
A Genetic Approach to Gateless Custom VLSI

Design Flow

Mohammed Shoaib, Noor Mahammad Sk and Kamakoti.V

Reconfigurable and Intelligent Systems Engineering Group

Department of Computer Science and Engineering

Indian Institute of Technology, Madras, Chennai - 600036, India

Abstract— In this work, we propose a novel technique for
evolving transistor netlists from truth table descriptions of
arbitrary digital circuits. The proposed methods incorporate the
effective use of Genetic Algorithms (GAs). In typical semi-custom
and custom design flows, logic optimization is done at the gate
level after Boolean translation of the input truth table. The final
transistor netlist is then deduced from the simplified gate logic
to be laid out on a chip. However transistor level optimizations
after the boolean simplification step would still not lead to the
minimum number of transistors. This final optimization level is
non-existent in present custom design flows. This work aims to
address this need. A salient feature of the proposed technique
is the bypassing of gate level representation and optimization in
the VLSI design flow. We provide genetic methods to directly
optimize truth table inputs using transistor level simplification.
This eliminates the intermediate gate level optimization step and
provides optimized transistor netlists which could be used for
dynamic library cell generation for custom and semi-custom
designs on the fly.

I. INTRODUCTION AND BACKGROUND

Automation in modern microelectronics has resulted in multi-

ple methods for the design and optimization of digital circuits.

These automated methods incorporate gate level optimizations

followed by the use of standard library cells to map the designs

to hardware. In several custom designed Integrated Circuits

(ICs), the use of standard libraries translates to hardware

redundancy. This is because, standard library cells, due to their

limitations in size and number, often result in having several

unused transistors for the custom logic. Consequently, the use

of tailored cells for specific applications become necessary.

Application specific generation of such cells utilizes on-chip

hardware effectively besides providing fast and flexible de-

signs operating with lesser redundancy and better performance.

Realization of custom circuits - cells or blocks, involve three

implementation phases [1]:

• Creation of transistor circuit topologies which provide a

specific digital function.

• Sizing and ordering of the transistors in the circuit

topology.

• Placing, routing and compacting the transistors in layout.

Each of the above stages involve trade-offs which must be opti-

mized across all stages. This work proposes to address the first

phase of transistor circuit topology creation, automatically.

In literature, much attention has been given to the sizing

[2], [3] and placing of transistors [1], [4], [5] in custom and

semi-custom circuits. Using Genetic Algorithms (GAs), in

[4], Murphy, et. al, describe the placement optimization of a

cell followed by the extraction of the netlist. They employ

sigmoidal transistor characteristics for an Artifical Neural

Network (ANN) model unlike the switch characteristics in our

case. Their major aim is the use of primitive components and

reduction of the parasitic capacitance rather than a topological

optimization. In [5], Bahuman, et. al, describe a GADO model

for a custom cell. But their starting point is the placement

optimization unlike the configuration optimization in our case.

In this work, we focus on the direct transistor netlist

generation using Genetic Algorithms for optimization. Genetic

methods have been applied in the past for gate level synthesis

[6] besides specific optimization methods for Pass Transistor

Logic (PTL) [7], Complementary PTL (CPL) [8], Differential

PTL (DPTL) [9], Double PTL (DPL) [10] and other non-

complementary MOS logic styles. Mazumder and Rudnick, in

[11] provide a good insight into the problems in VLSI design

and synthesis techniques.

The methods we use in this work involve the use of Genetic

Operators to evolve transistor netlists for a certain functional

requirement described by an input truth table. The netlist

generation, because of the characteristics of the genetic oper-

ators, inherits direct optimization at the transistor level. This

gives an optimized transistor netlist which would otherwise

be derived after converting the truth table to its minterms and

then applying the Boolean simplification operations. In the

latter case, the netlist obtained would still not be optimized

to exploit internal topological optimizations of the transistors.

The main contribution of this work is to propose the genetic

methodology of direct evolution for the transistor netlist from

functional descriptions of cicuits. The paper also provides a

methodology for incorporating a gateless optimization algo-

rithm in the custom circuit design flow to provide the creation

of custom library cells in-situ, Fig. 1. This favorably enhances

the performance of custom circuit syntheses and provides

better utilization of transistor resources besides automation and

simplification of the design flow, by eliminating the boolean

optimization step. In the following paragraph, we present

the basic concepts of Genetic Algorithms [12] necessary to

understand this paper.

Genetic algorithms work on a set of chromo-

somes/genotypes called the population. Each chromosome

represents a solution to the problem which is associated

with a fitness value that reflects how good it is compared

978-1-4244-1847-3/07/$25.00 ©2007 IEEE IEEE ICM - December 2007

Fig. 1. Custom design flow simplification using the proposed genetic method
: The genetic flow eliminates the intermediate Boolean simplification step from
the normal gate optimized flow (A) providing a direct transistor optimized
netlist (B), ready for size/layout tuning in custom circuits.

TABLE I

GENE STRUCTURE IN A CHROMOSOME USING .SIM ENCODING a

Tij Sij n1
ij n2

ij Wij Lij fi δij

p CLK Vdd 1 4 2
n Rij(A1..AN) 1 Rij(2..N + 1) 4 2
n Rij+1(A1..AN) Rij+1(Sik..Sij−1) Rij(2..N + 1) 4 2
.
.

n CLK max[n1,2
ij . . . n

1,2

ij+N] gnd 4 2 fi δij

a
Tij : Transistor type, Sij : Transistor gate node, Wij : Transistor width in µm, Lij : Length in µm, N :

Number of Inputs, Rij : Uniform Random Selector

to the other solutions in the population. The variation

process comprises of crossover and mutation, which concoct

material by partial exchange among genotypes and by random

alterations of data strings. The frequency of these operations

is controlled by certain pre-set probabilities which require

heuristics appropriate for the particular problem at hand. The

representation, variation, evaluation and selection operations

constitute the basic GA cycle or generation.

II. GENETIC TOPOLOGICAL SYNTHESIS

A. Representation and initial population

Gene representation in the Allele: Representation of the

genes for evolution is a critical choice to keep the circuit

topology valid and provide faster convergence. Eq. (1) shows

the chosen representation. Each transistor is represented as

a triplet < Sj , n
1
j , n

2
j >, where Sj stands for the node to

which the input signal and the gate of the jth transistor are

connected. n1
j and n2

j are the nodes to which the source and

drain of the jth transistor are connected. A chromosome is a

sequence of such triplets which are equal in number to the

input signals determined from the truth table. These form

netlist inputs to the IRSIM simulator for fitness evaluation

and selection. A subsequence of these signal triplets can be

used for mapping the inputs (or transistor gates) to one of the

variables A1, A2 . . . AN . In other words, the Sj values of the

triplets in the subsequence shall be a one-one mapping from

among Ai’s, 0 ≤ i ≤ N .

Gene Structure: The internal gene structure of a chromo-

some is shown in Table. I. The representation using a Perl

parser is designed to conform to the spice netlist. This can

be directly used for evaluation, using the IRSIM switch level

simulator.

h

Sj n
1

j n
2

j Sj+1 n
1

j+1 n
2

j+1 Sj+N−1 n
1

j+N−1 n
2

j+N−1

i

(1)

The methodology for the generation of the initial population

Fig. 2. Initial population generation with the corresponding transistor
topology and SFG for the netlist. The dotted lines contribute to the random
node choice for the next chromosome. The final obtained netlist is functionally
valid.

is shown in Fig. 2 and in Table. I. The first node, n1
0, for

the ith chromosome in the population is chosen to be 1 to

which the pMOS, CLK signal is connected. The second node is

randomly chosen between (N+1) and 2. These form the source

and the drain for the first nMOS transistor. For the second

and subsequent jth device, the first node is chosen randomly

from among the previously chosen nodes, < n1
ik, n2

ik >, where

0 ≤ k ≤ j and the second node is chosen randomly between

(N+1) and 2. This ensures circuit connectivity and appropriate

intermixing of the nodes to provide a broad outreach in the

search space. A matrix of P chromosomes is chosen this way

to form the valid initial population.

B. Variation: Crossover and Mutation

Algorithm 1 CROSSOVER(n)

Require: An integer 0 ≤ n
1,2
ij ≤ N + 1

Ensure: Network connectivity and n1
0j = 0.

1: for all i such that 0 ≤ i < P do

2: for all j such that 0 ≤ j < δj do

3: S
′

ij = R(Sij . . . Sij+N−1)

4: n
1,2
ij = ξ(n1,2

ij)
5: if j = 0 then

6: return n1
ij = 1

7: end if

8: end for

9: for all k such that δj ≤ k < N do

10: S
′

ij = R(Sij+1 . . . Sij+1+N−1)

11: n
1,2
ij = R(n1,2

ij . . . n
1,2
ij+δj

)

12: n2
ij = ξ(n2

ij+1)
13: end for

14: end for

The initial population generated as described in Sec. II-A is

used to proceed with the evolutionary variation. The crossover

IEEE ICM - December 2007

operator algorithm is shown in Algorithm.1. For the jth

chromosome in a population size of P , δj transistor selections

from the jth chromosome and (N -δj) selections from the

(j+1)th chromosome are used. The copy operator, ξ is used to

copy the corresponding nodes for the δj devices. The first node

is then set to 1 as in Sec. II-A to ensure circuit connectivity

in the phenotype. For the rest of the N -δj transistors, the first

node is chosen randomly from among the previous 2δj nodes.

The second node for all the genes in the chromosome other

than the first one is copied (ξ) from the (j+1)th chromosome.

The select-scalar, δij is calculated as shown in Eq. (2).

δij = log2l −

⌈

fi

log2l

⌉

(2)

where, l is the length of the truth table input by the user and fi

is the fitness value for the ith chromosome set in the genotype

matrix. The mutation operator works similar to the initial

population generation described in Sec. II-A. These randomly

mutated and the varied chromosomes (Pco/m) total to P -1.

These are appended at the end of the chromosome matrix with

P elements to obtain a total of 2P -1 chromosomes in the next

generation.

C. Selection and termination:

Algorithm 2 SELECTION(n)

Require: An integer 0 ≤ n
1,2
ij ≤ N + 1.

Ensure: P: Population; G: Generation

1: for all g such that 1 ≤ g < G do

2: Pg = Pi + Pco/m

3: fg = ε(Pg) {irsim ∗.proc gj .sim gj .cmd}
4: Png = Λ[Pg(1 . . . P)] {sort and select P}
5: if g = 0.1G then

6: P
′

g = Pi + Pm {variation mutation}

7: P
′

g = Λ[Pg(1 . . . P)] {sort select}
8: end if

9: end for

With the variation generated Pco/m=P -1 chromosomes ap-

pended at the end of the initial population, Pi=P , a new

genotype matrix is created. For all of these, the fitness (ε)

is evaluated. This is an ⊕ (XOR) operator with the input truth

table supplied by the user. This compares the deviation of the

current chromosome from the required truth table. The ε is

evaluated using the IRSIM simulator. From the resulting 2P -

1 chromosomes generated, the sorting operator Λ, sorts the

chromosomes according to their fitness values and the top P

of them are selected to move on to the next generation. This

way, only the best characteristics of a generation are passed on

to the next generation. After about 10% of the total generation

size G, mutation is introduced to increase the generation gap

and introduce diversity in the current population. When the

best fit chromosome is found from the sorted matrix, the algo-

rithm is terminated. The selection operation is algorithmically

described in Algorithm.2. An elitist model is also used in the

design.

III. EXPERIMENTAL RESULTS

Test case simulations for the proposed design flow were run

using an embedded switch level IRSIM simulator. Fig. 3 shows

the evolved fitness values over the iterations numbers for a test

input truth table whose boolean functions are shown in Fig. 4

and Fig. 5. The netlist obtained from the genetic evolution

using the operations described in Sec. II provides a quick

way of custom generating library cells. The fitness value is

evaluated by summing up the exclusive-OR vector derived

using the input (required) truth table from the user and the

evolved truth table response for the stimulus vector obtained

from IRSIM. When the fitness value reaches 0, the two re-

sponses match and the netlist obtained from the genetic method

is valid. Fig. 4 and Fig. 5 show evolved netlist translations to

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

F
itn

e
ss

Iter. Sample

Fitness Evolution

Fig. 4
Fig. 5

Fig. 3. The fitness evolution samples over intermediate generations, plotted
for cases in Fig.4 and 5 with four and five inputs respectively.

dynamic CMOS circuit schematics. Our genetic methodology

guarantees a convergence to a point which gives the simplified

netlist incorporating all the boolean simplification rules. This

means that the final netlist obtained after evolution has the

minimum transistor count. The netlist could be used directly

as a library cell instead of simplifying the logic at the gate level

and then translating it to the transistor netlist which may still

miss out a few optimizations in the transistor topologies. This

transistor level simplification can be carried ahead into layout

level optimization. Better transistor sizing can also be obtained

by using the stochastic methods described in [2]. This would

be the next step in optimization to obtain the best layout and

size for characterizing a cell. Table. II shows the convergence

Fig. 4. Evolved SPICE Netlist for the testcase with N=4, P =100 and G=23

rates and parameters used for the experiments conducted on

a few test cases for the proposed genetic methodology. It is

IEEE ICM - December 2007

Fig. 5. Evolved SPICE Netlist for the testcase with N=5, P =100 and G=153

evident that the convergence is practical, albeit stochastic. Our

genetic methodology could easily be incorporated into any

digital circuit design flow to enable the creation of dynamic

library cells on the fly. Fig. 1 shows one such methodology

where the genetic netlist creation forms the fundamental step

in the process of custom and semi-custom circuit design.

IV. FUTURE WORK

From the design methodology and the results described in

Sec. II and III, it is evident that our methods are scaleable

to incorporate four and five input truth tables with extremely

practical speeds of convergence. It is important to note that

the search space complexity in the problem is of the order

22n

, which is enormous even for a four or five input truth

table. For higher order functions, convergence rates become a

serious issue. However, the shannon’s decomposition, laid out

in [13] and the equation below, could be effectively used to

exploit some parallelism.

f(xn, xn−1, . . . , x0) = f(xn, xn−1, . . . , 1)x0

+ f(xn, xn−1, . . . , 0)x0

The decomposed functional topology with fewer inputs can

easily be evolved in parallel using our genetic methods and the

whole truthtable can be realized by combining the decomposed

parts using the dynamic CMOS logic. Scalable functionality

can hence be incorporated into the proposed method at various

levels. Experiments with the scaleable models could be the

future direction for the current design methodology. This

would make it feasible to work with arbitrary truth table inputs.

This automatic transistor level optimization of the topology

starting from truth tables, completely avoiding the Boolean

simplification approach is the first known methodology to the

best of our knowledge. The transistor sizing [2] and placement

optimization [1], [4] and [5] can easily be incorporated in the

current model for the complete genetic custom design flow.

V. CONCLUSION

The results and designs set out in this paper clearly describe

the implementation techniques for the genetic evolution of

optimized transistor netlists starting from truth table descrip-

tions. These can be effectively used to generate custom library

cells on the fly. Although demonstrated for the dynamic

CMOS and the domino logic case, the design methodology

can generically be extended to include static CMOS and

other logic styles using the principle of duality. Appropriate

heuristics in the evolution of the transistor netlist starting from

truth table descriptions are shown to perform practically. These

include Boolean simplifications and other optimizations using

genetic operators of crossover and mutation. The methodology

bypasses the normal way of Sum of Product (SoP) or Product

of Sum (PoS) formulation of a function description followed

by gate level optimization and transistor netlist generation. The

netlist obtained directly from the functional specification can

be used for layout preceded by optimizations for sizing and

placement.

TABLE II

EXEMPLARY CIRCUIT RESULTS FOR TEST TRUTH TABLE INPUTS WITH

THE MUTATION AND ELITISM RATE OVER MULTIPLE GENERATIONS

BOOLEAN EXPR ELITE RATE MUT RATE N ITER FINAL NET

Y = (x + y)(yz + x) + xy 0.1 0.1 3 1300 x12, y22, z234
Ys = xz

Y = xyz + xyz + xyz
+xyz + xyz + xyz 0.1 0.1 3 2300 x14, y14, z14
Ys = x + y + z

Y = wxyz + wxyz + wxyz
+wxyz + wxyz + wxyz + wxyz 0.1 0.1 4 6600 w14, x14, y12, z25
Ys = wx + yz

Y = (w + y)wx + z 0.05 0.5 4 6300 d13, a35, b33, c15
Ys = wx + z

Y = v + w + x + y + z 0.1 0.25 5 15300 v14, w14, x14, y14, z14
Ys = v + w + x + y + z

REFERENCES

[1] Lefebvre, M, Marple, D and Sechen, D, The future of custom cell

generation in physical synthesis, Proc. 34th Annual Conference on
Design Automation, pp.446-451, 1997

[2] Rogenmoser, R, Kaeslin, H and Blickle, T, Stochastic Methods for

Transistor Size Optimization of CMOS VLSI Circuits, Proc. 4th Intl.
Conference on Parallel Problem Solving from Nature, pp.849-858, 1996

[3] Heusler, L.S, Transistor sizing for timing optimization of combinational

digital CMOS circuits, PhD Thesis, ETH Zurich, 1990
[4] Ho, M.C, Leung, S, Kurokawa, H and Choy, O.C, Digital logic synthesis

using genetic algorithms, 2nd Intl. Conference On Genetic Algorithms
In Engineering Systems: Innovations And Applications, GALESIA, pp
296-301, September 1997

[5] Bahuman, A, Bishop, B and Rasheed, K, Automated Synthesis of

Standard Cells using Genetic Algorithms, Proc. IEEE Symposium on
VLSI, pp.126-133, April 2002

[6] Hounsell, B.I and Arslan, T, A Novel Genetic Algorithm for the Auto-

mated Design of Performance Driven Digital Circuits, Proc. Congress
on Evolutionary Computation, pp.601-608, vol.1, July 2000

[7] Geun Rae Cho and Chen, T, Mixed PTL/Static Logic Synthesis Using

Genetic Algorithms for Low-Power Applications, Proc. Intl. Symposium
on Quality Electronic Design, pp.458-463, August 2002

[8] K.Yano, et al, A 3.8ns CMOS 16x16-b multiplier using complementary

pass-transistor logic, IEEE J.Solid-State Circuits, vol.25, pp.388-395,
Apr.1990

[9] J.Pasternak et al, Differential Pass Transistor Logic, IEEE Circuits and
Devices, pp.23-28, July 1993

[10] Makoto Suzuki, et al, A 1.5ns 32b CMOS ALU in Douple Pass-Transistor

Logic, IEEE J.of Solid-State Circuits, vol.28, no.11, pp.1145-1151,
November.1993

[11] Mazumder,P and Rudnick, E.M, Genetic algorithms for VLSI design,

layout and test automation, Prentice Hall, pp.264–266, 1999
[12] Goldberg, D.E, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Publishing Company Inc., 1989
[13] Woods, S and Casinovi, G, Efficient solution of systems of Boolean

equations, IEEE/ACM International Conference on Computer-Aided
Design, ICCAD-96, pp.542 - 546, November 1996

IEEE ICM - December 2007

