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Abstract

This paper presents a genetic algorithm approach to
multi-criteria motion planning of a mobile manipulator
system  considering position and configuration
optimisation. Travelling distance and path safety are
considered in planning the motion of the mobile system.
A wave front expansion algorithm is used to build the
numerical potential fields for both the goal and
obstacles by representing the workspace as a grid. The
unsafeness of a grid point is defined as the numerical
potential produced by obstacles. For multi-criteria
position and configuration optimisation,  obstacle
avoidance, least torque norm, manipulability and torque
distribution are considered. The emphasis is put on using
genetic algorithms to search for global optimum and

solve the minimax problem for torque distribution.

Various simulation results from two examples show that
the proposed genetic algorithm approach performs better

than conventional methods,

1. Introduction

A mobile manipulator system is a manipulator mounted
on a mobile vehicle. Mobile manipulator systems are
increasingly considered for applications in hazardous or
hostile environments where buman access is limited.
They are also attracting significant interest in the

manufacturing,

military, and  public  service

communities,

A typical characteristics of a mobile manipulator system
is its high degree of kinematic redundancy created by the
addition of the vehicle’s degrees of freedom to the
manipulator’s. The redundancy, quite desirable for
dexterous manipulation and transport functions in
cluttered environments, allows the system to be
optimally positioned and configurated for maximum

performance when stringent task requirements, and/or

system, environment and task constraints are given.

Moreover, a mobile manipulator is capable of performing

a number of tasks in widely separated locations. Thus,

in addition to using the redundancy to achwp@mﬁ_




manipulator configuration for each task, one can also use
it to solve for the global optimisation problem of finding
optimal base trajectories for performing a sequence of
tasks.

In planning the motion of mobile robots. travelling
distance has been the primary object to be optimised
because the shortest distance path may reduce the robot's
travelling time and consequently the computational
complexity of path planning"™*. However, another factor
which should not be ignored during robot path planning
is robot safety during path execution. Robot safety

becomes important, when there are non negligible
uncertainties in both the robot dynamics during path
execution and the environmental information such as
obstacles. The safety of a mobile manipulator becomes
particularly important because when the arm of a mobile
manipulator has to reach out while its vehicle is moving
in a cluttered environment. the vehicle needs a larger

clearance from obstacles than a mobile robot alone.

The safety of a robot path can be quantified by the
clearance between the path and obstacles. If robot safety
is the only concern, one would choose a path providing
the maximum clearance from obstacles. However. such a
path could be considerably longer than the shortest one.
Therefore, it is not desirable to consider the safety
criterion only when the robot's travelling distance is also

important in path planning.

The safety of a path has not been considered explicitly in

most known path planning approaches. In many

papers'?, path safety was obtained by enlarging each
obstacle by a specified amount. Though the method of
growing obstacles is simple and attractive in many cases,
a potential problem with this method is that some good
paths could have been eliminated as a result of growing

obstacles.  Moreover, it may be wvery difficult to

determine the degree of enlargement of obstacles during
path planning because of its independence on the
utilisation of the workspace as well as the uncertainties

in the robot dynamics during path execution.

Potential field methods can generate safe paths.
However, because no global search is undertaken, the
solution path may be neither the shortest nor the safest.
Itis simply a negotiable path from the start configuration
to the goal configuration, and no robust mechanisms
have been developed for handling local minima. Thus,
using potential field methods to elegantly solve the

findpath problem is difficult.

Barraquand and Latombe ® construct a numeric
potential field using a grid representation for path
planning. Their result is a numeric Voronoi diagram of
the environment. Also, because it maximise clearance
from obstacles. it suffers from a “too far” problem.
Another drawback is that Barraquand and Latombe do
not specifically consider clearance information to
generate their numeric potential and therefore their
method can guide the robot through narrow free space
channels that are close to the goal, thereby endangering
the robot. Suh and Shin’® presented a variational
dynamic programming approach to robot path plannin g
with a distance-safety criterion. The method represented
free workspace as channels and the safety cost of a path
is defined as the deviation of the path from the centre-

line path,

There often exist a large, even infinite, number of paths
between the initial position and final position and path
planning is not necessarily to determine the best solution
but to obtain a good one according to certain
requirements.  Various search methods have been
developed (e.g. calculus based methods, enumerative

schemes, random search algorithms, etc.) for path



Planning. Calculus based methods are local in scope and
easy to get stuck in local minima, Enumerative schemes
are not effective when the search space is too large 1o
explore all the parts. Random search algorithms are
probabilistically complete, but may take 2 long time to
find a solution. Genetic algorithms are robust search
and optimisation methods. They search for the optimum
globally and therefore they can avoid bein g trapped in
local minimum. Moreover, it is easy to combine new
requirements into GAs’ cost functions. Many resulys
have shown that genetic-based algorithms performed
better than traditional optimisation methods. Cleghorn
etal’ proposed a genetic algorithm to solve the shortest
travelling distance problem while Leung and Zalzalg ™
presented a genetic solution for the motion of wheeled
robotic systems in dynamic environments. These two
Papers shown their genetic solutions to be 3 Jess
computation intensive approach to rohot path planning,
but they only considered travelling distance and did not

take path safety into consideration.

The particular kinematic redundancy of the mobile base
to those of the manipulator of a mobile manipulator
System are often utilised to optimise a wide variety of
criteria and/or to meey various constraints. Carriker et
al™ used a simulated annealing method to optimise the
docking positions of 3 mobile manipulator when it is
travelling among a number of stations.  Zhao. Ansari
and Hou™ solved a similar problem by using a genetic
algorithm. But these two papers didn’t take optimal
configuration, obstacle avoidance and least torque norm
into consideration.  Pin and Culiolj " discussed the
multi-criteria position and configuration optimisation
problem of a mobjle manipulator during fask
commutation when it is required to perform g sequence

of tasks, Optimisation criteria include obstacle

avoidance, least torque norm, manipulability and joint
actuator torque distribution. Because of the competition
among various criteria, the multi-criteria Optimisation
problem typically exhibits many Joeq) minima,
Moreover, there exist a minimax problem when using
the redundancy solution of a mobile manipulator to
optimise the torque distribution. Pin and Culioli"* useq

a Newton algorithm to solve

the  multi-criteria
the algorithm needed

additional methods to handle poor local minima. They "

optimisation problem, but

used a projected subgradient algorithm to solve the -
minimax problem for Joint torque distribution, but with a
long run-time (reaching 15 minutes on the Macintosh I1

). and the result obtained was a local minimum,

In this paper we represent a cluttered environment as
grid by cell decomposition. Two numerical potentig]
fields are built for obstacles and the goal point by using
a wave front expansion algorithm. Each grid point has
an unsafeness value from the obstacles and 3 minimum
distance value from the goal point. The unsafeness value
of a node is defined as the numerica] potential from the
obstacles. The cost of 3 path is defined as the sum of the
travelling distance and the average unsafeness of all the
points in the path, A genetic algorithm approach to
multi-criteria  motjon planning and position and
configuration optimisation of a mobile manipulator
system is developed. Both travelling distance and path
safety are considered in planning the motion of the
mobile  base. For

multi-criteria Position  and

configuration Optimisation,  obstacle avoidance, least
torque norm, manipulability and torque distribution
optimisation are considered. The emphasis is put on
using genetic algorithms to search for global optimum

and solve the minimax problem for torque distribution,



The remainder of the paper is organised as follows. In
section 2 we begin by describing the numerical potential
fields, then we propose the cost function for motion
planning of mobile robots with a distance-safety criterion
and the genetic algorithm approach. In Section 3 we
introduce the criterin for position and configuration
optimisation of a mobile manipulator and present the
genetic algorithm approach to this problem. Then, in
Section 4 we present various numerical simulation
results from two examples. The results of this work are

summarised in Section 5.

2. A genetic-based approach to robot motion

planning with a distance-safety criterion

2.1 Two Numerical Potential Fields

Although it is difficult to construct an analytical
potential field over a free space of arbitrary geometry, the
computation of a numerical potential field over a work
space in the form of a grid turns out to be much easier,
Here, we develop the wave front expansion algorithm
originally proposed by Barraquand and Latombe ® for
computing numerical potential fields. The algorithm is
efficient when the dimension of the work space is small.
i.e. m=2 and 3, and their time complexity is independent

of the geometry of the free space.

First, a fine grid is thrown in the work space (see Fig.
2.), where "*" nodes represent regions of obstacles.

Paths are constructed as moves between adjacent "+"
nodes either laterally or dingonally. It is not permissible
for the robot to pass between the comers of obstacle

regions.

Given a node g in a m-dimensional grid, its p-
neighbours (1 <p <m) are defined as all the nodes in the
grid having at most p co-ordinates differing from those
of g, the amount of the difference being exactly one
2m 1-

neighbours, 2m® 2-neighbours, and so on. Here we

increment in absolute value. There are
consider that two nodes in a grid are neighbours if and
only if they are p-neighbours for a predefined p € [ 1,

m).

The numerical potential field for the goal is constructed

as follows: First, the potential value U is set to 0 at
G- Next,itissetto d,>0 at every 1-neighbour node
of g, : to d,>0 at every 1-neighbour of these new
nodes ( if it has not been computed yet); etc. The
algorithm terminates when all the nodes in the free space

accessible from ¢_, have been fully explored. Here d,

< d, < d, *-can be any positive real numbers,

Choosing asetof d,’s properly can help improving the

genetic-based search process. Fig. 1a. shows a numerical

potential field for the goal point.

The numerical potential field for obstacles ( including
the natural boundaries ) over the free space of a grid is
built similarly. First, the boundary is constructed,
then, the potential values of U in these boundary nodes

are set to 0,. Next, the values are set to o, >0 at every
1-neighbour node of these boundary nodes; to o0,>0 at

every l-neighbour of these new nodes ( if it has not been
computed yet ); etc. The algorithm terminates when all
the nodes in the free space have been fully explored.
Here, 0,20, 20, - can also be chosen as any real

numbers. Properly choosing them can help searching
for safe paths. Fig. 1b. shows a numerical potential field

for obstacles.
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Fig. 1. Two numerical potential fields

Now every node in the free space is assigned two
numerical potentials. One is the numerical potential
from the goal which represents the minimum distance
value from the goal, and the other is the numerical
potential from the boundary of the closest distance node,

which is defined as the unsafeness value of the node.

The farther away a node is from the boundary of the
closest obstacle node, the lower the unsafeness value of a

node is and the safer it is for a robot 1o move through it.

2.2 The Cost Function

Let a path P be described by a set of neighbouring nodes
connecting the starting node and the goal node . denoted
by {n.,i=12,..N).

Considering both distance and safety, the cost function

is represented by

C(P}= & D(P)+ A S(P) €,A20 (1)

where D(P) and S(P) TEpresent costs associated with
length and unsafeness of path P, respectively, and e and

A are the relative weightings between the twa.

The distance cost of a path is defined as the sum of all

the segments connecting the starting point and the final
point,

D(P)= i"n,. = )

where [l represents the Euclidean norm

The unsafeness of a path is defined as the average

unsafeness of all the nodes in the path.

N

S(P) = % >S ., S sS. 3)

where S, is the unsafeness of the node n.and S is

the given upper limit of the unsafeness, which is
introduced to prevent a path from getting too close to
obstacles. By adjusting the relative weightings € and A

difterent paths can be achieved.



2.3 A Genetic Algorithm Approach

Genetic  Algorithms(GAs) are improvement search
algorithms based on many processes of natural selection
in biological systems. They utilise a survival-of-the-
fittest concept among string  structures, through
reproduction. crossover and mutation operations. GAs
have following advantages over traditional optimisation

and search methods " :

- They are well adapted to search for solutions in

highly dimensional search space.

-~ They are very tolerant to the form of the function
to be optimised, for instance, these functions do not need

to be either differentiable or continuous.

-- They can be easily irnplémemed on a massively
parallel machine and they can achieve super-linear speed

up with the number of processors '™ .

To solve the mobile robot path planning problem by a
genetic algorithm, we need a coding scheme to encode
the parameters of the problem into genetic strings. Here,
robot path is coded as a string of N nodes represented by
their Cartesian co-ordinates as
(HERHBHE A0TSR WS N

with all the values stored in a decimal form. This code
method yields variable-length paths and a proper genetic
structure is required to deal with it, in particular while
performing crossover.

A set of valid random paths are generated as the initial
generation. In order to prevent the robot wandering
endlessly inside the work space, a weighted vector of
motion direction is employed according to the minimum
distances from the goal of the 8§ neighbouring nodes. A
neighbouring node which has a lower distance value 1o
the goal, has more chance 1o be selected as the next

node in the path. A fitness value is assigned to each

string according to its travelling distance and safety, In
our algorithm, the fitness function is defined by

f=C.-CP) @)
where C, is a properly selected positive real number not
less than the maximum cost of C(P).
A reproduction approach is applied to select strings for
the next generation. Genetic algorithms use the fitness
value of each string of the current generation to decide if
and how many copies of the string should be passed to
the next generation. The larger the fitness value of one
string, i.e. the lower the cost of the path, the higher
probability of the string being chosen for the next
generation.
When in early generations there is a tendency for a few
superstrings to dominate the selection process. Later on
when the population is largely converged, competition
among population members is less strong and the
simulation tends to wander. In these two cases, fitness
values must be scaled to prevent take-over of the
population by a few superstrings in the early generations
and to accentuate differences between population
members to continue to reward the best performers. In
this paper we use linear scaling to calculate the scaled
fitness f’ from the raw fitness f using a linear equation
of the form

fi=af+b (&)
In this equation, the coefficients a and b are chosen to do
two things: enforce equality of the raw and scaled
average fitness values and cause the maximum scaled
fitness to be two times of the average fitness. These two
conditions ensure that the average strings receive one
offspring copy on average and the best receive two on
average. When the scaled fitness value of a string
becomes negative, we simply set it to zero. To reduce the
stochastic error associated with the selection, we.

implement the  stochastic remainder sampling without



replacement.

Performing crossover is not straight forward because of
the variable-length coding and, more important, since a
random crossover would producé a discontinuous path,
Thus the selected path pair is checked for nodes with a
certain proximity (coincident. one or two nodes apart ).
If such a pair is found and there is not coincident node
for both paths, a random segment is generated to connect
both nodes. and exchange the remainders of the both
paths. If the path pair have coincident points, then select
one randomly as the crossover site and exchange the
remainder of the two paths. To perform mutation, select
two nodes randomly along a path, destroy the old path

between them and generate a new path to connect them.,

3. Using genetic algorithms for multi-
criteria position and configuration
optimisation for redundant mobile

manipulator systems

3.1 Problem Formulation

The kinematic relations for a mobile manipulator system

are given by

X,=X,+X,,(®) (6)

mip

where X, is the task vector representing the position

and orientation of the end-effector in the absolute

reference frame, X, is the vehicle vector representing

the position and orientation of the vehicle in the
absolute reference frame. X, (®) represents the vector
of the end-effector position and orientation with respect
to the vehicle reference frame and @ is the vector of
Joint positions of the manipulator. The components

X i=1,2...,nand 6, . j= 1.2, ... m. of the

nY

vector X, and @, thus represent the system variables

generating a space, S, of dimension typically greater than
6. It can be assumed in general that the components of
the joint positions of the manipulator are constrained by
independent upper and lower bounds specified by the
vectors @,, @ . Thus, the constraints can be described
by

®,sP<O, @)

where the vector inequalities are applied component

wise.

Assuming that a point load, corresponding to a force F,

is applied at the end-effector, the contributed

manipulator actuator torque on the static system can be

calculated as:
T=J(®)F (8)

where is the manipulator Jacobian matrix. There are
independent bounds on the components of the torque

vector given by

T, ST<T, ' ®
where T, and 1, are the lower and upper bounds of the
torque T , respectively.

The position and configuration optimisation can be
formulated as a local optimisation in § of a given

criterion E subject to a set of constraints.

Various optimisation schemes corresponding to different
modes of motion have been proposed by Pin and
Culioli".

Minimum load-induced actuator torque minimises
E =l (10)

Minimisation of E, in cases where load forces are very

high can lead to very uneven distributions of the joint



actuator torques, sometimes exceeding the limit of an
actuator while the others remain relatively low. A

minimax criteria is thus introduced as
E, = Maxa,7|. i=12,..m (11

where the coefficients a, weigh the individual torque

by the inverse of their relative limit value. Utilisation of
this criterion leads to much more evenly distributed
optimal actuator loads, but it needs a much more
complex mathematical  treatment  because  the
corresponding Lagrangian is not differentiable and the
optimality conditions need to be replaced by variational

inequalities.

For obstacle avoidance schemes. the following criterion

1s utilised;

e (12)
T |

oba,

where X, and X_ represent the Cartesian position

vector of any given point on the mobile manipulator and

on an obstacle, respectively.

To provide commutation configurations avoiding as
much as possible the singular configurations of the
manipulator, a manipulability criterion is utilised:

E 1
~ " Der(J(®)J(D)")

(13)

To forecast the optimum commutation configurations of
the system when several requirements constraints exist
on the upcoming task, a general criterion which is to be

minimised is introduced as follows:

E= 27,}.}5‘&u +eE, +AE, +8E (14)

where the coefficients represent the relalive importance
given to the corresponding requirements. Here, the

criterion is subject to the following constraints:

X, =X +X_ (®)

mp
T=J®)F

and

3.2 A Genetic Algorithm Approach

In order to optimise the mobile manipulator’s position
and configuration by a genetic algorithm, we need to
choose a coding scheme to encode the parameters of the

system into genetic strings. Here the manipulator

configuration @ is chosen to be encoded. Each element
B, (i=12 .../1 j+1, .., m) of the manipulator
configuration @, except one element © ;» is coded into
a binary string. 8 ; can be expressed in terms of 8,, for
i # ], by the constraint of Eq.(6.2.1). The genetic string
is formed by concatenating the codes of the element 0,

(i=1,2,.., j-1,j+1, .., m).

The fitness function is defined by
f=E_-E (15)

where E,_ is any positive real number not less than the

maximum value of E given by Eq.(14).

In order to improve the selection process, here we use
linear scaling to calculate the scaled fitness f from the

raw fitness f using a linear equation of the form
f =af+b (16)

To reduce the stochastic error associated with the
selection, we implement the stochastic remainder

sampling without replacement.
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Fig.2.  Path costs versus generation and the corresponding

path obtained by the GA

4.2 Multi-criteria  position and configuration
optimisation for a system including a three-link

manipulator mounted on a mobile platform

In this case study, we consider the system given by Pin
and Culioli"'. The system includes three links of length
I, =1, = 1.1, = .5, with revolute joints., and a platform
moving along the horizontal axis as shown in Fig. 3. In
the figure, the platform is represented by a rectangle, and

the three joint angles are 6, . 6,.and 8,

Fig. 3. A mobile manipulator system

The forward kinematic equations for the system are
given by:

X,=X,+1cos®,) +,cos(8,+8,)
+l,cos(6,+6, +8,) (17)

Y, =1 sin®), + I,sin(®, +6,) + 1, sin(®, +6,48,)

(18)

where X, Y, arethe X, Y positions of the end-effector

in the absolute reference frame and is the X position of
the mobile platform in the absolute reference frame. The

manipulator Jacobian matrix is thus:

= _{|S _J:Sn —’asm -]:SR _l.\Sm —!JSH‘J (19)
IICI +12Cl= +IJCIZJ IZCIZ + [}CIZJ ]JCIIS

where §, =sin(®,), C, =cos(®,), §, =sin(@, +8,),
Cu = COS(BI +8 z) J Sm=5in(ex +92 +BJ) ’ Cm=

cos(@, +6,+6 ).

In each of the following examples, two degree of
redundancy are provided to the system by imposing
constraints on the end-effector position only as
(X, .Y)=(5 14). A force F = (0, -5) is imposed at

the end-effector.

A genetic string of 32 bits is used to encode the two

parameters (6, and 6, ) of the problem, each

10



parameter being represented by 16 bits. Note also that

having encoded 6, and 6,, 6, and X, can be

obtained by the constraints defined by Egs.(17) and
(18). Three genetic parameters n (population size),

p. (crossover probability), and p_ (mutation probability)

are chosen as 50, 0.6 and 0.02 respectively. The

following are the simulation results for torque
distribution optimisation, obstacle avoidance and torque
optimsation, and manipulability and torque optimsation.
All the simulations were conducted on a Sun Sparc

station.

A. A minimax approach for optimisation of torque

Fig. 4. shows the least torque values versus generation
and the corresponding commutation configuration
obtained by the GA with a least torque norm

requirement. The manipulator torque values are 1 = {-
0.61, 1.13, -0.3} with a torque norm value of |h|| =

1.73. The maximum actuator {orque is at the second
joint and ratio of maximum to minimum actuator torque
is 3.73. Assuming the same limit for all actuators. we
can see that if the load is increased, the load-induced
torques would increase proportionally, eventually
resulting in the limit of the second joint actuator being
reached while the third joint would be providing only a
third of its strength. For such cases, it is possible to
include torque limits in the optimisation scheme using
E,, however, uneven utilisation of the actuator
strength typically still results'®, and the system may

fail in initiating a task for which a feasible solution

exists.

08 J
L3 -
04} 1

o2r <

42 44 48 48 5 52 5.4 56 58 L

Fig. 4. The least torque values versus generation and the
corresponding commutation configuration obtained by

the GA with a least torque norm requirement

An alternative approach is to use another optimisation

criterion E, = Max,fa,1,

, i=1,2, ..., m where the
coefficients «, weigh the individual torques by the
inverse of their relative limit value. For implementation

purposes, minimisation of E, essentially consists in

solving a minimax problem' that involves a much

more complex mathematical treatment than for E,. The
Lagrangian in this type of problems is not differentiable
and the solution of the optimisation problem calls

Pin and Culioli"”

utilised a projected subgradient algorithm, but with a

specific numerical approaches.

long run-time (reaching 15 minutes on the Macintosh

11



IT). Here, we use the genetic algorithm approach to solve
the minimax problem. Fig. 5. shows fitness values
versus generation and the corresponding commutation
configuration obtained by the GA for the minimax
problem. The resulting torque values aret = {-0.90,
0.90, -0.87} with the joint angles 6,= 68.96 and 8,=

41.74 near the global optimum. Fig. 9a. shows the
fitness values in the configuration space of joint angles
8, and 6, for this minimax problem. The run-time by
the genetic algorithm approach is 2 seconds only which

is much shorter than that by the projected subgradient

algorithm.

292

fness

2841

w2 4

28

ZT,GD
gensraton

o8 4

04

0.2

2 . i L s L i P
= 4 42 4.4 48 48 5 8.2 $.4 56 5.8 L

Fig. 5. Fitness values versus generation and the corresponding
commutation configuration obtained by the GA for the

minimax problem

B. Obstacle avoidance and torque minimisation

Fig. 6. shows fitness values versus generation and the
corresponding commutation configuration obtained by
the genetic algorithm when the global optimisation
criterion involves a least torque norm requirement and
avoidance by the midpoint of the second link of an

obstacle located at (X,, ¥,) = (5.2, 1.0). Here, equal

weigh is placed on the two requirements (y =e =1 in

Eq.(12)) and the resulting joint torque value is [t]'=
2.08.

248

fitness

0.8F

0.6

0.4F

o.2p

4 42 44 46 48 ] 52 5.4 56 58 6

Fig. 6. Fitness values versus generation and the corresponding
commutation configuration obtained by the GA with

obstacle avoidance and least torque norm requirements

Fig. 7. presents another case with requirement similar to

those of Fig. 6., but with the obstacle located on the

12



horizontal axis obstructing the position of the platform,

The resulting joint torque value is |t|*= 3.01.

50 80

gensrabon

18F 1
16
14F 1
12¢

1r E
o8F
o6
04r-
0zr

° .

-02

4 42 44 46 48 5 52 54 5.6 58 6

Fig. 7. Fimess values versus generation and the corresponding
commutation configuration obtained by the GA with
least torque nonn and avoidance of an obstacle

obstructing the platform

C. Manipulability and torque minimisation

Fig. 8. shows the results of the simulation when the
global optimisation criterion involves equally weighted
least torque norm and manipulability requirements. In
this case, there is no obstacle in the workspace. This
problem exhibits many local maxima due to competition
between  the maximum

minimum torque and

manipulability(see Fig. 9b.).  The genetic algorithm

converges to the global optimum very quickly (0,=

114.24 and 8,= -36.93, in 2 seconds), while paper”

got stuck by one of local minima.

ey 5 10 15 20 25 30 £ @0
generason
—— T

1.8} g
1.8F <
LAF 4
1.2 -

1 e
0.8 E
(X33 -
0.4 4
0.2r

oF

0.2

42 dd 4.8 4.8 s 52 54 58 58 L}

Fig. 8. Fitness values versus generation and the corresponding
commutation configuration obtained by the GA with

least torque norm and manipulability requirements

(a) with aminimax criterion for torque distribution
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(b) with least torque norm and manipulability criteria

Fig. 9. Fitness values in the configuration space of joint

angles 8, and 8,

5. Conclusion

The integrated combination of mobility and
manipulation is a promising area for robotics research,
where the possibility of both a large workspace and high
redundancy makes the combination highly attractive.
The incorporation of the safety issue into motion
planning of mobile manipulator systems becomes
particularly impormnl because mobile manipulator
systems need larger clearance from obstacles and they
are more likely to fall down. The multi-criteria motion
planning and position and configuration optimisation
typically exhibits many local minima. Traditional
optimisation methods often cause difficulty in tackling
this problem. Genetic algorithms are robust search and
optimisation methods. They search for the optimum
globally, and therefore they can avoid being trapped in
local minimum. Various  simulation  results
demonsirated the effectiveness and efficiency of the
proposed genetic algorithm approach to reach near
optimal solutions to different weighting multi-criteria

optimisation problems.  Although the algorithm is

developed mainly for two dimensional problems, it can

be extended to a class of three dimensional problems.
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