A Genetic Engineering Approach to Genetic
Algorithms

John S. Gero john@arch.usyd.edu.au
Key Centre of Design Computing and Cognition, Department of Architectural and
Design Science, The University of Sydney, NSW 2006, Australia

Vladimir Kazakov kaz@arch.usyd.edu.au
Key Centre of Design Computing and Cognition, Department of Architectural and
Design Science, The University of Sydney, NSW 2006, Australia

Abstract

We present an extension to the standard genetic algorithm (GA), which is based on con-
cepts of genetic engineering. The motivation is to discover useful and harmful genetic
materials and then execute an evolutionary process in such a way that the population
becomes increasingly composed of useful genetic material and increasingly free of the
harmful genetic material. Compared to the standard GA, it provides some computa-
tional advantages as well as a tool for automatic generation of hierarchical genetic rep-
resentations specifically tailored to suit certain classes of problems.

Keywords
Genetic algorithms, genetic engineering, evolutionary operators.

1 Introduction

Genetic algorithms (GAs) are a family of general stochastic search methods, which
can be viewed as computational models of Darwinian evolution theory. They use the
analogs of evolutionary operators on a population of states in a search space to find
those states that optimize a fitness function. The search space consists of character-
strings of fixed or variable length (chromosomes or genotypes) composed of the ele-
ments of a given alphabet (alleles). The genotype space is mapped onto another (phe-
notype) search space. The fitness function is defined as a function of a state in the phe-
notype space.

Since the biological metaphors (genetic representations, neo-Darwinian evolution
theory) provide the conceptual basis of GAs, it seems natural to introduce some of the
concepts of the most modern branch of biology — genetic engineering — into genetic al-
gorithms.

2 Motivation

The primary motivation of this work is to identify and use any superior genetic material
explicitly by means of genetic engineering. It is similar to the practice of genetic engi-
neering in the genetics of natural organisms. In genetic engineering, the genetic engi-
neer classifies the population into one group that possesses a high level of the property
of interest or into another group that lacks it. We shall call them the super and sub groups,
respectively. Then the genetic engineer tries to single out the groups of genes (we shall

©2001 by the Massachusetts Institute of Technology Evolutionary Computation 9(1): 71-92

J. Gero and V. Kazakov

call them the superior complex genes) in the genotypes that are hypothesized to be re-
sponsible for the properties of interest. Groups whose presence distinguishes the first
group from the second are found using sequence and statistical analysis. The genetic
engineer then attempts to produce the next population whose genetic material contains
more of these useful complex genes. Further, he may try to prevent the damage of the
superior complex genes by the evolutionary operators.

A complementary concept behind this work is to identify harmful or defective ge-
netic material responsible for unwanted properties of the phenotypes. Processes that
diminish or remove this harmful genetic material are then used. This concept is also in-
spired by the practice of genetic engineering in the genetics of natural organisms. We
will refer to techniques that manipulate superior and defective genetic material meth-
ods as advanced genetic engineering operators.

3 Modified Genetic Algorithm

The GA is modified to include additional genetic engineering processes. The modified
GA includes cycles where new superior and defective complex genes are evolved, and a
new population that is richer in superior and poorer in defective complex genes is gen-
erated.

Two libraries of the descriptions of currently identified complex genes (superior
and defective) are maintained. As the evolution process proceeds, enhanced by the in-
clusion of the genetic analysis and the advanced genetic engineering operators, new
complex genes are identified and added to these libraries. The complex genes that have
been incorporated into these libraries earlier are retested against the newly generated
populations. This involves checking that they are still superior or defective complex
genes for the current population. Those that do not pass this testing are deleted from
the libraries.

The suggested modification of the GA models this simple picture of Darwinian
evolution enhanced by genetic engineering technology. For each generation, the com-
parisons of genetic material of the most fit and most unfit subpopulations are carried
out. This yields current knowledge about the useful and harmful genetic features. This
knowledge is then used to genetically engineer the current population during a pre-
reproduction stage.

The modified GA has the following general structure:

1. Initialization of the population (randomly) and two libraries of complex genes
(usually two empty ones) — the superior and defective complex genes.

2. (a) Extraction of the super (highly fit) and sub (highly unfit) groups of individuals
from the current population.

(b) ldentification of the superior and defective complex genes that distinguish
these groups from each other at the genetic level. For example, this could be
the most fit 10% and the most unfit 10% of the population.

(c) Updating the complex genes’ libraries by adding the newly evolved genes and
eliminating the ones that test negatively.

(d) Pre-reproduction processing step that includes various direct manipulations
of genotypes of the population. The goal here is to produce superior and to
get rid of defective complex genes in the genetic pool. The type of the genetic
engineering technique employed determines the type of processing.

72 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

3. Reproduction.

4. If the stop conditions (for example, the given number of generations has been pro-
duced or the population has converged, etc.) are not met, go to step 1.

Note that steps 1 and 2 of the algorithm may be executed after a fixed number of gen-
erations at predefined intervals.

A complex gene is defined as an arbitrary characteristic feature of a genetic string.
Many different types of complex genes can exist depending on the specific problem and
type of encoding used. It could, for example, be a contiguous genetic substring, a sub-
sequence (a sequence obtained from the genotype by deleting a number of genes), a pe-
riodic structure in a genotype, etc. In this paper, we consider only two types of complex
genes. We shall call the first one a local gene. It is simply a building block in the stan-
dard GA - a set of fixed positions within the genotype with fixed values. It exists in
problems with position-dependant encoding. The term local gene emphasizes the fact
that this type of complex gene is an entity that exists only in a given position within the
genotype.

We shall call the second type of complex gene a global complex gene. It is defined
as a genetic substring that may reside anywhere within the chromosome and can exist
in problems with non-positional encoding. We can treat it as an extension to the prob-
lem’s alphabet — an additional letter that can be used just as the original letters from the
alphabet are used.

Since the genetic engineering GA produces complex genes recursively, it yields a
hierarchy of complex genes. The letters from the genetic alphabet are on the lowest (0)
level of this hierarchy. Complex genes built using only elementary genetic letters (not
less than two) are on the next level (level-1) of hierarchy, and complex genes on the I-
level of this hierarchy are made using at least one complex gene from level [— 1 and
without using any genes from level higher than I — 1. We will characterize complex
genes by their position within this hierarchy. The corresponding measure is called the
l-complexity of the complex gene. It is defined recursively as 0-complexity for any ele-
mentary gene, 1-complexity for complex genes composed of elementary genes exclu-
sively, and [-complexity for complex genes built using complex genes of the complexity
[—1, etc. The [-complexity is a measure of the number of assembling levels that are used
to construct the corresponding complex gene.

We consider any gene in the chromosome to be a member of not more than one su-
perior and one defective complex gene. If more than one superior or defective complex
gene competes for the same position, then it belongs to the one that evolved later.

A number of algorithms similar in spirit to the genetic engineering modification of
the GA have been developed in the area of genetic programming (Angeline, 1994; Koza,
1992; Rosca and Ballard, 1994), as well as in GAs (Corcoran and Wainwright, 1994). In
the terms used in this paper, they attempt to determine the superior complex genes and
then use them globally as extra letters of the genetic alphabet. Various modifications of
the crossover and mutation operators have been proposed that make the disruption of
these genes less likely. The genetic engineering extension to GAs proposed here differs
from these algorithms in the following ways: it relies on the identification and process-
ing of not only the superior but also the defective complex genes; the identification of
the complex genes is executed differently, and a much wider range of evolutionary op-
erations is used, all within a single conceptual framework.

Evolutionary Computation Volume 9, Number 1 73

J. Gero and V. Kazakov

4 Position-dependent Encoding

According to the building-block hypothesis (Goldberg, 1989), the work of the GA is
based on the implicit determination and parallel processing of groups of the chro-
mosome’s components whose values are fixed and which are called building blocks
(schemata). This hypothesis states that GA search is successful if the highly fit, short
building blocks are recombined by the algorithm to form more highly fit, higher-order
schemata. This leads, in effect, to the replacement of the entire search space with its sub-
space defined by these building blocks. This monotonic reduction of the effective search
space is interpreted as an exploitation of the building blocks. GAs can be viewed as a
tool for the generation of a hierarchy of these fit building blocks (and a hierarchy of the
corresponding subspaces of the search space). Mutation and crossover that destroy the
fit building blocks are viewed as disadvantageous — they disrupt and slow the search
process.

The definition of building blocks in the standard GA is a direct consequence of the
position-dependent genetic encoding commonly employed in GAs. The semantic of the
genotype’s interpretation is tied to the gene’s position as well as to its content, i.e.,

l'(n) = f(un) = f(u(]-)vu(Z), .- -7“(")) 1)

where u,, = {u(1),...,u(n)} is the chromosome, Npin < n < Npax IS its length (in
this section we assume that n is constant), and z(n) is the resulting phenotype. No spe-
cial assumptions are made about the mapping f. Consequently, in the general case, it is
position-dependent — that is, f depends differently on the different components of the
genotype {u}. The mapping f(u(k)) is different for different £ and thus depends explic-
itly on assume that the genotype to phenotype mapping f in Equation (1) can be written
as a recursive multistep process

2(i +1) = f(i, (i), u(@); =(1)=w1, i=1,...,n—1 @)

then if f does not depend on i explicitly (that is, f = f(z,u)), the encoding is non-
positional dependent.

We will use both the terms building block (schema) and local complex gene inter-
changeably for the complex genes in problems with position-dependent encoding.

4.1 Identification of Building Blocks

Formally, we define superior building blocks as those that are present at least k; times
in genotypes from the super group and at most k- times in genotypes of the sub group.
Their identification can be carried out using a hierarchical clustering technique (Louis et
al., 1993). Since these algorithms have quadratic time complexity (Anderberg, 1973), the
overall time complexity associated with the identification of the superior and defective
building blocks is O(N log N) (the computational cost of sorting the current population)
plus O(N?) (the cost of hierarchical clustering) and plus O(N2 M) (the cost of calculating
the distance matrix between analyzed points). Here N is the combined size of the super
and sub groups and M is the length of the genotype.

4.2 Crossover That Does Not Damage the Superior Building Blocks

Since our first goal is to prevent damage to the superior building blocks during repro-
duction, the crossover operator is changed in the following manner. If the crossover
point happens to be located within the boundaries of the superior building block, then
this block is passed (as a whole entity) to one of the offspring, as shown in Figure 1. Ifthe

74 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

. <—— crossover point ———
" superior” Huilding block H

I
lo[o]o]o[o]o]
parent 1 |

[=l

! |

child 1 child 2

(@) yma &robability 2/3 (8) probability 2/3

/b (b)” probability 1/3
" ior" buildi " ior" building block
superior bundmi;block \ SUFiLr? p\

[1]a]2]2]o[o[o] 2] 0]0]0] [[1[1]1[o]o[o]0[o]o]o] [o[a]o[o[o[ofo]a]o[1[1] [o[o[o]o[o[o[o[1]0[1]4]

1]1]1]1]o]o[o[1]o[1]1 [o[o[o]olo
parentZ‘

Figure 1. Passing of superior building block from parents to offspring.

parts of the superior building block that would be cut during the standard crossover are
also present in the offspring, they override the corresponding genes from the other par-
ent. This is executed randomly with the probability of the offspring inheriting a superior
building block during the crossover determined as follows. It is the ratio of the number
of components of this block located in the part of parent’s genotype that would nor-
mally be transferred to the offspring during the standard crossover, to the total number
of components of this building block. If two different superior building blocks in two
parents compete for the same gene position in the offspring genotype, we select the one
whose parent has the higher fitness. Since we also do not want mutation to damage the
superior building blocks, the mutation rate of genes that belong to these superior build-
ing block, p?¥?, is set lower than the probability of mutation of ordinary genes, p,,, i.e.,

m

P’ << pm.

4.3 Crossover That Disrupts Defective Building Blocks

Since we also wish to destroy defective building blocks, we arrange the crossover oper-
ator to cut them more often than it does ordinary building blocks with similar parame-
ters. A crossover operator can be defined for this that has a probability twice that of cut-
ting across only one such block. It can cut across only one such block with a probability
paes times higher than cutting outside of any of the defective building blocks. A bound-
ary occurs between two contiguous genes and is normally the length of a genotype or
building block minus 1. Let n be the length of the chromosome, n, be the number of the
boundaries that reside within the defective building block in one parent only and n» be
the number of boundaries which are located inside defective building blocks in both

parents. The crossover points are chosen with probabilities n—1—n1—ni]-):;§ef(n1+2n2)
for the boundaries that reside completely inside two defective building blocks in both
parents. Values of half of this value are chosen, where the boundaries between two
genes reside completely within the defective building block in only one parent and
n717n1n:7321721;ﬁ21+2n2) for the boundaries outside of the defective building blocks in
both parents, as shown in Figure 2. pq.¢ > 1 is the “weight” coefficient that causes the
crossover to cut through the defective building blocks more frequently than through the
normal ones. This leads to the more frequent damage of the defective building blocks by

the crossover operator compared to the non-defective ones with the same parameters.

Evolutionary Computation Volume 9, Number 1 75

J. Gero and V. Kazakov

112]3[2]4|2|3]1]4]1[3]1]2] e
] —

defective’ |building blocks

L o
31212(2[1(2]|4|3|2|1]|4|2]|2] e

Figure 2: The probability of crossover within the boundaries (n, = 2) of two defective
building blocks (bold vertical lines) Gi’;‘;;fef. This is twice as high as the probability of
crossover across only one such block (n; = 5) (solid lines). This is higher than the proba-

bility of crossover through boundaries outside of the defective building blocks (dashed
lines) m.
ef

4.4 Chemical/Radiation Therapy Against Defective Building Blocks

An analog of chemical/radiation therapy can be constructed by setting the mutation
rate of the genes that belong to the defective building blocks p¢/ much higher than the
mutation rate of the non-defective genes (p%/ >> p,,). This leads to the rapid destruc-
tion of the unwanted genetic material.

4.5 Gene Surgery — Replacement of the Defective Building Blocks with Superior
Ones

The goal in this process is to replace a defective building block with the most similar
superior one. The similarity can be measured either by the number of equal valued gene
positions or by the number of gene positions that are included (not necessarily with the
same values) in both building blocks. Depending on which approach is chosen, ngyeriap
is either the number of chromosome positions that have the same values in both blocks
or the number of chromosome positions that are fixed in both building blocks. Thenng. s
is the number of fixed chromosome components in the defective building block (in our
simulations we chose the first definition of n,,¢r14p). The pre-reproduction stage of the
modified GA, which models this gene surgery, consists of the replacement of defective
building blocks with the matching superior ones with the probability p,,,, = 2222 as

. - Ndef
shown in Figure 3.

4.6 Gene Therapy — Random Replacement of the Genetic Material with the
Superior Building Blocks

Gene therapy can be modeled as the random replacement of genetic material with su-
perior building blocks. The chromosomes from the current population are picked ran-
domly with probability p,i.r and the superior building blocks from the super group are
chosen randomly with probability n%w (nsup is the number of superior building blocks

evolved) to overwrite the corresponding parts of the genotypes.

76 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

" superior” building block

overlapping 0eNes . gefectiver building block

LT |
3][2]2]2[a]2]4]3]2]1]4]2]2]

probability psur—g

3[2[2[1]4]2]3/3]2]1]4]2]2]

Figure 3: Gene surgery: replacement of defective genes with superior ones.

1]2[3[1]1]2]3[1]4]1]3[1]2]

2]2]2]2[1]2]1]2]3]1]3[3][1]

2[a]1]2]3(4]4]3[4[2]3[3]4]

3[14]a]2]3[1]2]1]1][2]3]4]

Figure 4. The matching subsequences in a group of genotypes.

5 Non-positional Encoding

The same substring can be responsible for wanted or unwanted properties no matter
where it is located within the genotype, as shown in Figure 4. The sequence analysis
techniques of genetic engineering and of speech processing (Sankoff and Kruskal, 1983;
Collins and Coulson, 1987; Schuler et al., 1991; Needleman and Wunsch, 1970; Karlin et
al., 1990), which detect similarities or dissimilarities between groups of sequences, are
used to identify these substrings. Their fitness contributions (through the phenotype)
are independent of where they reside within the genotypes. These substrings are new
genetic primitives that form a specialized genetic alphabet characteristic for the organ-
isms with given features. They correspond to the stable components in terms of complex
system theory (Simon, 1973). There is related work on floating building blocks (Wu and
Lindsay, 1995).

If such non-positional dependence exists, then it is possible that, for each class of
problem, there is a natural, hierarchical, variable-length alphabet whose member’s sig-
nificant presence in the genetic pool of the population leads to the high level of fitness.

This alphabet is a set of genes of varying complexity, as shown in Figure 5. Sim-
ilarly, a complementary alphabet of the defective complex genes can exist that can be
used to generate a population with a low level of fitness.

Evolutionary Computation Volume 9, Number 1 77

J. Gero and V. Kazakov

2 2
! ! 2-complexity
1]]2] 4vivi[3]

Figure 5: The alphabet of complex genes.

TOTAL POPULATION

[| H]
[[|] I
[|]
[|]
[" defective’ evolved gene B " superior” evolved gene

Figure 6: Identification of evolved genes. Here parameters are k; = 3, ko=1.

5.1 Ildentification of Genetic Words

Let us assume that complex genes are identical contiguous pieces of the genotypes that
can be located anywhere within the genotype, as shown in Figure 4. We will call these
substrings words so we can identify them from just any substring of a genotype. We
identify superior complex genes by making a list of all words that are used to build at
least k£, genotypes from the super group and at most &k, genotypes from the sub group
(K1, ko are parameters, k1 > k»), as shown in Figure 6.

Defective complex genes are identified in a similar fashion by making a list of all
words that are used in construction of at least k; genotypes from the sub group and at
most k> genotypes from the super group. These lists can be produced using suffix trees
for the super and sub groups. A suffix tree is a standard tool in sequence analysis (Mc-
Creight, 1976; Weiner, 1973; Aho, 1975; Apostolico, 1985; Crochemore, 1994). Let us give
a brief review of suffix trees. It is defined for any sequence S = {a; ... a,} of n symbols
as a tree with n + 1 leafs and at most » interior vertices. Each edge is labeled with some
subword of the sequence or word, and each leaf is labeled with a unique position in this

78 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

suffix tree

Root
0 2

\

positions within the sequence

Figure 7: Suffix tree for the genotype S = {00110112}.

word. Concatenation of the edges’ labels along the path from the root to the leaf labeled
j spells the subword S; = {a; ...a,} from the jth position till the end (suffix), as shown
in Figure 7.

For example, let S = {00110112}, then the suffixes are S; = S, S, = {0110112},
Sz = {110112}, S4 = {10112}, S5 = {0112}, S = {112}, Sy = {12}, and Sz = {2}. The
suffix tree built from these 8 suffixes of S is shown in Figure 7. It is easy to check that
leaf 3 stores suffix S;. Concatenation of labels of all the edges along the path from the
root to this leaf spells S3 = {110112}.

The primary purpose of a suffix tree is to store all the suffixes of a given word. It
can also be viewed as a compact collection of all the subwords in a given word. For any
subword in this word, there is a unique path from the root of the tree to some node in
it that spells the subword (i.e., the concatenation of the labels of the edges along this
path spells this subword). The suffix tree can be constructed incrementally in O(n) time
and requires O(n) space using the methods described in McCreight (1976) and Weiner
(1973).

Genetic analysis begins with the creation of two genetic superstrings (one for sub
and one for super groups) by concatenating all the genotypes from the corresponding
group separated from each other by distinct markers (symbols that are not used in geno-
types), as shown in Figure 8. Then we construct two suffix trees for these superstrings
using McCreight’s algorithm (McCreight, 1976). The leaves of the resulting trees are di-
vided into bunches. Each bunch corresponds to one of the genotypes from the super or
sub group, as shown in Figure 8. Finally, we explore each tree looking for the deepest
path that is extensible to not less than k; bunches. This means that the corresponding
subword spelled by the concatenation of the edges’ labels from the root to the corre-
sponding node appears in at least k; genotypes. Then we check if this subword exists
in a complementary suffix tree. If it does not, then we have found a complex gene. If
it does exist, then it is a complex gene only if all the branches that begin in the corre-

Evolutionary Computation Volume 9, Number 1 79

J. Gero and V. Kazakov

[__gemoypel]
[genoypeZ 1
"super" or "sub" group of genotypes [genoypes 1, N
,TCgenoyped——737 AN
e v 1 N
. d 1 N distinct markers
7z , 1 Y
e , \ AN EE O3
s e , / 1 N
e s | » N
- e 4 | N
4 \
% P %) V § *
super sequence genotype 3 I genotype 4]
Longest path extensibleinto
3 genotypes of the group
suffix tree

EEEEER EEEEEDN Ooooooo EEEEEE
genotype 1 bunch 1 genotype 2 bunch 2 genotype 3 bunch 3 genotype 4

bunch 4

Figure 8: Schematic structure of genetic engineering analysis for finding evolved genes
as genetic words.

sponding node end up in not more than ks, bunches.

The overall complexity of this type of genetic analysis is linear with respect to the
combined length of analyzed genotypes from super and sub groups.

Thus, the overall computational complexity of identifying genetic words is
O(N log N) (computational cost of sorting the population) plus O(N M), where N is the
combined size of super and sub groups, and M is the length of the genotype.

5.2 Packed Chromosomes

Since the evolved complex genes have variable lengths, it is natural to consider variable-
length genotypes. The genotypes that are written in terms of the original alphabet (we
shall call them the unpacked genotypes) can be rewritten in a packed form when all the
instances of the complex genes are replaced with a single, packed gene, as shown in Fig-
ure 9. To make this one-to-one transformation, we first replace all the superior complex
genes of 1-complexity, beginning with the first one evolved, then all superior complex
genes of 2-complexity, etc. Then the same process is executed with respect to the de-
fective complex genes. All the genotypes are subjected to such packing during the pre-
reproduction stage. They are unpacked before the evaluation of the population. All the
complex genes that are present in the population’s genetic pool can be found using the
Boyer-Moore-Galil string search algorithm in O(2L,,,) time (Crochemore, 1994) (where
L, is the total combined length of the population’s genotypes).

80 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

unpacked chromosome

1]2]2[3]1]4 \I\2H2H3H2H2H3 13[3]

|
ack chromoscy

Figure 9: The packed and unpacked genotypes.

We choose to use the standard GA’s crossover and mutation operators on the
packed chromosomes in our numerical simulations. It is clear that the corresponding
operators on the unpacked chromosomes produce different results from the standard
ones.

5.3 Crossover

Here, the one-point crossover operator differs from the GA standard crossover in one
respect only. In the general case, the same crossover points in two packed genotypes
correspond to two different points in the respective unpacked genotypes. Thus, it seems
reasonable to crossover two packed parents in two different points (possibly to cross
the first one at a random point and the second one at a point chosen at random in some
neighborhood of the first one, as shown in Figure 10(a)).

The analog of the two-point crossover used in genetic programming picks and
swaps two random continuous pieces in two packed genotypes, as shown in Figure
10(b). These crossover operators do not disrupt the superior complex genes that happen
to be present in the population’s gene pool.

5.4 Mutation

The mutation operator needs to be changed so that it is less likely to affect the supe-
rior complex genes and more likely to affect the defective complex genes than the or-
dinary genes. It can be carried out in a number of different ways using analogs of ra-
diation/chemical therapy. For example, one can set the probability of mutation of the
superior complex genes p2¥P to be lower than the rate of an ordinary gene’s mutation
Pm, Which in turn is lower than the mutation rate of the defective complex genes pde?.
It is possible to treat complex genes either as equal to the elementary ones or as a sep-
arate set of entities. In the latter case, it seems reasonable to define the mutation of a
superior complex gene as its random deletion or replacement with one of the other su-
perior complex genes of the same complexity. The mutation of the defective complex
gene can be defined as its random deletion or unpacking. Here unpacking implies re-
placing it with the corresponding sequence of the original genes and mutation of its
components (macromutation in the unpacked chromosome’s space). If complex and el-
ementary genes are considered equal, then one can define a mutation of the elementary
gene into a complex one and the complex gene into an elementary one.

Evolutionary Computation Volume 9, Number 1 81

J. Gero and V. Kazakov

ONE-POINT CROSSOVER
PARENTS

Ccrossover points

R
1 12 2 4 3
FNEAEE CIE] T T

alafif

+ +
REAEE (4] 4]4]4]3

@

GENETIC PROGRAMMING-TYPE TWO-POINT CROSSOVER
PARENTS

crossover points

B
N E R E i A
\‘\// |
OFFSPRING

A R ENEAHE A
(®)

Figure 10: The crossover of two packed chromosomes. (a) genetic algorithm-type
crossover. (b) genetic programming-type crossover.

5.5 Gene Surgery and Gene Therapy

Let n,4er10p De @ measure of the similarity of the superior and defective complex genes
of the same complexity (for example, the number of their matching components), and
ngey IS the length of the defective complex gene in the unpacked form. Then an ana-
log of gene surgery can be constructed as follows. During the pre-reproduction stage,
all the genetic material in packed form is scanned, and all the defective complex genes
found are replaced with one of the superior complex genes of the same complexity
with a probability p,,,,. proportional to the similarity of these two complex genes, where
Pour = —22erlee () < po < 1. The analog of the gene therapy operation scans the genetic

Ndef

material and inserts randomly picked superior complex genes in random positions.

6 Experimental Results

6.1 Positional Encoding

The test set of the fixed-length problems with positional encoding consists of the Royal
Road problem (Jones, 1995) and the De Jong test suite (F1-F5) (De Jong, 1975).

Royal Road Function This class of problems has a clearly defined hierarchy of build-
ing blocks and is an ideal test bed for investigating the building block processing in
GAs (Forrest and Mitchell, 1993). A genotype of this function is composed of 2 non-
overlapping continuous regions. The first, of length b, is called the block. The second, of

82 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

Table 1: Comparative performance of standard and genetic engineering-based GAs on
royal road functions. The table gives the mean fitness evaluations taken to find the op-
timum over 50 runs.

R, R, canonical
total bits 64 64 240
Standard GA 61342 70632 4680457
Genetic Engineering GA 43449 50499 2906123
without advanced genetic operations
Genetic Engineering GA 42099 50335 2911871
with radiation therapy
Genetic Engineering GA 37019 51331 2345127
with gene surgery
Genetic Engineering GA 39066 49133 2301214
with gene therapy

length g, is called the gap. The length of each region is b+ g. They are labeled from left to
right. The fitness depends only on the genes from blocks. The blocks that are composed
of 1s only are called complete. Each incomplete block contributes the following term into
the overall fitness

. v-m, if m=<m*,
F_{ —v(m* —m), if m>m*

where m is the number of 1s in this block. Extra reward is given for attaining what Hol-
land called “levels” - the complex building blocks whose fitness is higher than the sum
of the fitnesses of its components. At the lowest level, if the genotype contains n, com-
plete blocks, then the term «} + uq-n, is added to its fitness function. If the genotype
contains ny pairs of complete blocks with the labels (2, 2i + 1), then, again, u3 + us-ns
is added to the fitness. Then the set of complete quadruples is rewarded in the same
fashion, etc. Here, m*, v, uy, and u,, p = 1,...,k + 1 are parameters.

We use three functions from this class: R; and R, functions (Forrest and Mitchell,
1993) and the canonical function with default parameters (Jones, 1995). The R; fitness
function contains only contributions from the complete blocks of the lowest level. The
contributions from the incomplete blocks as well as from the combinations of the com-
plete blocks are omitted. The corresponding parametersare k = 3,b = 8,9 = 0, m* = 0,
v*=0,v=0u; =0,u; =8 u; =0,u, =0, and p = 2, 3,4. The R, function differs
from the R; function in one respect only — it rewards the pairs, quadruples, and octu-
ples of complete blocks. The following parameters are different: u» = 16, u3 = 32, and
uq = 0. The canonical Royal Road Function has the following parameters: k = 4,b = 8,
g="7,m*=4,v=0.02, u; =1.0,and u, = 0.3.

We used the same generational GA with one-point crossover and o-scaling as was
used in Forrest and Mitchell (1993) with the same parameters: crossover probability
p. = 0.7 and mutation probability p,, = 0.005. In the experiments with R; and R», the
population size was 128. In the experiments with the Royal Road Function, the popu-
lation size was 500. The results of computations are presented in Table 1. For the ad-
vanced genetic engineering operations (used on pre-reproduction stage), we used the
following parameters: p%¢/ = 0.1, p*? = 0.0005, psyr = 0.7, and ppicr, = 0.1.

The performance comparisons of the standard and genetic engineering-based GAs

Evolutionary Computation Volume 9, Number 1 83

J. Gero and V. Kazakov

Table 2: Comparative performance of standard and genetic engineering-based GAs on
the function from the De Jong test suite. The table gives the mean fitness evaluations
taken to find the optimum over 30 runs.

F1 F2 F3 F4 F5
Total bits 30 24 30 240 34
Standard GA 57945 39634 706 15023 4517
Genetic Engineering GA 37689 28892 497 9612 2814
without advanced genetic operations
Genetic Engineering GA 34123 27181 503 7515 2717
with radiation therapy
Genetic Engineering GA 28751 23111 421 6901 2111
with gene surgery
Genetic Engineering GA 27113 24037 401 6176 2231
with gene therapy

on the De Jong test suite are presented in Table 2. The population size was 50.

The results show that the genetic engineering-based GAs perform significantly bet-
ter than the standard GA (saving of 30 — 50% of function evaluations). The basic ge-
netic engineering extension of GA without advanced genetic engineering operations
provides savings of 30 — 37%, with the genetic surgery and genetic therapy each pro-
viding additional computational savings of about 10%. The total computational cost of
one cycle of this genetic engineering analysis was about 30% of the computational cost
of producing one generation for the functions from the De Jong test suite and about 60%
for the royal road functions. The average additional computational cost per generation
for the basic genetic engineering GA is 10% for the functions from the De Jong test suite
and 15% for royal road functions. For a GA with advanced genetic engineering oper-
ations, these additional costs are correspondingly 17% and 21%. Thus the net effective
computational savings were between 12% and 20%.

Radiation therapy does not provide any additional advantages on these test prob-
lems. The likely cause of this is the absence of defective” building blocks in these prob-
lems.

6.2 Non-positional Encoding

Our test suite of the variable-length GA problems with non-positional encoding consists
of two problems: a beam cross-section design problem from structural engineering and
the non-positional modification of the royal road function.

6.2.1 Beam Cross-section Design Problem

In this problem, the beam cross-section is generated using a simple shape grammar over
a uniform planar grid (Gero and Kazakov, 1996). This generation is a recursive process
that places elementary cells with different weights on the grid (the feasible weights are
1,...,7). During each step of this process, a new cell is placed in one of the eight neigh-
boring positions of the last elementary cell that has been added to the current cross-
section, as shown in Figure 11.

If the grid position where the next cell is to be located is already taken, then all the
corresponding cells already placed on the grid are shifted. The process is initiated when

84 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

o lD o Q H H N
= . E B E O
Figure 11: The genotype-phenotype mapping used for the beam design problem.

the first elementary cell is placed in the middle of the empty grid. This process com-
pletely defines the genotype to phenotype mapping. The first gene of the genotype de-
fines the weight of the first cell, its ((3 + 2 * (7 — 3))th genes define the weight of the ith
elementary cell (: = 2, ...,19) added to the beam cross-section. The values of genes be-
long to the discrete range of values 1, . . ., 5 that directly encode weights of correspond-
ing cells. The (4 +2x (i — 3))th genes (i = 2,...,19) in the genotype define the relative
position (with respect to the position of the i — 1 cell) of the ith elementary cell added
to the beam cross-section. The values of these genes are 0,...,8. They correspond to
the 8 possible locations of the ith cell with respect to the (: — 1)th, as shown in Figure
11. Only the first 20 cells are placed onto the 2-D grid. Thus, although the problem has
variable-length genotypes with unrestricted lengths, only 39 genes are expressed. Only
the first 39 genes determine the phenotypes. Different geometric properties could be
used as fitness functions. The particular fitness function F' used in these experiments
was:

F = {moment of inertia ; total area of holes ; number of holes connected to outside space} — max.

In order to handle the multiobjective optimization, we use a simple Pareto-based
ranking procedure. We take some positive number U > 0 and set a counter k£ = 1. Then
we find all points in the current population that belong to its Pareto-set and assign the
fitness value for all of them equal to % We then set £ = k + 1. Then we consider the
rest of the population without the points just found, single out the Pareto-set for this
reduced population, and set the fitness values for the members of this set equal to %
Set k = k + 1, and the cycle continues until all the points are ranked. The simplest
version of a pattern recognition algorithm was implemented that allows for the search
and identification of double and triple element complex genes only. The following
parameters have been used: population size is 200, crossover probability p...s = 0.8,
and mutation probability p,, = 0.01. The mutation operator treats the complex and
elementary genes equally, that is, the probability of mutation of any gene (elementary
or superior complex one) into any other such genes is the same. The results shown
correspond to the average over 30 different initial seeds. The only exception are the
results in Figure 12 that come from a single run, but this run was typical.

Genetic Engineering-based GA Without Advanced Genetic Engineering Opera-
tions First we present the results of the computations for the genetic engineering ex-
tension of a GA that uses only modified crossover and mutation operators. The typical
relationship of the fraction of the complex genes in the total pool of genes (in all the pop-
ulations’ genotypes) against generation number is shown in Figure 12. It demonstrates
how the superior complex genes evolve and take over the population. It turns out that
the mapping of the evolution process onto the abstract space of complex genes pro-

Evolutionary Computation Volume 9, Number 1 85

J. Gero and V. Kazakov

0.9

0.8

0.7

06 [

SUPERIOR COMPLEX GENES ——
04 DEFECTIVE COMPLEX GENES -----

0.3 B

FRACTIONS OF COMPLEX GENES

0.2 | i

0 ! ! ! beoo ! L AL

0 20 40 60 80 100 120 140 160
GENERATIONS

Figure 12: Beam cross-section design problem. Basic genetic engineering extension of
GA. The fractions of the superior and defective complex genes in the total pool of genes
Vs. generation number.

duces a rather complex picture, as shown in Figure 13. The population is redistributed
between the different complexities of the genes with some non-trivial underlying pro-
cesses of the interaction of the subpopulations defined by the complex genes of different
complexities.

On average, it takes around 100 generations for the genetic engineering-based GA
to find the solution of this problem. The standard GA with the same parameters takes
around 400 generations.

Advanced Genetic Engineering Operations The results for the algorithms that use

different genetic engineering techniques are shown in Figures 14 to 16. The following

parameters have been used: for the radiation/chemical therapy, p;*? = 0.0001 and
def = 0.7; and pyi.. = 0.9 for the gene surgery.

At first glance, the plots look very similar. They can be divided roughly into four
stages. During the first stage, the concentration of the complex genes rapidly increases.
During the second stage, it remains at that level for anumber of generations. Then at the
next stage, it drops and stays at that lower level for approximately the same number of
generations, finally jumps to almost the saturation level, and stabilizes there. Possibly
this points to some fundamental feature of this problem, independent of the particular
type of genetic engineering technique used.

The only plot without the second major feature —the fall in the level of complex gene
usage — is Figure 16. The likely cause of this is the relatively crude manner of forcing the
superior complex genes into the genetic pool employed by this technique.

6.2.2 Non-positional Royal Road Type Function

This problem has a variable length genotype. Its fitness functions contain the penalty
term 30 * (Vyenes — 64) for more than 64 genes in genotype. Each instance of a complex
gene a = {111} in the genotype contributes 0.1 to the fitness. Adding 2.2 to the fitness
rewards each presence of the other complex gene ¢ = {{a}01{a}} = {111010111}. Since

86 Evolutionary Computation Volume 9, Number 1

0.8

0.7

0.6

0.5

FRACTION OF COMPLEX GENES

Genetic Engineering GA

1-COMPLEXITY —
2-COMPLEXITY -----
3-COMPLEXITY -----
4-COMPLEXITY
5-COMPLEXITY ----

8-COMPLEXITY -

80 100
GENERATIONS

120

140

160 180

Figure 13: Beam cross-section design problem. Basic genetic engineering extension of
GA. The fraction of superior complex genes with different complexities in the total pool
of the superior complex genes used to assemble the population vs. generation number.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

FRACTIONS OF COMPLEX GENES

SUPERIOR COMPLEX GENES ——
DEFECTIVE COMPLEX GENES

80
GENERATIONS

120

140 160

Figure 14. Beam design problem. Use of radiation/chemical therapy. The fraction of
the superior and defective complex genes vs. generation number.

Evolutionary Computation Volume 9, Number 1

87

J. Gero and V. Kazakov

FRACTIONS OF COMPLEX GENES

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 ffy

0.1

SUPERIOR COMPLEX GENES ——
DEFECTIVE COMPLEX GENES -----

80 100 120 140 160
GENERATIONS

Figure 15: Beam design problem. Use of genetic surgery. The fraction of the superior
and defective complex genes vs. generation number.

FRACTIONS OF COMPLEX GENES

0.9

0.8

0.7

0.6

0.5

0.4

0.3

02

0.1

SUPERIOR COMPLEX GENES ——
DEFECTIVE COMPLEX GENES -----

S L L L

80 100 120 140 160
GENERATIONS

Figure 16: Beam design problem. Use of genetic therapy. The fraction of the superior
and defective complex genes vs. generation number.

88

Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

0.95

0.9 - NO ADVANCED OPERATIONS — B
/ \ GENE THERAPY -

FRACTIONS OF ‘1" GENES

0.45 I I I I I I I I
0 20 40 60 120 140 160 180

80 100
GENERATIONS

Figure 17: Non-positional royal road function. The fraction of the “1” genes in the ge-
netic pool of elementary genes vs. generation number.

the same part of genotype can be filled with either 2-level complex genes {c} or three
1-level complex genes a, these genes compete in the genetic pool. We describe the evolu-
tionary process by plotting the fractions of the elementary genes 1 in the current genetic
pool of elementary genes against generation number. When the algorithm tries to im-
prove the population using mostly the complex gene of 1-complexity a, it attempts to
saturate the genetic pool of the population’s elementary genes with 1s. It tries to do so
using the complex gene ¢, then the concentration of 1s in the genetic pool dips down to
approximately 2—}1. Computations have been done using the same version of genetic al-
gorithm with the same parameters as were used for the beam cross-section design prob-
lem. The results averaged over 30 runs are shown in Figure 17. Since the problem does
not have defective complex genes, the plots for the radiation therapy and gene surgery
are very similar to the plot for the genetic engineering-based GA without advanced ge-
netic operations. It takes about 600 generations for the standard GA to find the solution,
compared to about 80 for the genetic engineering GA. Such significant computational
savings are not surprising since this problem was specially designed to be easy for the
genetic engineering-based GA. It possesses the “shiftable” regularity that need not be
discovered a number of times such as when the standard GA is used.

7 Discussion

The standard GA employs an indirect, “weak” control of the population. Since all the
points in the search space are equal with respect to the rate of reproduction, the response
of the population to the current fitness landscape is delayed. The genetic engineering
modification of the GA can be interpreted as the introduction of additional control of the
population dynamics, which makes it more sensitive to the current fitness landscape.
Essentially, this control is just the assignment of different “rates of survival” to different
areas in the control hyperspace. This is still a relatively weak control action that affects
the population only indirectly. Nevertheless, it provides an additional way of shifting
the population into the area of interest in the search space, or doing this more efficiently
than is done by the standard GA. In an analogous sense, it is similar to the penalty func-

Evolutionary Computation Volume 9, Number 1 89

J. Gero and V. Kazakov

tion technique, where the search is directed into particular areas of the search space by
assigning different weights to the different parts of the search space.

The identification of the complex gene hierarchy is a more complicated problem
than the identification of the maximal fitness point. The determination of the hierarchy
of the superior and defective complex genes is equivalent to the solution of the inverse
problem. The extra processing required to extract and purify the additional information
from the data supplied by the standard GA can be computationally expensive. Never-
theless, it is still worth doing if the genetic mapping is sufficiently complex and espe-
cially when the information obtained can be reused later to solve similar problems. In
order to develop these complex gene hierarchies, the modification of the GA employs
multiple solutions of the NP-hard sequential analysis problem of finding the character-
istic substrings in the groups of strings. Unlike the complexity of the genetic algorithm,
the complexity of this auxiliary problem does not depend on the genotype-phenotype
encoding or on the fitness function. It is completely defined by the length of the geno-
type and the type of genetic encoding (positional or non-positional). Since this auxil-
iary problem has been studied extensively in genetic engineering, speech recognition,
and computer science, anumber of highly efficient approximation algorithms have been
developed for it.

The genetic coding can be interpreted as a language that describes the objects of in-
terest. The evolved set of the superior complex genes can be considered as a new task-
specific representation that is more conducive to solving the problem. The computa-
tional process of the genetic engineering extension of the standard GA can be viewed as
an iterative procedure that generates increasingly specialized representations and tests
them for their ability to solve the problem. The major advantage of GAs is their ability
to find improved solutions for optimization problems with poorly understood spaces.
The evolved set of complex genes represents the knowledge about these spaces that was
acquired by the algorithm.

Genetic algorithms are knowledge-lean processes; they make no use of any domain
knowledge in their execution. This gives them robustness and breadth of applicability
not found in many other search processes. This advantage is, at the same time, a disad-
vantage in that often there is considerable knowledge available about the structure of
the problem that is not utilized. The process of evolving complex genes can be seen as a
process of acquiring and making available increasing amounts of knowledge about the
domain under consideration. In this sense, they provide an additional “memory” about
the structure of the problem. The effect of this is to gradually turn a knowledge-lean pro-
cess into a knowledge-rich one without the need to handcraft the acquired knowledge.
There are many different evolution paths to this knowledge. This additional knowledge
provides benefits to the genetic algorithm. In each class of problem, the knowledge that
is represented by and encoded in the evolved complex genes has a meaning within this
class; a meaning that is not accessible through the standard GA. This process has the
potential to allow the user of such a system to understand the meaning of the complex
genes within his or her domain.

The effect of adding genetic engineering to genetic algorithms is to change the evo-
lution path to a solution. The process of complex gene evolution changes the probabili-
ties associated with the fitness landscape by making certain subspaces within the entire
search space increasingly likely to be searched. These subspaces are more likely to be of
interest than others. The genetic engineering extension of GAs tries to discover the ben-
eficial and harmful genetic material using the analysis of the genetic material available
and then exploit this knowledge in order to short-cut the trajectories of the standard GA.

90 Evolutionary Computation Volume 9, Number 1

Genetic Engineering GA

Acknowledgments

This work is directly supported by a grant from Australian Research Council; comput-
ing resources are provided through the Key Centre of Design Computing and Cogni-
tion.

References

Aho, A., Hopcroft, J., and Ullman, J. (1975). The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Massachusetts.

Anderberg, M. (1973). Cluster Analysis for Applications. Academic Press, New York, New York.

Angeline, P. J. (1994). Genetic programming and emergent intelligence. In Kinnear, K., editor, Ad-
vances in Genetic Programming, pages 75-98, MIT Press, Cambridge, Massachusetts.

Apostolico, A. (1985). The myriad virtues of subword trees. In Apostolico, A. and Galil, Z., editors,
Combinatorial Algorithms on Words, pages 85-96, NATO Advanced Study Institute, Series F:
Computer and Systems Sciences, Volume 12, Springer-Verlag, Berlin.

Collins, J. F. and Coulson, A. F. E. (1987). Molecular sequence comparison and alignment. In Nu-
cleic Acid and Protein Sequence Analysis: A Practical Approach, pages 323-358, IRL Press, Wash-
ington DC.

Corcoran, A. L.and Wainwright, R. L. (1994). Chromosome reduction in Genetic algorithms. Tech-
nical Report UTULSA-MCS-94-1, University of Tulsa, Tulsa, Oklahoma.

Crochemore, M. (1994). Text Algorithms. Oxford University Press, New York, New York.

Forrest, S. and Mitchell, M. (1993). Relative building-block fitness and building block hypothesis.
In Whitley, D., editor, Foundations of Genetic Algorithms, Volume 2, pages 109-126, Morgan
Kaufmann, San Mateo, California.

Gero, J. S. and Kazakov, V. (1996). Evolving building blocks for design using genetic engineering:
A formal approach. In Gero, J. S., editor, Advances in Formal Design Methods for CAD, pages
31-50, Chapman and Hall, London, England.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. MIT Press,
Cambridge, Massachusetts.

Jones, T. C. (1995). A description of Holland’s Royal Road Function. Evolutionary Computation,
2(4):411-417.

De Jong, K. A. (1975). An analysis of the behavior of one class genetic adaptive systems. Unpublished
doctoral dissertation. University of Michigan, Ann Arbor, Michigan.

Karlin, S., Dembo, A., and Kawabata, T. (1990a). Methods for assessing the statistical significance
of molecular sequence features by using general scoring scheme. Proceedings of the National
Academy of Science U.S.A., 87:5509-5513.

Karlin, S., Dembo, A., and Kawabata, T. (1990b). Statistical composition of the high-scoring seg-
ments from molecular sequences. Annals of Statistics, 18:571-581.

Koza, J. R. (1992). Genetic Programming. Addison-Wesley, Reading, Massachusetts.

Louis, S. J., McGraw, G., and Wyckoff, R. O. (1993). CBR Assisted Explanation of GA Results. Jour-
nal of Theoretical and Experimental Artificial Intelligence, 5(1):21-28.

McCreight, E. M. (1976). A space economical suffix tree construction algorithm. Journal of Associ-
ation of Computer Machinery, 232:262-272.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48:443-453.

Evolutionary Computation Volume 9, Number 1 91

J. Gero and V. Kazakov

Rosca, J. P. and Ballard, D. H. (1992). Learning by adapting representations in genetic program-
ming. In Cohen, W. and Hirsch, H., editors, Proceedings of the Eleventh International Conference
on Machine Learning, pages 407-412, Morgan Kaufmann, San Mateo, California.

Sankoff, D. and Kruskal, J. B., editors (1983). Time Warps, String and Macromolecules: The Theory
and Practice of Sequence Comparison. Addison-Wesley, Reading, Massachusetts.

Schuler, G. D., Altschul, S. F,, and Lipman, D. J. (1991). A workbench for multiple alignment con-
struction and analysis. PROTEINS: Structure, Function, and Genetics, 9:180-190.

Simon, P. J. (1973). The organization of the complex systems. In Pattee, H. H., editor, Hierarchy
Theory: The Challenge of Complex Systems, pages 109-127, G. Braziller, New York. New York.

Weiner, P. (1973). Linear pattern matching algorithms. In Proceedings of the IEEE 14th Annual Sym-
posium on Switching and Automata Theory, pages 1-11, IEEE Press, Piscataway, New Jersey.

Wu, A. S. and Lindsay, R. K. (1995). A comparison of the fixed and floating building block repre-
sentation in the genetic algorithm. Evolutionary Computation, 4(2):169-193.

92 Evolutionary Computation Volume 9, Number 1

