

gene of C1;
23 end
24 Repeat Step 6 to Step 23 using P2 to replace P1

to generate C2;
25 return C1 and C2;

3.2.4. Local Operators

In the general GA evolution process, the conver-
gence power is determined by the mutation and
crossover operators. Local operators are used in
this work to boost the convergence rate. The opera-
tors use local search techniques to introduce greedy
chromosome segments into the population. To pre-
vent premature convergence, the operators should
only be executed in between specific generations
(e.g. 100 generations) and inside a small portion
(e.g. to the top 5 individuals only) of the popula-
tion. We have designed two local operators to opti-
mize the paths at different scales. The Cross Elim-
ination operator (CE) works in a global manner, it
can reduce the total traveling cost by rearranging the
visiting order of a large number of cities. In addi-
tion, the Branch-and-Bound operator (BaB) targets

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

697



at producing an optimal path for a small segment of
the cities from one salesman path.

Cross Elimination Operator (CE) This local oper-
ator actively searches for the crosses formed inside
the paths, and attempts to remove them by reorder-
ing the cities sequence. The fundamental concept of
CE operator is similar to the 2-opt operator 27. If a
cross is formed inside a path(the sequence of cities
visited by one salesman), it means the path is not op-
timal. The cross searching technique of CE is based
on the Bentley Ottmann algorithm 28. It is a sweep-
line algorithm for detecting the crosses of a set of
line segments. The crosses in the MTSP can be clas-
sified into two types, namely the intra salesman path
crosses and the inter salesmen path crosses. An in-
tra salesman path cross is formed by the edges in a
single salesman path, while an inter salesmen path
cross is formed by the edges across two different
salesmen paths.

The CE operator needs to be performed carefully
to avoid incorrect result from being produced. It is
because solving a cross may generate new cross(es)
or remove other existing cross(es). An example is
shown in Figures 7 and 8. Therefore, before solv-
ing a cross, it should be checked to see whether the
cross still exists in the path or not. All the newly
generated crosses will be handled in the next cycle
of the process. To determine the cross solving order,
a list containing the estimated cost saving of solving
each cross is created and sorted by descending or-
der. The elimination will begin from the cross which
maximizes the cost saving first.

Fig. 7. Illustration of an intra salesman cross solving pro-
cess. Suppose we are solving the cross formed by EAF and
ECE . After solving this cross, cross formed by EAF ,EBD and
EAF ,EBE are also eliminated.

Fig. 8. Illustration of an intra salesman cross solving pro-
cess. We can see that a new cross is formed by EAC and
EBD after solving the cross formed by EAF and EEC.

Solving the intra salesman path crosses is always
feasible as the number of cities visited by each sales-
man remains unchanged and total traveling cost al-
ways decrease. For the inter salesman path cross,
the solving process is more complicated. There ex-
ists two different options to handle it, as shown in
Figure 9 to 11. It is possible that the new solu-
tion violates the path length constraint (i.e., each
salesman has to visit at least 1 city and at most P
cities). We can see that one of the newly generated
paths becomes longer while the other path becomes
shorter in Figure 11, that means one salesman will
visit 5 cities and the other salesman will visit 3 cities.
Hence, when handling inter salesman path crosses,
we need to consider whether the result can still sat-
isfy the path length constraints or not and which way
to solve the cross such that most costs are saved.
This can be achieved by estimating the number of
cities and the fitness of the paths after cross solving
respectively.

Fig. 9. Input path

Fig. 10. Solution 1 by Cross Elimination

Fig. 11. Solution 2 by Cross Elimination

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

698



After a solving sequence is built, crosses solv-
ing can be executed in order. As stated in the pre-
vious paragraph, the crosses in the path may change
after a cross is solved, some new crosses may be
formed and are not detected by the initial checking.
The cross solving process will iterate for several cy-
cles (at most 5 cycles) or stop when no major im-
provement (at least 1% improvement in fitness) can
be achieved.

Branch-and-Bound Operator (BaB) This local
operator is based on the Branch-and-Bound algo-
rithm. The algorithm is designed for searching the
optimal solution of discrete and combinatorial opti-
mization problems. It consists of a systematic enu-
meration of candidate solutions by the means of
state-space search: the set of candidate solutions
form a rooted tree with the full set at the root. The
algorithm explores branches of this tree, which rep-
resent subsets of the solution set. Before enumerat-
ing the candidate solutions of a branch, the branch
is checked against the upper and/or lower estimated
bounds on the optimal solution, and is discarded if
it cannot produce a better solution than the best one
found so far by the algorithm.

Previous works 29 have applied Branch-and-
Bound to calculate the optimal solution of a TSP.
Since the algorithm has high time complexity (O(n3)
in average 30), it requires an excessive amount of
time to find the solution when the number of cities
is large. In this local operator, the Branch-and-
Bound algorithm is only applied on a subset of a
single salesman path. The subset is randomly se-
lected from a continuous segment of a single sales-
man path. This reduces the running time of the oper-
ator, and introduces locally optimal path to the popu-
lation. An example is shown in Figure 12. The BaB
operator is applied to the cities marked with solid
circles. The vertices between those cities are re-
ordered by Branch-and-Bound to achieve a locally
optimal TSP path. From our testing, we randomly
select a total of 10% genes to be processed by the
BaB piece by piece. Each piece has at most 5 cities
to balance the computational time and performance.

Fig. 12. An example to applying BaB operator to a single
salesman path.

4. Evaluation

4.1. Experimental Setting

In this section, we will evaluate the performance
of GAL. Firstly, the experiments focus on measur-
ing the convergence power of the new local opera-
tors. Secondly, we compare GAL with the existing
MTSP solving approaches with respect to computa-
tional time and solution quality.

GAL is coded in Java and compiled with JDK
1.8. Experiments are run using one single thread on
a PC with Intel Core i7-3370 CPU @3.4 GHz and
32 GB RAM. Each test case is run for 20 times to
reduce random fluctuations in evaluation. A prob-
lem set from the TSPLIB 31 is used as benchmark in
the experiments. The problem set contains 6 prob-
lems with the numbers of cities ranging from 76 to
1002. In this benchmark, there is a maximum cities
constraint, which sets an upper limit on the number
of cities each salesman can visit. The benchmark
details are listed in Table 1. Selected parameters for
GAL are listed in Table 2.

Table 1. Parameters of the benchmark problems

Instance No of cities Number of salesmen Max cities

Pr76 76

5/10/15

20
Pr152 152 40
Pr226 226 50
Pr299 299 70
Pr439 439 100
Pr1002 1002 220

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

699



Table 2. Parameters for GAL

Parameters Values
Initial Population Size 3000
Population Size 50
Random Swap Rate 30%
Reverse Swap Rate 10%
Crossover Rate 40%
Random Distribution Rate 20%
Local Operator Every 100 generations to

the top 1,2,4 individuals
CE ran before BaB

4.2. Comparing Different Local Operators under
different numbers of salesmen

In this paper, two novel local operators - BaB and
CE are formulated to speed up the convergence
speed of the proposed algorithm. This experiment
aims at comparing the convergence power of the op-
erators under different numbers of salesmen. Hence,
we set the maximum number of generations to a
fixed value, which is used as the termination crite-
rion. The results are reported in Table 3. Combining
both local operators (BaB and CE) in GAL obtains
the best-fitness solution compared to other settings
in most of the test cases. The fitness is defined as
the sum of the salesmen’s path costs, which is the
smaller the better.

The convergence curves with 5 agents are shown
in Figures 13 and 14. With a larger problem size,
the solutions converge faster when both operators
are used. The average fitness values are improved
by 4.1%, 28.1%, 36.7% with 5, 10, 15 salesmen re-
spectively compared to the results without local op-
erators.

From the experiment, we observed BaB works
poorly with a small ratio of number of cities / num-
ber of salesmen, which means for each salesman vis-
iting path, it is more likely to be a short path. We
believe such kind of path may achieve local opti-
mum in early GA stage. Hence, applying BaB will
not help, since MTSP global optimization requires
inter-salesmen cities exchange.

To boost GAL, a threshold for BaB can be in-
troduced. When the fitness improvement obtained
by BaB is lower than a threshold (k %), it will be
disabled for certain cycles. It will help to save time
and avoid creating disarrangement for finding better
solution by cities exchange.

The rates of local operators can also be adjusted
to fit different problems. If the application is time
critical, BaB can be disabled to obtain the acceptable
results in the quickest way. If the computational re-
source and time are adequate, the application is cost
critical, using both operators will bring the best ben-
efit to the outcome.

Fig. 13. Convergence diagram with 152 cities with 5 sales-
men

Fig. 14. Convergence diagram with 1002 cities with 5 sales-
men

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

700



Ta
bl

e
3:

Fi
tn

es
s

co
m

pa
ri

so
n

w
ith

di
ff

er
en

tl
oc

al
op

er
at

or
s

an
d

nu
m

be
ro

fs
al

es
m

en
N

um
be

ro
fs

al
es

m
en

5
10

15
Pr

ob
le

m
L

oc
al

O
pe

ra
to

r
B

es
t

A
vg

W
or

se
Ti

m
e

B
es

t
A

vg
W

or
se

Ti
m

e
B

es
t

A
vg

W
or

se
Ti

m
e

Pr
76

N
on

e
15

7,
59

0
16

8,
84

0
17

2,
82

0
4.

20
20

8,
55

9
22

0,
25

9
25

8,
05

4
5.

02
24

2,
82

7
27

2,
73

6
29

6,
34

9
5.

30
B

aB
16

2,
72

2
16

7,
69

7
17

2,
08

9
6.

60
20

5,
04

2
22

5,
02

3
24

3,
35

7
7.

66
25

2,
95

8
27

2,
14

5
28

9,
32

9
7.

80
C

E
15

3,
88

0
16

4,
66

1
17

1,
27

9
4.

90
17

9,
15

6
18

6,
31

7
19

0,
64

0
6.

65
21

9,
24

6
22

6,
22

4
23

3,
53

8
6.

54
C

E
+B

aB
15

2,
27

8
16

6,
13

8
17

0,
75

2
6.

80
17

7,
80

6
18

2,
38

1
18

8,
57

0
8.

29
21

8,
90

1
22

3,
92

7
22

9,
55

9
8.

77

Pr
15

2

N
on

e
12

3,
90

7
13

8,
08

8
14

3,
77

5
16

.7
0

20
5,

24
4

22
8,

73
6

24
4,

97
1

19
.1

0
24

9,
60

1
28

9,
74

4
31

1,
51

4
19

.1
3

B
aB

12
4,

71
4

13
1,

10
9

13
7,

61
5

27
.0

0
22

1,
83

8
23

4,
94

4
24

4,
84

3
27

.8
0

27
5,

59
1

30
4,

91
5

33
5,

74
8

28
.1

1
C

E
11

8,
10

6
13

2,
39

5
14

9,
34

0
19

.4
0

13
4,

16
1

13
6,

22
8

14
5,

13
9

22
.0

9
15

4,
24

9
16

4,
74

1
17

2,
61

2
21

.2
7

C
E

+B
aB

11
6,

62
0

13
1,

67
4

13
8,

09
1

28
.0

0
13

2,
91

7
14

1,
99

3
15

6,
24

7
32

.1
4

15
6,

13
1

16
4,

32
1

17
4,

78
4

29
.4

9

Pr
22

6

N
on

e
15

2,
01

6
15

6,
89

3
16

3,
80

5
46

.7
0

22
4,

13
2

24
7,

69
9

27
0,

16
4

51
.9

5
28

4,
11

3
32

4,
26

8
34

3,
74

3
51

.1
2

B
aB

14
9,

06
8

15
5,

57
4

15
9,

43
9

77
.0

0
22

0,
03

2
25

1,
15

5
27

2,
26

1
81

.4
3

30
8,

11
7

34
0,

13
9

36
3,

04
3

81
.8

1
C

E
15

3,
40

9
15

7,
12

0
16

3,
84

8
52

.6
0

16
8,

42
8

17
2,

19
3

17
7,

95
5

58
.8

4
18

1,
23

5
18

8,
81

3
19

4,
44

6
58

.7
4

C
E

+B
aB

14
8,

04
0

15
6,

62
9

16
2,

32
9

75
.6

0
16

7,
78

2
17

1,
33

8
17

5,
37

1
85

.4
3

18
0,

43
1

18
8,

48
9

19
4,

80
0

82
.1

3

Pr
29

9

N
on

e
76

,4
69

78
,8

72
80

,8
80

78
.0

0
11

6,
10

4
12

1,
42

9
12

3,
82

6
82

.0
1

15
6,

81
2

16
3,

14
4

16
8,

46
4

83
.1

7
B

aB
73

,1
77

77
,6

76
80

,0
93

12
0.

90
11

8,
79

7
12

1,
98

3
12

3,
23

6
11

7.
67

15
2,

99
1

16
0,

75
5

17
0,

83
0

12
3.

88
C

E
75

,9
57

78
,2

17
80

,9
45

86
.9

0
76

,9
24

81
,3

23
87

,4
77

95
.7

1
84

,2
66

87
,4

90
94

,6
49

10
1.

94
C

E
+B

aB
75

,1
45

77
,4

13
78

,7
93

12
3.

10
75

,4
50

78
,9

99
83

,6
13

13
2.

31
85

,5
15

88
,5

26
91

,8
00

13
4.

14

Pr
43

9

N
on

e
14

6,
79

3
15

2,
22

4
15

8,
83

2
18

4.
70

20
4,

52
5

20
9,

37
6

21
7,

51
7

18
5.

17
26

4,
34

8
27

0,
18

5
28

0,
31

8
20

9.
93

B
aB

14
1,

95
1

14
6,

43
6

14
9,

87
4

30
0.

00
20

2,
71

4
20

7,
09

5
21

2,
18

5
28

3.
39

25
8,

48
7

26
7,

12
2

27
4,

98
0

27
9.

41
C

E
14

2,
80

0
14

8,
41

6
15

4,
34

2
21

5.
20

14
6,

16
2

15
1,

63
6

15
7,

47
1

21
1.

26
15

5,
00

4
15

9,
60

9
16

7,
33

6
21

1.
58

C
E

+B
aB

14
1,

18
0

14
7,

38
9

15
1,

97
5

29
5.

70
14

4,
52

7
15

1,
39

2
16

0,
63

4
30

1.
25

14
9,

64
9

15
5,

51
2

16
1,

22
6

31
5.

70

Pr
10

02

N
on

e
35

8,
31

6
37

5,
88

2
40

0,
96

0
79

3.
70

44
1,

64
1

44
9,

85
5

46
1,

63
9

80
0.

90
53

8,
70

8
55

0,
60

5
55

8,
92

6
81

2.
93

B
aB

33
9,

89
0

34
8,

71
2

36
5,

83
4

1,
15

4.
80

42
5,

57
8

43
5,

10
9

44
4,

76
3

1,
18

2.
24

52
9,

95
1

53
5,

03
5

54
0,

14
3

1,
14

9.
55

C
E

34
1,

75
2

34
9,

25
8

35
8,

93
5

86
4.

30
36

6,
27

3
37

1,
64

9
37

8,
52

1
89

4.
75

38
6,

69
7

39
3,

28
6

40
0,

01
6

88
8.

89
C

E
+B

aB
33

2,
65

2
33

8,
58

0
34

6,
57

4
1,

22
4.

50
34

7,
12

6
36

0,
28

4
36

8,
58

2
1,

29
8.

28
37

9,
67

7
38

3,
36

0
38

9,
10

4
1,

24
0.

62

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

701



4.3. Comparing with Existing Algorithms

In this section, we compare the performance of the
proposed algorithm - GAL against two other exist-
ing approaches - Modified Ant Colony Optimiza-
tion(MACO) 19 and Elite Sweep line Ant Colony
Optimization (EACO) 20. Both approaches use
Ant Colony Optimization (ACO) to handle MTSP.
MACO solves the MTSP by ACO with the ability
constraint, where EACO applies Sweep Line Algo-
rithm to improve the initial paths, and uses 3opt lo-
cal operator to speed up the algorithm. Both of them
claimed that their results are the state-of-the-art in
the benchmark problems. In this experiment, the pa-
rameters setting are listed in Table 2. The algorithm
stops when there is no improvement on the fitness
value of the best individual in the successive 10000
generations, which means our algorithm reaches the
convergent situation.

As those papers only include the case with 5
salesmen, the experiment in this section will also
be limited to 5 salesmen only. The experimental re-
sults are shown in Table 4. Comparing to existing
approaches, GAL can obtain the best fitness. The
average fitness values are also greatly improved in
the Pr226, Pr299, Pr439 and Pr1002 cases, which
are the 4 largest problems. Our approach is always
faster than MACO. Although the running time of
our method is slightly longer than EACO, the aver-
age fitness has obvious improvement in comparison
(9.62%).

5. Discussion

In the experiments, we found that inter-crosses could
exist in a better solution. An example is shown in
Figures 15 and 16. Although no inter-cross is found
in the paths of Figure 16, the fitness is 10.07% worse
than the path of Figure 15. We suspect this is due to
the constraint of maximum cities visited per sales-
man. From the observation, elimination of inter-
cross may not always be a good idea.

Hence, the timing for applying this local operator
should be carefully selected. For example, when the
solution chromosome is stuck for some generations,
this operator can instantly improve the chromosome
quality. On the other hand, maintaining the diversity

of population reduces the chance of getting into this
sticking situation. In addition, with the BaB oper-
ator, locally optimal solution has a chance to jump
out of the local optimum. The CE operator is safe to
use with such precautions in place.

Although the GA 32 described in that paper also
handles the same problem instance, it requires pre-
computed initial population from a TSP path using
Lin and Kernighan operators 33. Our proposed algo-
rithm is suitable for making solution from scratch,
in which pre-computed information is not available.
Hence, the algorithm is not comparable with our
proposed work.

Fig. 15. Path visualization with 76 cities - Better solution
(Fitness : 153376)

Fig. 16. Path visualization with 76 cities - Locally optimal
solution (Fitness : 170558)

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

702



Table 4. Comparison of the proposed algorithm and the existing
MTSP solving algorithm with 5 salesmen

Problem Algorithm Best fitness Average fitness Time
size (in seconds)

76
GAL 153389.9 162810.6 17.7

EACO 157495 157562 19
MACO 178597 180690 51

152
GAL 115873.8 128053.4 47.4

EACO 127791 128004 41
MACO 130953 136341 128

226
GAL 148050.6 156542.3 76.6

EACO 167665 168156 62
MACO 167646 170877 143

299
GAL 72949.3 77481.6 108

EACO 81998 82195 65
MACO 82106 83845 288

439
GAL 143785.4 147710.7 269.5

EACO 161725 162657 95
MACO 161955 165035 563

1002
GAL 334350.6 341303.9 1524

EACO 379871 381654 186
MACO 382198 387205 2620

6. Conclusion

In this paper, a novel MTSP solving algorithm,
called Genetic Algorithm with Local operators
(GAL) has been proposed and developed. The new
local operators BaB and CE have been successfully
deployed to generate high quality results in a short
computation time. We have also compared the per-
formance of our work with those of the existing ap-
proaches. Our algorithm has made improvement in
the search ability and speed.

For future study, as GA can be run in parallel,
the proposed method can be further improved by us-
ing parallel GA design for real time applications.
Furthermore, the local operators can be applied to
other variations of MTSP-like problems, like min-
max MTSP 34 and multiple objective MTSP 35 to
find better solution efficiently.

Acknowledgment(s)

This research was supported by the Vice-
Chancellor’s one-off support of The Chinese Uni-
versity of Hong Kong. The authors would like to
thank Leung-Yau Lo and Kwan-Yau Cheung for
their assistance.

1. J. D. Litke, An improved solution to the traveling
salesman problem with thousands of nodes, Commu-
nications of the ACM 27 (12) (1984) pp.1227–1236.

2. H. D. Ratliff, A. S. Rosenthal, Order-picking in a rect-
angular warehouse: A solvable case of the traveling
salesman problem, Operations Research 31 (3) (1983)
pp.507–521.

3. R. S. Garfinkel, Minimizing wallpaper waste, part 1:
A class of traveling salesman problems, Operations
Research 25 (5) (1977) pp. 741–751.

4. Y. Zhong, J. H. Liang, G. C. Gu, R. B. Zhang, and H.
Y. Yang, An implementation of evolutionary computa-
tion for path planning of cooperative mobile robots, in
Intelligent control and automation, 2002. proceedings
of the 4th world congress (2002) , pp.1798–1802.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

703



5. S. Gorenstein, Printing press scheduling for multi-
edition periodicals, Management Science 16 (6)
(1970) B-373.

6. R. D. Angel, W. L. Caudle, R. Noonan, and A. Whin-
ston, Computer-assisted school bus scheduling, Man-
agement Science 18 (6) (1972) B-279.

7. R. M. F. Alves and C. R. Lopes, Using Genetic Algo-
rithms to minimize the distance and balance the routes
for the Multiple Traveling Salesman Problem, in Evo-
lutionary computation (cec) 2015 ieee congress, pp.
3171–3178.

8. S. Ghafurian, and N. Javadian, An ant colony algo-
rithm for solving fixed destination multidepot multiple
traveling salesmen problems, Applied Soft Computing
11 (1) (2011) pp. 1256–1262.

9. H. Min, The multiple vehicle routing problem with si-
multaneous delivery and pick-up points, Transporta-
tion Research Part A: General 23 (5) (1989) pp.377–
386.

10. H. Min, The multiple vehicle routing problem with si-
multaneous delivery and pick-up points, Transporta-
tion Research Part A: General 23 (5) (1989) pp.377–
386. Barbato, M., Grappe, R., Lacroix, M., and Calvo,
R. W., A Set Covering Approach for the Double Trav-
eling Salesman Problem with Multiple Stacks, in In-
ternational Symposium on Combinatorial Optimiza-
tion, (2016) , pp. 260–272.

11. M. R. Garey, and D. S. Johnson, A guide to the theory
of np-completeness, Computers and intractability (W.
H. Freeman & Co.,New York, NY, USA ,1990).

12. G. Laporte, and Y. Nobert, A cutting planes algorithm
for the m-salesmen problem, The Journal of the Op-
erational Research Society 31 (11) (1980) pp. 1017–
1023.

13. C. H. Song, K. Lee, and W. D. Lee, Extended
simulated annealing for augmented TSP and multi-
salesmen TSP, in Proceedings of the International
Joint Conference on Neural Networks, (2003) ,
pp.2340–2343.

14. G. Yang, Transformation of multidepot multisales-
men problem to the standard travelling salesman prob-
lem, European Journal of Operational Research 81
(3) (1995) pp.557–560.

15. L. Tang, J. Liu, A. Rong, and Z. Yang, A multiple trav-
eling salesman problem model for hot rolling schedul-
ing in Shanghai Baoshan Iron & Steel Complex, Euro-
pean Journal of Operational Research 124 (2) (2000)
pp.267-282.

16. A. E. Carter and C. T. Ragsdale, A new approach to
solving the multiple traveling salesperson problem us-
ing genetic algorithms. European Journal of Opera-
tional Research 175 (1) (2006) pp. 246–257.

17. W. Zhou, and Y. Li, An Improved Genetic Algorithm
for Multiple traveling Salesman Problem, in 2nd In-
ternational Asia conference on Informatics in control,

automation and robotics (car) (2010) , pp.493–495.
18. J. Li, Q. Sun, M.C. Zhou, and X.Z Dai, A new multiple

traveling salesman problem and its genetic algorithm-
based solution, in IEEE International conference on
systems, man, and cybernetics, (2013) , pp.627–632.

19. J. J. Pan,and D. W. Wang, An ant colony optimiza-
tion algorithm for multiple travelling salesman prob-
lem. in Innovative computing, information and con-
trol, (2006) , pp.210–213.

20. M. YOUSEFIKHOSHBAKHT, F. DIDEHVAR, and
F. RAHMATI, A combination of sweep algorithm and
elite ant colony optimization for solving the multiple
traveling salesman problem, Proceedings of the Ro-
manian Academy A 13 (4) (2012) pp.295–302.

21. M. YOUSEFIKHOSHBAKHT, F. DIDEHVAR, and
F. RAHMATI, Modification of the ant colony opti-
mization for solving the multiple traveling salesman
problem, Romanian Journal of Information Science
and Technology 16 (1) (2013) pp.65–80.

22. B. Soylu, A general variable neighborhood search
heuristic for multiple traveling salesmen problem,
Computers and Industrial Engineering 90 (2015)
pp.390–401.

23. C. E. Miller, A. W. Tucker, and R. A. Zemlin, Inte-
ger Programming Formulation of Traveling Salesman
Problems, J. ACM 7 (4) (1960) pp.326–329.

24. J. H. Holland, Adaptation in natural and artificial sys-
tems. an introductory analysis with application to bi-
ology, control, and artificial intelligence, Ann Arbor (,
MI: University of Michigan Press ,1975).

25. C. J. Malmborg, A genetic algorithm for service level
based vehicle scheduling, European Journal of Oper-
ational Research 93 (1) (1996) pp.121–134.

26. Y. C. Tang, and K.S. Leung, A modified edge re-
combination operator for the Travelling Salesman
Problem, in International Conference on Evolutionary
Computation The Third Conference on Parallel Prob-
lem Solving from Nature Jerusalem, Israel, (1994),
pp.180–188.

27. E. S. Buffa, G. C Armour, and T. E Vollmann, Allocat-
ing facilities with CRAFT, Harvard business review :
HBR. (Boston, Mass : Harvard Business School Publ.
Corp ,1964).

28. J. L. Bentley, and T. A. Ottmann, Algorithms for re-
porting and counting geometric intersections, IEEE
Transactions on Computers 100 (91) (2006) pp. 643–
647.

29. J. D. C. Little, K. G. Murty, D. W. Sweeney, and C.
Karel, An algorithm for the traveling salesman prob-
lem, Operations research 11 (6) (1963) pp.972–989.

30. W. Zhang, Branch-and-bound search algorithms and
their computational complexity, (University of South-
ern California, U.S., 1996).

31. G. Reinelt, TSPLIB - A t.s.p. library, (Augsburg: Uni-
versität Augsburg, Institut für Mathematik,1990)

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

704



32. R. I. Bolaos, E. M. Toro O, and M. Granada E., A
population-based algorithm for the multi travelling
salesman problem, International Journal of Industrial
Engineering Computations 7 (2) (2016) pp.245–256.

33. S. Lin and B. W. Kernighan, An effective heuristic al-
gorithm for the traveling-salesman problem, Opera-
tions research 21 (2) (1973) pp.498–516.

34. Wang, Y., Chen, Y., and Lin, Y., Memetic algorithm
based on sequential variable neighborhood descent

for the minmax multiple traveling salesman problem,
Computers & Industrial Engineering, (106) (2017)
pp.105–122.

35. T. S., Cheikhrouhou, O., Koubaa, A.,et al, FL-
MTSP: a fuzzy logic approach to solve the
multi-objective multiple traveling salesman prob-
lem for multi-robot systems, Soft Computing ,
https://doi.org/10.1007/s00500-016-2279-7, (2016)
pp.1–12.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 692–705
___________________________________________________________________________________________________________

705


