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Abstract
Mitochondria are essential organelles in eukaryotic cells that provide critical support for energetic and metabolic
homeostasis. Although the elimination of pathogenic mitochondrial DNA (mtDNA) mutations in somatic cells
has been observed, the mechanisms to maintain proper functions despite their mtDNA mutation load are poorly
understood. In this study, we analyzed somatic mtDNA mutations in more than 30,000 single human peripheral
and bone marrow mononuclear cells. We observed a significant overrepresentation of homoplasmic mtDNA muta-
tions in B, T, and natural killer (NK) lymphocytes. Intriguingly, their overall mutational burden was lower than that
in hematopoietic progenitors and myeloid cells. This characteristic mtDNAmutational landscape indicates a genetic
bottleneck during lymphoid development, as confirmed with single-cell datasets from multiple platforms and indi-
viduals. We further demonstrated that mtDNA replication lags behind cell proliferation in both pro-B and pre-B pro-
genitor cells, thus likely causing the genetic bottleneck by diluting mtDNA copies per cell. Through computational
simulations and approximate Bayesian computation (ABC), we recapitulated this lymphocyte-specific mutational
landscape and estimated the minimal mtDNA copies as ,30 in T, B, and NK lineages. Our integrative analysis re-
vealed a novel process of a lymphoid-specific mtDNA genetic bottleneck, thus illuminating a potential mechanism
used by highly metabolically active immune cells to limit their mtDNA mutation load.
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Introduction
Mitochondria are essential cellular organelles that orche-
strated a wide range of biological processes, including en-
ergy production and oxidative metabolism (Chandel
2014). Immune cells have high and dynamic metabolic re-
quirements for their immune functions in healthy and dis-
eased states, which rely on the mitochondrial biogenesis.
For instance, the mitochondrial dynamics controls T cell
fate through metabolic programming (Buck et al. 2016).
Extensive mitochondrial remodeling, including alterations
in morphology and increases in the copy numbers of mito-
chondrial DNA (mtDNA) during T cell activation has been
reported (Tan et al. 2017; Mimitou et al. 2021). The meta-
bolic alterations in immune cells have been observed not
only in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection (Lee et al. 2022), but also in the
antitumor activity of tumor-infiltrating T lymphocytes
(Yu et al. 2020). The mitochondrial translation is required
for sustained killing by cytotoxic T cells and tumor-

infiltrating T lymphocytes with depolarized mitochondria
display characteristics of terminally exhaustion (Yu et al.
2020; Lisci et al. 2021).

The mitochondria function relies on the mtDNA, which
encodes 13 core peptide subunits of the oxidative phos-
phorylation system and 24 RNAs involved in intramito-
chondrial protein synthesis (Andersion et al. 1981,
Andrews et al. 1999). Typically, hundreds to thousands
of copies of mtDNA molecules are present in each cell,
and the germline mtDNA is predominantly maternally in-
herited and does not undergo recombination (Hagström
et al. 2014). MtDNA accumulates mutations at a rate
that is 5–10 times higher per site than that in the nuclear
genome, because of the lack of DNA repair systems and
frequent contact with mutagenic reactive oxygen species
(Kazak et al. 2012; Lagouge and Larsson 2013;
Scheibye-Knudsen et al. 2015). More than 500 pathogenic
mtDNA mutations have been identified as genetic defects
causing various human diseases (Ye et al. 2014). According
to the theory known as “Muller’s ratchet,” continual
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accumulation of deleterious mutations in the absence of
purifying selection leads to a decline in population fitness
and will ultimately result in mutational meltdown
(Felsenstein 1974). To avoid this outcome, the animal
germline has evolved a mitochondrial genetic bottleneck,
wherein only a small subset of mtDNA is transmitted to
the next generation, thus resulting in substantial removal
of deleterious mutations (Koehler et al. 1991; Ghosh
et al. 1996; Jenuth et al. 1996).

A recent case report had shown that the pathogenic
mutation 3243A/G, the cause of mitochondrial myopathy,
encephalopathy, lactic acidosis, and stroke-like episode
(Walker et al. 2020), was remarkably purified in lymphoid
immune cells, particularly in T cells, as compared with
other blood cells from peripheral blood mononuclear cells
(PBMCs). A rare blood sample from a patient with
Pearson’s syndrome in an acute anemic state caused by
mtDNA mutations, spontaneously recovered with clear-
ance of erythroid mitochondrial (Ahlqvist et al. 2015).
These observations rose the questions on how pathogenic
mtDNA mutations are inherited in somatic cells and how
they affect the immune system.

To answer these questions, understanding of the clonal
dynamics of mtDNA in the development of somatic cell
lineages is necessary; however, systematical and quantita-
tive studies are lacking due to the technical limitations of
detecting heteroplasmic mutations in single cells. We and
others have recently developed a single-cell lineage tracing
method leveraging the somatic mtDNA mutations de-
tected in single-cell assay for transposase-accessible chro-
matin with high-throughput sequencing (scATAC-seq)
and/or RNA-seq (scRNA-seq) data (Ludwig et al. 2019; Xu
et al. 2019). Using this method, we systematically investi-
gated the mtDNA mutation landscape in 30,000 human
single peripheral and bone marrow mononuclear cells
(BMMCs). We revealed a novel process of genetic bottle-
neck in lymphoid lineage development and quantified
the size of the genetic bottleneck with the approximate
Bayesian computation (ABC) method. Together, our re-
sults demonstrated a novel mechanism that may strength-
en purifying selection and consequently enable better
quality control of their mitochondrial genomes, owing to
the metabolic needs for immune responses.

Results
Somatic Mutational Landscape of mtDNA at
Single-Cell Resolution
In this study, we focused on the human hematopoietic sys-
tem, whose cellular differentiation lineages have been well
documented. We first identified somatic mtDNA muta-
tions in a previously reported mitochondrial scATAC-seq
(or mtscATAC-seq) dataset including more than 20,000
blood cells from a healthy 47-year-old individual (fig. 1a
and b, supplementary fig. S1a, Supplementary Material on-
line, see Materials and Methods) (Lareau et al. 2021). We
summarized the numbers of mutations and the variant

allele frequency (VAF, also referred to as mtDNA hetero-
plasmic ratio) in each cell to compare the VAF distribution
in a population of different cell types. Interestingly, cells of
the mature lymphocyte lineages—specifically B, T, and
natural killer (NK) cells—had a significantly lower
mtDNA mutational burden than hematopoietic progeni-
tor cells, including hematopoietic stem cells (HSCs), multi-
potent progenitors (MPPs), lymphoid-primed MPPs
(LMPPs), common lymphoid progenitors (CLPs), common
myeloid progenitors (CMPs), and granulocyte–macro-
phage progenitors (GMPs) (fig. 1c, supplementary fig.
S1b, Supplementary Material online, Wilcoxon test, P,
2.2e−16). The mtDNA mutational burden was also lower
in lymphocytes than the myeloid and erythroid lineages
(fig. 1c, Wilcoxon test, P, 2.2e−16). As anticipated, most
somatic mtDNA mutations were detected at low VAF in
individual cells in all cell types (fig. 1d). However, the dis-
tribution of somatic homoplasmic mutations (i.e., those
with VAF of �1) varied substantially among the different
cell types. For instance, progenitor cells, including HSCs,
MPPs, LMPPs, CLPs, CMPs, and GMPs exhibited a typical
monotonic decline in the number of mutations with in-
creasing VAF (fig. 1d). Although this pattern was also
seen in both the myeloid and erythroid lineages (e.g.,
monocytes and erythrocytes), we observed an unantici-
pated increase in the number of somatic homoplasmic
mutations in B, T, and NK cells (fig. 1d).

In addition to the mtscATAC-seq dataset from Lareau
et al., we analyzed another mtscATAC-seq dataset of
10,327 BMMCs from an independent healthy donor
(Mimitou et al. 2021) (fig. 2a). Lymphocytes in BMMCs
also carried a lower mtDNA mutational burden with a
characteristic overrepresentation of somatic homoplasmic
mutations (fig. 2b, supplementary fig. S1c and d,
Supplementary Material online). Furthermore, to exclude
the potential bias of mutations arising at different develop-
ment time points, we summarized the allele frequency of
individual mtDNA mutations shared between lymphoid
and myeloid cell lineages. The allele frequency spectrum
of the variant 16356T/C and 10304G/A demonstrated
that the proportion of cells with homoplasmic variants
in B (22% and 33%), T (48% and 40%), and NK (41% and
44%) cells was significantly higher than that in monocytes
(10% and 6%) (fig. 2c–f ). In fact, these lymphocyte-specific
characteristics were also verified by additional scATAC-seq
or scRNA-seq data from seven independent
individuals. And the observations were aslo independent
of sequencing depth (supplementary figs. S1e and S2–S4,
Supplementary Material online), thus indicating a general
and unique process of mtDNA inheritance in lymphocyte
development.

Asynchronous Replication of Mitochondrial and
Nuclear Genomes During B Cell Development
To examine whether the distinct VAF distribution between
lymphoid cells and myeloid/erythroid cells was due to the
variation inmtDNAcopynumber per cell, we estimated the
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relative number of mtDNA copies in each cell type accord-
ing to the fraction of sequencing readsmapped to themito-
chondrial genome relative to the total number of reads in
each cell (fig. 3a, supplementary fig. S5a, Supplementary
Material online). Although mature lymphocytes and pro-
genitor cells had similar mtDNA copy numbers, pro-B,
and pre-B cells—the earliest lineage-committed cells in B
cell development—exhibited a significantly lower number
of mtDNA copies (Wilcoxon test, pro-B/pre-B vs. HSC/
MPP, P, 2.2e−16; pro-B/pre-B vs. B, P, 2.2e−16). Of
note, the CLPs also showed significantly fewermtDNA cop-
ies than earlier progenitors did (Wilcoxon test, CLP vs. HSC/
MPP, P, 2.2e−16; CLP vs. LMPP, P, 2.2e−16), thus indicat-
ing a marked mtDNA copy number decrease in early
lymphocyte development. Therefore, we hypothesized

that the characteristic mutational spectra in lymphocyte
mtDNA (figs. 1c, d and 2b)might have resulted fromamito-
chondrial genetic bottleneck.

To address this possibility, we examined the mtDNA
replication machinery to gain insight into the regulation
of mtDNA copy number along the lymphocyte differenti-
ation trajectory. We focused on the B cell lineage, because
T cells mature in the thymus and their progenitors, pre-T
cells, are not present in PBMCs. DNA polymerase γ is the
only known mtDNA polymerase in animals (Radsak and
Schutz 1978), has both a catalytic (POLG) and a binding
subunit (POLG2), and it catalyzes the polymerization of
deoxyribonucleotides. High levels of DNA polymerase γ ac-
tivity have been detected in the S and G2 cell cycle phases,
thereby maintaining stable numbers of mtDNA during cell

FIG. 1. Somatic mutations in
the mtDNA of PBMCs. (a)
Schematic of human hemato-
poietic differentiation and lin-
eage commitment. HSC,
hematopoietic stem cell; MPP,
multipotent progenitor; LMPP,
lymphoid-primed multipotent
progenitor; CLP, common
lymphoid progenitor; CMP,
common myeloid progenitor;
GMP, granulocyte–monocyte
progenitor; MDP, monocyte-
dendritic cell progenitor; N
CD4, naive CD4+ T cell; N
CD8, naive CD8+ T cell; M
CD4, memory CD4+ T cell; M
CD8, memory CD8+ T cell; Th,
T helper cell; NK, natural killer
cell; pDC, plasmacytoid den-
dritic cell; Eryth, erythrocyte.
(b) UMAP projection of
22,312 CD34+ hematopoietic
cells and PBMCs with
mtscATAC-seq data. Dots re-
present individual cells, which
are colored according to cluster
identity. The bar plot indicates
the number of cells in each clus-
ter (labeled at right). (c) Violin
plot showing the number of
somatic mtDNA variants per
cell for various cell types;
P-values, two-sided Wilcoxon
rank-sum test. (d ) The VAF dis-
tribution of somatic mtDNA
mutations across different cell
types. Somatic homoplasmic
mutations (VAF of �1) identi-
fied in the lymphoid lineage
are highlighted with a red box.
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division (Radsak and Schutz 1978; Chatre and Ricchetti
2013; Sasaki et al. 2017). To determine whether the expres-
sion of DNA polymerase γ increases with cell proliferation
during B cell development, we projected the developmen-
tal trajectory of cell subpopulations from HSCs to mature
B cells via a pseudotime analysis with scRNA-seq data (fig.
3b and supplementary fig. S5b, Supplementary Material
online). We observed up-regulation of G1/S phase-specific
genes (such as DNA polymerase δ, POLD1–3) in both pro-B
and pre-B cell populations, thus suggesting high activation
of cell proliferation in these cell types (fig. 3c and d,
supplementary fig. S5c–e, Supplementary Material online).
In contrast, the expression of DNA polymerase γ was not
coupled with cell proliferation (fig. 3e and f,
supplementary fig. S5c–e, Supplementary Material online).
Unexpectedly, the expression of the DNA polymerase γ
binding subunit (POLG2) was significantly diminished in
the highly proliferative pro-B and pre-B cell subpopula-
tions (fig. 3g). Together, these results implied a genetic
bottleneck during B cell development which might have
resulted from limited replication of mtDNA, thus diluting
the mtDNA copy number throughout cell division.

Quantification of the mtDNA Genetic Bottleneck by
Computational Modeling
To test whether the genetic bottleneck was achieved by
the dilution of mtDNA and quantify the extent of the
mitochondrial genetic bottleneck, we developed a

computational model of an mtDNA dilution process based
on population genetics theory (fig. 4a). In this model, we
assumed the starting mtDNA copy number is N0 (�500
copies per cell estimated by O’Hara et al. 2019) in LMPP
cells and only a proportion of mtDNAmolecules (denoted
by α) replicate during each cell cycle. This process of dilu-
tion starts from LMPPs and continues for Td cell genera-
tions until the mtDNA copy number recovers to the
starting level (�500 copies). Using the ABC method (see
Materials and Methods), we estimated the model para-
meters for B, T, and NK cell populations by using a con-
stant mtDNA mutation rate of 10−7 per site per cell
division (fig. 4b, supplementary fig. S6a, Supplementary
Material online) (Coller et al. 2001). The model estimated
the minimal mtDNA copy number to be 21 (95% confi-
dence interval [CI]= 13–56), 13 (95% CI= 12–19), and
14 (95% CI= 12–29) in each B, T, and NK cell, respectively.
These values were 20–40-fold lower than the normal
mtDNA levels. The VAF distribution simulated with these
parameter estimations recapitulated the observed data,
showing a characteristic overrepresentation of somatic
homoplasmic mutations (i.e., VAF of�1) and a diminished
overall mutational burden (fig. 4c, supplementary fig. S6b
and c, Supplementary Material online). Assuming a higher
starting mtDNA copy numbers (�1,000 per cell) resulted
in very similar estimations regarding the bottleneck size
(supplementary fig. S7a and b, Supplementary Material
online). Therefore, this pattern can not be achieved by
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FIG. 2. Somatic mutations in
the mtDNA of BMMCs. (a)
UMAP projection of 10,327
mononuclear cells from bone
marrow with mtscATAC-seq
data. Dots represent individual
cells, which are colored accord-
ing to cluster identify and cell
types. (b) The VAF distribution
of somatic mtDNA mutations
across different cell types in
BMMCs. Somatic homoplas-
mic mutations (VAF �1) iden-
tified in the lymphoid lineage
are highlighted with a red
box. (c) Distribution of the ob-
servedmtDNA variant 16356T/
C in cells among lymphoid and
myeloid cell lineages. (d ) The
VAF distribution of the somat-
ic mtDNA mutation 16356T/C
across different cell types. (e)
Distribution of the observed
mtDNA variant 10304G/A in
cells among lymphoid and
myeloid cell lineages. ( f ) The
VAF distribution of the somat-
ic mtDNA mutation 10304G/A
across different cell types.
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random genetic drift with a constant number of mtDNA
copies during the lymphocyte development.

The Consequences of the mtDNA Genetic Bottleneck
Collectively, our integrative genomic data analysis and
computational modeling demonstrated the existence of
a stringent mtDNA genetic bottleneck that resulted
from replicative dilution during lymphocyte development.
This mechanism strengthens the genetic drift toward a
lower mtDNAmutational burden and lower genetic diver-
sity within each cell. We wondered whether the genetic
bottleneck during lymphocyte development might have
the same purifying selection effects as those in the

germline. We, therefore, examined the VAF distribution
in various genomic regions (loop, tRNA, rRNA, and coding)
or mutation types (synonymous [SY] and nonsynonymous
[NS]). We found loop and SY regions had higher propor-
tions in somatic homoplasmic mutations than in tRNA,
rRNA, and NS regions in datasets (fig. 5a, supplementary
fig. S8, Supplementary Material online). This result indi-
cated that the mutations in coding regions were more like-
ly to be selected against, when they reached to a high
frequency. We next examined the dN/dS ratio (the ratio
of the normalized number of NS substitutions—dN to
the normalized number of SY substitutions—dS)
(supplementary fig. S9, Supplementary Material online) ac-
cording to heteroplasmic categories. The calculated dN/dS

FIG. 3. Replication of mtDNA
during B cell development. (a)
The relative number of
mtDNA copies was determined
according to the proportion
(sequencing reads mapped to
mitochondrial genome divided
by the total number of reads)
in each cell, as identified from
the scATAC-seq dataset. (b)
Pseudotime trajectory of B cell
differentiation from HSCs by
using single-cell RNA-seq data
generated from PBMCs (n=
4692 cells). Colors denote differ-
ent cell types (top) and develop-
mental stages (bottom) defined
by pseudotime. The solid line re-
presents the fitted trajectory
across pseudotime. (c–f )
Kinetic plots showing the ex-
pression of (c) 39 G1/S phase-
specific genes (SSgene), (d) nu-
clear DNA polymerase δ
(POLD1–3), (e) mtDNA poly-
merase γ (POLG), and ( f ) the
binding subunit of mitochon-
drial DNA polymerase γ
(POLG2) along the B-cell devel-
opmental trajectory. (g) Violin
plot showing the ratio of
POLG2 expression to the mean
expression of all G1/S phase-
specific genes in each cell asso-
ciated with B-cell development.
The broken line represents the
change trend of the mean ratio
across different cell types.
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ratios revealed a pattern of generally neutral evolution
(i.e., dN/dS� 1) in all categories in most of the cases ex-
amined (supplementary fig. S9, Supplementary Material
online). The dN/dS ratio might not be sensitive in testing
selection in somatic cells, owing to the linkage of whole
mitochondrial genome with strong Hill–Robertson inter-
ference, thus leading to a pattern of quasi-neutrality, as in
cancer evolution (Chen et al. 2019). Therefore, we verified
individual mutation sites to identify the signals of purify-
ing selection; indeed, we observed several mutations that
were specifically eliminated in lymphocytes but not the
myeloid lineage (fig. 5b). For example, the mutations,
2636G/A, and 3209A/G, underwent the most profound
decrease in prevalence (fig. 5c) in lymphocytes.
Intriguingly, these two sites are all located at MT-RNR2,
which encodes 16S rRNA and Humanin, a peptide pro-
tective against multiple mitochondrial diseases (fig. 5d)
(Lee et al. 2013). Furthermore, we queried MITOMAP, a
human mitochondrial genome database, and found
that mtDNA variants reported on MT-RNR2 were highly
associated with sepsis (Wilcoxon test, P, 2.2e−16, fig. 5e)
(Lott et al. 2013; Park et al. 2021); therefore, MT-RNR2
may play important roles in immune functions protect-
ing against infections. These data indicated that purifying

selection in lymphocytes indeed occurs for specific
mtDNA mutation sites.

Discussion
Collectively, our results indicated an unanticipated lower
mutational burden and accumulation of homoplasmic
mtDNA mutations in lymphocytes, thus indicating a strin-
gent genetic bottleneck and purifying selection of mtDNA.
Gene expression data and computational modeling sug-
gested a dilution process, based on the rate of mtDNA rep-
lication relative to the nuclear genome.

The single-cell data derived from PBMCs could not cap-
ture the full developmental trajectory of T cells because
pre-T cells develop in the thymus. Our single-cell data
and computational inference indicated that the genetic
bottleneck in T and NK cells might be as stringent as
that in B cells (figs. 1d, 2a, and 4b). On the basis of our ob-
servations and simulations, we hypothesized that the regu-
lation of the lymphocyte-specific genetic bottleneck may
start from the CLP stage, instead of subsequent lineage
commitment for B, T, and NK cells. The effect of this
regulation is likely to be enhanced via the active prolifer-
ation of progenitor cells. During lymphocyte development,
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FIG. 4. A dilution model of mitochondrial genetic bottleneck. (a) Schematic illustration of the dilution model of the mitochondrial genetic
bottleneck. In this model, only a fraction of mtDNA molecules (denoted by α) replicate at each cell division. After Td cell divisions from the
LMPP stage, the number of mtDNA copies in each lymphocyte subtype (B, T, and NK cells) rapidly recovers to the baseline level (�500 per
cell). Nb denotes the minimal number of mtDNA copies that can be computed as equation (1). The total number of cell divisions required
for the transition from LMPP to mature lymphocyte is denoted as Ta. (b) The distribution of model parameters inferred by the ABC algorithm.
Themean and 95% CI of each parameter estimation are shown. (c) Simulations based on the dilution model of mitochondrial genetic bottleneck
with the ABC-estimated parameter values recapitulated the lymphocyte-specific overrepresentation of somatic homoplasmic mutations and
the lower mutation burden (supplementary fig. S6b, Supplementary Material online). The left and right panels represent the simulations
with and without mitochondrial genetic bottleneck, respectively. The average of 100 simulations carried out for each model is as shown.
The results of each iteration are shown in supplementary fig. S6c, Supplementary Material online.
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multipotent T and B progenitor cells undergo a series of
maturation steps that include positive selection for func-
tional T-cell receptors or immunoglobulins and negative
selection to eliminate cells with a high affinity toward self-
associated peptides or antigens (Starr et al. 2003). Only a
small proportion of T lymphoid cells will survive after
the negative and positive selections. Moreover, mitochon-
drial function is important for T cell development and
their functional activation (Buck et al. 2016; Chao et al.
2017). The metabolic responses characteristic of lympho-
cytes development and activation are both well-regulated
at the transcriptional and posttranscriptional levels
(Maciver et al. 2013). For example, several groups have

shown that T or B cell activation leads to mitochondrial
remodeling and dramatic shifts in cell metabolism, in the
course of their role in eliminating pathogens (Sena et al.
2013; West and Shadel 2017; Angajala et al. 2018; Waters
et al. 2018; Lee et al. 2022). Furthermore, the selection
against the pathogenic mutations 3243 was stronger in T
cells than in B and NK cells, as shown by Walker et al.
(2020). Further systematic study of T precursors in thymus
will provide further insight into how genetic bottlenecks
occur during T cell development.

On the basis of the scRNA-seq data, we found higher ex-
pression of Drp1 and LC3 genes in pro/pre-B cells than the
other progenitor cells, thus implying that mitochondria at
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this stage may undergo fission or mitophagy process
(Lemasters 2005). Further experimental evidence will be
helpful to determine whether mitophagy of mitochon-
dria is also involved in the genetic bottleneck process in
the progenitor cell stage. If so, the selection of mtDNA
mutations might also happen in mitochondrial organelles
level.

Our computational framework modeled a single-cell
lineage and quantitatively measured the mtDNA bottle-
neck size after the continual dilution process. Because
B/T/NK cell development andmaturation are complicated
process involving a series of clonal selections on cellular
levels, such as positive and negative selection of pre-B/
pre-T cells in the primary lymphoid organs (Starr et al.
2003), we were unlikely to model all those selection pro-
cesses on specific cell types within our model. Therefore,
to make our model simple and robust, we only consid-
ered a neutral process of continual dilution with
mtDNA copy number changes at the single-cell level.
Furthermore, the mutation rate in our model is sensitive
to the detection of low-frequency mutations. Ultradeep
sequencing of the mitochondrial genome through other
single-cell mtDNA sequencing methods (Guo et al.
2020) would aid in estimating the mutation rate accur-
ately and would further facilitate the estimation of se-
lection strength.

Our newly discovered somatic mtDNA bottleneck
within the lymphoid lineage may play a role in the quality
control of mitochondrial genomes, in parallel to the se-
lection of immunoreceptor genes in the nuclear genome.
Thus, a robust population of mtDNA may be crucial for
lymphocyte-mediated immune responses. This mtDNA
genetic bottleneck may be one of several potential me-
chanisms involved in the regulation of mitochondrial
genome in different lineages. Currently, there is not avail-
able for high-quality mtscATAC datasets in many differ-
ent cell types, it is unknown whether the stringent
mtDNA genetic bottleneck is a lymphocyte-specific phe-
nomenon or also prevalent in other cell types. Hence, the
prevalence, causes, and the consequences of the somatic
mtDNA genetic bottleneck require extensive exploration
in future studies. The understanding of the mtDNA qual-
ity control mechanism may ultimately provide new in-
sights into immune degeneration and related diseases,
and contribute to the treatments based on engineered
immune cells, such as chimeric antigens receptor-T cell
therapy.

Materials and Methods
Data Collection
The mtscATAC-seq dataset generated through evaluation
of hematopoietic and PBMCs was retrieved from a recent
study evaluating samples from a healthy 47-year-old donor
(Lareau et al. 2021). The mtscATAC-seq dataset from hu-
man bone marrow from a healthy 25-year-old donor was
obtained from Mimitou et al. (2021). The scATAC-seq

data from CD4+ T cells were obtained from the study pub-
lished by Satpathy et al (2018). The scATAC-seq dataset for
HSCs, MPPs, LMPPs, CLPs, CMPs, GMPs, and plasmacytoid
dendritic cells (pDCs) derived from CD34+ bone marrow
was obtained from Buenrostro et al (2018)
(supplementary fig. S2, Supplementary Material online).
The scRNA-seq dataset generated from an evaluation of
healthy CD34+ PBMCs, BMMCs, and total PBMCs was
downloaded from a study published by Granja et al.
(2019). These datasets were used to analyze mtDNA repli-
cation and gene transcription. The scRNA-seq dataset of
70 effector memory T cells (Tem cells), 70 central memory
T cells (Tcm cells), and 142 CD4+ regulatory T cells (Treg
cells) from healthy human colon tissue were downloaded
from Array Express (E-MTAB-6072) (Miragaia et al. 2019).
Detailed information on data resources is provided in
supplementary table S1, Supplementary Material online.

Single-Cell (sc)ATAC-seq Data Preprocessing and
Annotation of the Cell Populations
Raw data from GSE142745 were processed with Cell
Ranger ATAC (version 2.0.3; 10× Genomics, https://
www.10xgenomics.com/products/single-cell-atac) with
default parameters. Reads were aligned to the reference
hg19 human genome (https://support.10xgenomics.com/
single-cell-atac/software/downloads/latest). In each cell,
40% of fragments overlapping a compendium of DNase
hypersensitivity peaks and 1,000 unique nuclear fragments
were filtered. From the output of the Cell Ranger Software
calls, we performed a computational annotation of the cell
types on the basis of chromatin accessibility. Clustering
and gene activity scores were determined through stand-
ard processing via ArchR (Granja et al. 2021). Clustering
was performed with the “addClusters” and “addUMAP”
functions (resolution= 0.8, neighbors= 10, minDist=
0.1). To identify marker genes according to gene scores,
we used the “getMarkerFeatures” function with
useMatrix “GeneScoreMatrix” and generated a reprodu-
cible peak set in ArchR by using the
“addReproduciblePeakSet” function. By default, ArchR at-
tempts to identify peaks by using the MACS2 algorithm
(Zhang et al. 2008). Because common cell markers are
sometimes not suitable for classification with
“GeneScoreMatrix,” we used enhancer accessibility to de-
fine the cell type. For example, we identified myeloid cells
according to the unique accessibility of enhancers at +85
and+87 kb in the interferon regulatory factor (IRF8) locus.
pDCs were identified on the basis of the unique accessibil-
ity of+54 and+56 kb enhancers, as described by Satpathy
et al (2018). Furthermore, to label scATAC-seq clusters
with scRNA-seq information, we used the
“addGeneIntegrationMatrix” function, which integrates
scATAC-seq with scRNA-seq. Specific marker genes used
to identify individual cell types in scATAC-seq datasets
of healthy CD34+ hematopoietic cells and PBMCs are
documented in supplementary table S2, Supplementary
Material online.
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mtDNA Variants Identified in Single-Cell ATAC-seq
Datasets
Paired-end raw reads from each sample were aligned to
the human reference genome (hg19) with Cell Ranger
ATAC after adapter sequences were trimmed. First, the
reads mapped to multiple sites or the nuclear genome,
and duplicates were also removed. The remaining reads
were realigned to correct the potential mapping errors
around indels according to the process from GATK
(McKenna et al. 2010). Bam files for each cell type were
merged to identify germline mtDNA variants (bulk VAF
. 90%). Variants with VAF. 90% shared among more
than 90% cells were also considered germline mutations.
Then mtDNA variants were called for each individual cell
with VarScan2 (Koboldt et al. 2012) with “–min-var-freq
0.01,” “min-depth 8,” and “–min-reads2 2” at the begin-
ning. To identify high confidence somatic variants in single
cell, we applied the following filtering steps.

First, the germline mutations identified in the merged
bam file were removed. Second, the following sites were
explicitly removed because of the large numbers of homo-
polymers in the revised Cambridge Reference Sequence
(rCRS) and sequencing errors in the reference genome
(Ju et al. 2014): (1) misalignment due to
ACCCCCCCTCCCCC (rCRS 302–315), including 302A/C,
309C/T, 311C/T, 312C/T, 313C/T, and 316G/C; (2) mis-
alignment due to GCACACACACACC (rCRS 513–525), in-
cluding 514C/A, 515A/G, 523A/C, and 524C/G; (3)
misalignment due to 3107N in ACNTT (rCRS 3105–
3109), including 3106C/A, 3109T/C, and 3110C/A. Third,
sequencing errors can significantly affect the identification
of somatic variants. Therefore, sequencing errors known to
be associated with a high error rate according to Illumina
NextSeq and sequence errors (G→ T and C→A) from
DNA damage were removed. Fourth, each mtDNA site
count was required to be more than 20 reads (20×), and
the variant count more than two reads. Fifth, strand bal-
ance was required for confident somatic variants. For the
given variant site, we required the reads mapped to the
forward strand to be above 30% but below 70% of the total
mapped reads for the variant allele. Variants that passed
the multiple filter steps were merged from all individual
cells as the final somatic variants. If the findings for a vari-
ant had sufficient confidence in any given cell, the VAF was
recounted in all individual cells within the same cell type,
with constraints of a minimum 8× depth. Cell with an
average depth more than 10× were considered for further
analysis.

Single-Cell RNA-seq Data Processing and Cell-Type
Annotation
Downstream analysis of the scRNA-seq dataset was per-
formed with Seurat (Stuart et al. 2019) (version 3.2.2;
https://satijalab.org/seurat). The following bioinformatic
analyses were performed in R software (version 3.6.0;
https://www.r-project.org) with default settings unless
otherwise stated. Cells with ,200 or .2,500 detected

genes or with .5% mtDNA were eliminated from further
consideration. Normalization was applied with the MAGIC
package (version 2.0.3) (van Dijk et al. 2018) by following
the Seurat v3 workflow. We next calculated a subset of fea-
tures that exhibited high cell-to-cell variability by using the
“FindVariableFeatures” function and identified 2,000 spe-
cific features. Clusters were identified with the
“Find-Neighbors” and “FindClusters” functions in Seurat
with 45 principal components (PCs) and a resolution of
0.3. The results were annotated to include differential ex-
pression of cell type-specific marker genes. Uniform
Manifold Approximation and Projection (UMAP) for di-
mensionality reduction was performed with the
“RunUMAP” function in Seurat, with 45 PCs and other de-
fault parameters. The expression of cell type-specific mark-
er genes in PBMCs and BMMCs is shown in supplementary
table S3, Supplementary Material online. We referred to
the information and classifications recorded in
GSE139369 from the GEO database to guide our cell
type annotations (supplementary table S3,
Supplementary Material online).

Pseudotime Analysis
To construct single-cell differentiation trajectories with
scRNA-seq data from HSCs to B cells, we performed a
pseudotime analysis with the Monocle method (Trapnell
et al. 2014; Qiu et al. 2017; Cao et al. 2019). First, we sub-
divided scRNA-seq data according to the annotated cell
populations revealed by Seurat clustering analysis, accord-
ing to the common pipeline (http://cole-trapnell-lab.
github.io/monocle-release/monocle3/). Reclustering of se-
lected cell populations was again performed with the
“RunUMAP” function. Pseudotime analysis was conducted
on these newly generated clusters with Monocle v3. We
delineated expression patterns of G1/S phase-specific
andmtDNA replication-related genes along a pseudotime-
line. G1/S phase-specific genes were identified according
to a previously annotated list (supplementary fig. S5d,
Supplementary Material online) (Tirosh et al. 2016).

mtDNA Variants Identified from Single-Cell RNA-seq
Data
mtDNA variants from single-cell RNA-seq data were pro-
cessed in the same manner as mtDNA variants from
scATAC-seq, with several modifications. Briefly, we used
STAR (Dobin et al. 2013) to align reads to the human ref-
erence genome (hg19) and to obtain bam files. Germline
mutations and mtDNA variants in individual cells were fil-
tered and called in the same manner.

Allele Frequency Spectrum
The allele frequency (heteroplasmic ratio) of each muta-
tion was calculated in each cell and the number of muta-
tions that fall in each frequency bin (from 0 to 1) was
counted for each cell type. Somatic mutations that arose
in the early development stage, which had been fixed in
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the progenitor cells, were further excluded for the AFS
analysis in the mtscATAC-seq on BMMCs.

Annotation of Mitochondria DNA Mutations and
Calculation of NS/SY Mutation Rates (dN/dS)
The mitochondrial variants were annotated with
ANNOVAR (Wang et al. 2010). The annotated variants
comprised mutations in loops, tRNA, rRNA, and mRNA
coding regions, including NS and SY substitutions accord-
ing to the variant location (supplementary figs. S8 and S9,
Supplementary Material online). Coding sequences (CDS)
within the mitochondrial genome were evaluated with
Phylogenetic Analysis of Maximum Likelihood to identify
all possible SY (defined as S) and NS (defined as N ) substi-
tutions in the human mitochondrial genome (Yang 2007).
On the basis of ANNOVAR’s annotations, we identified all
observed SY (defined as s) and NS substitutions (defined as
n). The NS mutation rate (dN)= n/N and the SY mutation
rate (dS)= s/S, responses to positive, neutral, or negative
selection pressure, can be determined by the dN/dS ratio.

Computational Modeling of the Mitochondrial
Genetic Bottleneck
We used the Wright-Fisher model from population genet-
ics to depict the accumulation of mutations and the dy-
namic frequency of heteroplasmic alleles in mtDNA
during lymphoid cell divisions. The Wright-Fisher model
assumes discrete generations and random sampling of in-
dividuals from the current generation without replace-
ment by reproduction in the following generation. This
model has been widely used to model the mtDNA popu-
lation dynamics in both germline cells and somatic cells,
including those that are neoplastic (Coller et al. 2001;
Wilton et al. 2018). Because normal somatic cells typically
contain 100–1,000 copies of mtDNA, we used n= 500 as
the baseline copy number in our model (O’Hara et al.
2019). Results from the scATAC dataset revealed that
the relative copy number of mtDNA in NK cells was
�60% that detected in B or T cells (fig. 3a); thus, 300
(500× 0.6) was used as the baseline mtDNA copy number
for the NK lymphocyte cohort. We modeled the lymphoid
development from LMPP cells, which are the common
progenitor cells for all lymphocytes, B, T, and NK cells.
To model the dilution-based genetic bottleneck, we intro-
duced a dilution rate α, which denotes the fraction of
mtDNA molecules in each cell that undergo replication
within a single-cell cycle, and Td, which denotes the time
of the diluting process. After Td cell divisions from LMPP,
the mtDNA copy number in each cell type rapidly recovers
to the baseline level. The minimal mtDNA copy number
through the bottleneck can be computed by:

Nb = N0a
Td (1)

where N0 is the initial number of mtDNA copies. The total
number of cell divisions required for the transition from an
LMPP to a mature lymphocyte is denoted Ta. The

mutation rate at each site within the mitochondrial gen-
ome per cell division is denoted u, which has been esti-
mated to be 10−8 to 10−7 mutations per site for somatic
cells (Coller et al. 2001; Cabrera 2021). Thus, the mutation
rate for the entire mitochondrial genome during each cell
division event will be u= μ × L, where L= 16,569 base
pairs (bp), representing the number of potential sites with-
in the mtDNA length.

During each cell division, the number of somatic muta-
tions acquired per mitochondrial genome follows a
Poisson distribution with a mean of u. Thus, the probabil-
ity that kmutations occurred in each cell division is as fol-
lows:

P(x = k) = uke−u

k!
(2)

Computational Inference of Parameters by ABC
We used the framework of ABC for parameter inference in
our computational model of somatic mtDNA population
dynamics on the basis of the dilution rate α, the dilution
time course Td and the total number of cell divisions Ta.
The minimal mtDNA copy number in each cell can be
computed as described by equation (1) when values for
α and Td are available. The prior uniform distributions
used for sampling α, Td, and Ta, were, Td � U(0, 30) and
Ta � U(10, 40). To avoid extinction (i.e., a minimal
mtDNA copy number of 0), only the sampled parameter
values ensuring Nb ( = N0a

Td) . 10 were retained. We
used a version of ABC based on the acceptance–rejection
algorithm (Tavare et al. 1997) to estimate posterior prob-
ability distributions for the parameters of interest (i.e., θ,
Td). We used 19 summary statistics (S), which included
the mtDNA mutation count in each VAF with a step
size of 0.05 from VAF= 0.05 to 1 to fit the simulated to
the observed data. The ABC version of rejection sampling
is as follows:

1) Sample parameters θ
′
from the prior distribution π

(θ)
2) Simulate data (D

′
) with the sampled parameters (θ

′
)

and summarize D
′
as summary statistics (S

′
)

3) Accept θ
′
if d(S

′
, S), e, for a given tolerance rate e,

where d(S
′
, S) is a measure of the Euclidean distance

between S
′
and S

4) Return to step 1.

With this scheme, we approximated the posterior distri-
bution by P(θ| d(S

′
, S), e). We used a common variation

in ABC (Beaumont et al. 2002; Zhao et al. 2014) in which,
rather than using a fixed threshold, e, we sorted all calcu-
lated K distances by d(S

′
, S) (see step 3 above) and ac-

cepted the θ
′
that generated the smallest 100× η

percentage distances. We used K= 106 and η= 0.001 so
that the posterior distribution was composed of 106×
0.001= 1,000 data points. We ran the ABC inference pro-
cedures for two mutation rates (μ= 10−8 and 10−7) and
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performed model selection (supplementary fig. S6,
Supplementary Material online). The mutation rate μ=
10−7

fitted the data better in all cell types and thus was
used for the computational inference. The ABC procedure
was performed with the R package abc (Csilléry et al. 2012).

Supplementary Material
Supplementary data are available atMolecular Biology and
Evolution online.
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