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Abstract

 

Repeated measures of live weight in growing animals are used to describe the path by which they travel from birth
to maturity. A family of growth functions-the Gompertz is one in particular-has been used successfully to describe
this journey with relatively few parameters (most importantly mature size and a rate parameter). However, using
these functions to differentiate the genetic merit of individual animals to grow is problematic since the estimates of
these parameters are highly correlated and are obtained with varying precision among animals. An alternative is
random regression (RR) methodology. It allows environmental effects specific to the time of recording to be
accounted for and can accommodate genetic differences in the shape of each animal’s growth curve. At present,
though, only linear models (polynomials) can pragmatically be fitted with RR. This may be limiting since 

 

a priori

 

beliefs about the appropriate form of a growth function, such as the non-linear Gompertz equation, cannot be
accommodated. This paper describes the application of RR techniques to describe growth on a population of Suffolk
sheep and compares the genetic evaluation predicted from a RR model with that obtained from a more traditional
method based on a Gompertz form. 
The RR model chosen as providing the best fit (

 

P

 

 < 0·01) included additive genetic and permanent environmental
(between repeat records of an individual) effects fitted to a fifth order polynomial, and dam effects fitted to a third
order polynomial. Measurement error was modelled as six classes. The heritability varied at different points along
the growth trajectory (from 0·09 at 15 days to 0·33 at 150 days), suggesting that live weight early in a lamb’s life is
a different trait to live weight later in life. There was genetic variation in the growth curves of individual animals,
which was accounted for by fitting a RR model. Breeding values obtained by RR and a Gompertz approach were
moderately to highly correlated (0·81 at 56 days, 0·91 at 150 days). If breeding value for live weight at 150 days of
age were the selection criterion, similar individuals would be chosen with both methodologies. The ‘better’
properties and greater flexibility of the RR approach are discussed. 
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genetic factors, growth, random regression, sheep.

 

 

 

Introduction

 

The idea that an animal follows a prescribed
trajectory as it grows towards maturity is a useful
one that has been encapsulated in a family of growth
equations (Winsor, 1932; Taylor, 1980; Parks, 1982).
The desired properties of such functions are that
weight tends to a final or asymptotic value with
time, that growth rate has a maximum at some
intermediate weight, and that the relative growth

rate decreases monotonically, preferably in some
simple way, as weight increases towards maturity.
The Gompertz form is an example of a function with
such properties which describes growth as a
comparatively simple, single equation (Emmans,
1997). It has three parameters of which the important
ones are mature size and a rate parameter.
Importantly, the values of such parameters have
clear biological interpretation. 
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Table 1 Data characteristics

Category Measure

No. of records 40371
No. of animals 3901
No. of animals with records 2264
No. of dams with progeny 716
No. of sires with progeny 138
Minimum no. of records per animal 7
Maximum no. of records per animal 24
Mean live weight overall (kg) 34·8 (18·1)†
Mean live weight at weaning (56 days; kg) 23·2 (4·30)†
Mean live weight at end of test (150 days; kg) 63·3 (8·48)†

† Standard deviation shown in parentheses.

 

Despite their widespread application, there are
considerable problems in the estimation of the values
of the parameters when fitting growth equations to
data from individual animals. In part this is because
the estimated values of the parameters of such
functions are highly correlated (Cullis and
McGilchrist, 1990; Lewis 

 

et al.,

 

 2002) although this is
not necessarily so among the true parameter values.
The precision of the estimates of parameter values
also varies where the frequency of live weight
recording differs between animals, as is commonly
the case. Even though growth may be sufficiently
summarized by the few parameters fitted in a
growth equation, the use of these parameters to
delineate, for instance, genetic merit between
animals may for these reasons be problematic (Lewis

 

et al.,

 

 2002). 

The use of random regression (RR) methodology in
an animal breeding context is a recent innovation
pioneered by researchers working on improving
the prediction of genetic merit of dairy cattle
(Schaeffer and Dekkers, 1994; Jamrozik and
Schaeffer, 1997). The technique is applicable when
repeated measures of a trait are available for an
animal. Examples are milk yield records taken at
various points throughout a cow’s lactation, yearly
weights of beef cattle or growth data in pigs. No
prior assumptions about time trends are required.
Environmental effects specific to the time of
recording can be accounted for and the shape of
each animal’s lactation or growth curve can be
accommodated in the model. 

RR models use a fixed regression to describe the
average shape of a lactation or growth curve, and a
random regression for each animal to account for
deviations from the fixed regression. This allows the
repeated records collected on an animal to be directly
incorporated into genetic evaluations and, since an
animal model is fitted, results in the predicted
lactation or growth curve being heritable. Since
orthogonal forms of linear models (Legendre
polynomials) are typically fitted with RR,
correlations between coefficients are generally lower
than with ordinary polynomials or parametric
curves. 

Most countries are now in the process of introducing
RR methods for evaluating dairy cattle. RR models
have also been used to describe food intake and
weight gain in pigs (Andersen and Pedersen, 1996)
and growth and mature weight of beef cows (Meyer,
1999 and 2000), but the benefits of the methodology
in the analysis of weight data in sheep are as yet
unknown. 

This paper describes the application of RR
techniques to live weights recorded on a population
of Suffolk sheep. It assesses how useful they are in
evaluating growth curves and compares genetic
evaluation predicted from a RR model with that
obtained from a more traditional method based on
the Gompertz form of the growth equation. 

 

Material and methods

 

Animal management and data collection

 

The data comprised live weight records on 2264
Suffolk lambs collected between 1985 and 1994 from
a selection experiment at the Scottish Agricultural
College (SAC) described by Simm 

 

et al.

 

 (2002). The
lambs were reared indoors with free access to a high
energy and protein food (12 MJ metabolizable energy
and 180 g crude protein per kg dry matter) as part of
a performance test regime. The lambs were weaned
at 56 days of age and the test ended when they were
about 150 days of age. Each lamb was weighed
between 7 and 24 times over this period with more
than 50% being weighed at least 20 times. Data
characteristics, including the mean and standard
deviation of live weights, are given in Table 1. 

In 1985 the flock was closed with approximately two-
thirds of the 140 breeding ewes randomly allocated
to a selection line and the remainder allocated to a
control line. Selection was thereafter based on an
index that combined live weight, and ultrasound
measurements of muscle and fat depth, recorded at
150 days of age. The index was designed to increase
the rate of lean deposition, with little change in the
rate of fat deposition (Simm and Dingwall, 1989).
Within the control line lambs were retained that had
average index scores. The flock was allowed to
increase in size to about 250 ewes by the late 1980s
and maintained at that size through 1994. Simm 

 

et al.

 

(2002) describes in detail the dynamics of the flock. 
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Table 2 Fixed effects included in the model, together with the
number of levels of each

No. of
Fixed effect Levels Description

Year-week-sex 392
Rearing type 2 Singleton and twin or greater
Birth type 3 Singleton, twin and triplet or

greater
Rearing dam status 4 ‘Natural’ mother, foster dam

and surrogate dam of two
breed types (1⁄2 Suffolk or 3⁄4
Suffolk)

Rearing dam age 4 2-year-old, 3-year-old,
4-year-old and 5-year-old
and older

From 1991 onwards about 30 ewes from the selection
line were mated by artificial insemination to rams
used as reference sires in the UK-wide co-operative
breeding scheme in the Suffolk breed (the Suffolk
Sire Reference Scheme Ltd, SSRS). This was to allow
a direct comparison of the genetic merit of the
selection and control lines, with flocks involved in
the SSRS (Simm and Murphy, 1996). 

 

Model selection and fitting

 

Preliminary analyses indicated that rearing type,
birth type, rearing dam status (‘natural’ mother,
foster dam or surrogate dam of two breed types),
and age of rearing dam all removed a significant
amount of variation in live weights. These were
included in the model as fixed effects. The main
contemporary grouping was year-week-sex, where
year-week identifies the actual time of recording. A
lamb would only be weighed once within a year-
week classification. Fixed effects included in the RR
model together with the number of levels for each
are given in Table 2. 

For RR models, weight as a function of age in days at
weighing (test day), was included as a fixed
regression of order 5 (quartic). This fixed regression
describes the ‘overall’ or ‘average’ growth curve of
all animals with data. Individual lambs were allowed
to deviate from this overall curve and so have
different coefficients of growth curves at both the
genetic and the permanent environmental levels. For
each lamb, deviations were modelled using
orthogonal polynomials of varying degrees but the
same degree of polynomial was fitted at both the
genetic and the permanent environmental levels.
Orthogonal (Legendre) polynomials were used in all
analyses, as they are easy to manipulate, have good
convergence properties and correlations between
coefficients are lower than between the coefficients of
ordinary polynomials. Note that permanent

environmental effects, which measure the
environmental differences between repeat records of
an individual, were also modelled with higher order
polynomials. This was done to avoid the assumption
that the environmental correlations between all pairs
of records were equal. 

The earliest weight recorded was at 2 days of age
and the latest at 159 days of age. Measurement error
variance may not be homogeneous over the test
period of 158 days and may vary depending on the
age of the lamb. To investigate this, the recording
period was arbitrarily split into six classes. The
subclasses were days 2 to 25, 26 to 50, 51 to 75, 76 to
100, 101 to 125 and 126 to 159. In order to avoid the
assumption of homogeneity of variance in each
interval, an attempt was made to model the residual
variances using a continuous function. Unfortunately
this analysis failed to converge. 

Dam effect was included in some models as an
additional independent random effect, fitted as a
constant (i.e.

 

 

 

a constant dam effect over the entire test
period) and as a polynomial of order 2 (linear), 3
(quadratic) and 5 (quartic). In order to account for
the pre-natal environment of the offspring, we fitted
the genetic dam in the model rather than the rearing
dam. No attempt was made to partition the maternal
variation into a genetic and an environmental
component. 

Analysis was by animal model restricted maximum
likelihood (REML) using the software package
‘DxMrr’ (Meyer, 1998). The average information (AI)
REML algorithm was used to maximize the
likelihood (Johnson and Thompson, 1995; Meyer,
1997), and the derivative-free Powell method was
employed to check that a global maximum had been
reached. 

 

Comparison of breeding values

 

At convergence of the RR analysis, we backsolved to
obtain solutions for the fixed and random effects in
the model. Using the solutions for the genetic
coefficients obtained for individual animals,
breeding values for live weight were predicted for all
time points along the growth trajectory. For
comparison purposes we chose to use predicted
breeding values for lambs at 56 (weaning) and 150
days of age. Note that dam and permanent
environmental effects for all time points can be
predicted in the same way using the dam and
permanent environmental coefficients. 

In a related study, the Gompertz function was used
to describe the growth of these same lambs (Lewis 

 

et
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Table 3 Comparison of log-likelihood values (LogL) from the
various models fitted, categorized by the order of the polynomial
used to model the additive genetic and permanent environmental
effects (K) and the number of measurement error (ME) classes (the
presence of a dam effect in the model and the order of polynomial
used to model this effect is also given)

Model K No. of ME Dam LogL†

1 3 1 No 0
2 4 1 No +3273
3 5 1 No +4550
4 5 1 Yes – constant +4581
5 5 1 Yes – order 2 +4589
6 5 6 No +6260
7 5 6 Yes – constant +6293
8 5 6 Yes – order 3 +6309
9 5 6 Yes – order 5 +6313

† Log-likelihoods are expressed relative to the log-likelihood
for model 1.

 

al.,

 

 2002) and to obtain their breeding values at 56
and 150 days of age. The function fitted was

 

W

 

t

 

 = (

 

Z

 

/

 

B

 

) · exp(– exp(

 

G

 

0

 

 – 

 

B

 

 · 

 

t

 

)) (1)

where 

 

W

 

t

 

 is live weight at age 

 

t

 

 days from birth, 

 

B

 

 is
a rate parameter, 

 

Z

 

 is the product 

 

A

 

 · 

 

B

 

 with 

 

A

 

 the
mature size, and 

 

G

 

0

 

 is a transformed initial weight
defined as 

 

G

 

0 

 

= ln(– ln(

 

W

 

0

 

/

 

A

 

)) with 

 

W

 

0

 

 the weight at

 

t

 

 = 0. Phenotypic measures of 

 

B

 

, 

 

Z

 

, and 

 

G

 

0 

 

were
obtained for individual animals based on their own
live weight data. 

These growth parameter values were taken as the
observed values and breeding values estimated by
fitting a weighted univariate animal model using an
AI REML algorithm (ASReml; Gilmour 

 

et al.,

 

 1995
and 1998). The model fitted was similar to that for
RR. The exceptions were that the week designation
no longer applied, and year and sex were fitted as
main effects only. The reciprocal of the square of the
standard error of the observation was used as the
weight to account for variation in the frequency of
live weight recording between animals. The breeding
values for 

 

B

 

, 

 

Z

 

 and 

 

G

 

0 

 

were added to the overall
phenotypic mean for these parameters and, using
equation (1), breeding values were predicted for live
weight at 56 and 150 days of age. 

The simple correlation and the Spearman rank
correlation were used to assess the similarity of the
breeding values predicted by RR and the Gompertz
equation (Genstat 5 Committee, 1998). 

 

Results

 

In total 9 models were fitted to the data, and a
description of each plus the maximum of the log-
likelihood function is given in Table 3. The models
considered differed in the order of the polynomial
used to model the additive genetic, permanent
environmental (between repeated records on an
animal) and dam effects, and the number of
measurement error classes included. For presentation
purposes the maximum of the log-likelihood values
are expressed as differences from the value obtained
from the basic model (model 1). All models have the
same fixed effects but different numbers of random
components and so goodness-of-fit can be tested
using a likelihood ratio test based on the 

 

χ

 

2 

 

–
distribution. 

The fit improved significantly as the order of the
polynomial used to model the additive genetic and
permanent environmental effect was increased from
3 to 5. There was also a benefit to increasing the
measurement error classes from 1 to 6. Modelling the
dam effect as a polynomial of order 3 resulted in a
significant improvement in fit of the model to the
data, but increasing the order of polynomial to 5 had
no significant effect. Further results are therefore
presented for where a fifth order polynomial was
used to model additive genetic and permanent
environmental effects, a third order polynomial was
used to model dam effects, and 6 measurement error
classes were fitted (model 8). 

Analyses using random regression models yield
estimates of covariance functions which can be
evaluated to provide estimates of genetic and
environmental (co)variance components for every
age (in days) on test. To simplify presentation, results
are given for selected days only. 

Table 4 gives phenotypic and genetic correlations
between weights on selected test days, chosen at
equal intervals throughout the test period. The
pattern of both phenotypic and genetic correlations is
the same in that correlations decrease as the distance
between the tests increases. In particular, the genetic
correlation between weight at start of test and weight
near completion of test is fairly low suggesting that
early weights are not under exactly the same genetic
control as weights taken at an older age. 

Permanent environmental correlations were slightly
higher than phenotypic correlations but followed the
same pattern. Between observations on adjacent days
the permanent environmental correlation was
approximately unity, and declined as the days apart
increased, falling to around 0·28 between live weight
at age 2 days and live weight at age 159 days.
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Table 4 Phenotypic (below diagonal) and genetic (above diagonal) correlations between live weights at selected days of age, estimated from
model 8

Day 15 30 45 60 75 90 105 120 135 150

15 — 0·81 0·61 0·47 0·40 0·38 0·39 0·40 0·41 0·39
30 0·88 — 0·93 0·82 0·74 0·68 0·64 0·62 0·61 0·61
45 0·80 0·93 — 0·97 0·92 0·87 0·82 0·77 0·75 0·75
60 0·72 0·85 0·94 — 0·99 0·95 0·90 0·86 0·83 0·84
75 0·66 0·79 0·91 0·95 — 0·99 0·96 0·92 0·89 0·90
90 0·63 0·74 0·86 0·92 0·96 — 0·99 0·97 0·94 0·94

105 0·61 0·70 0·82 0·88 0·94 0·97 — 0·99 0·98 0·97
120 0·60 0·67 0·77 0·84 0·89 0·94 0·97 — 1·00 0·99
135 0·58 0·65 0·73 0·79 0·85 0·90 0·94 0·97 — 0·99
150 0·55 0·62 0·71 0·76 0·81 0·86 0·90 0·93 0·96 —

Table 5 Heritabilities of live weight as estimated from models 6 (h2
6), 7 (h2

7), 8 (h2
8) and 9 (h2

9) and measurement error variances (ME; kg2)
on selected test days (estimates of measurement error variances were consistent over the four models†)

Days 15 30 45 60 75 90 105 120 135 150

h2
6 0·27 0·23 0·25 0·26 0·28 0·30 0·32 0·35 0·37 0·39

h2
7 0·15 0·18 0·20 0·23 0·25 0·28 0·31 0·34 0·36 0·38

h2
8 0·09 0·11 0·14 0·17 0·20 0·22 0·25 0·28 0·31 0·33

h2
9 0·10 0·12 0·15 0·17 0·20 0·23 0·25 0·28 0·31 0·33

ME 0·09 0·23 0·23 0·64 0·64 0·62 0·67 0·67 0·82 0·82

† Features of models described in Table 3.
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Figure 1 Genetic variance by day of age when fitting
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Between live weight at age 15 days and live weight
at age 150 days the permanent environmental
correlation was 0·64. 

Heritabilities estimated from models 6, 7, 8 and 9,
together with estimates of the measurement error
variance, are given in Table 5 for selected days of age.
Heritability estimates were highest from model 6, the
model with no dam effect, particularly for early
observations. For all models, heritability increased
over time. Model 7 included a constant dam effect
that reduced the heritability estimates for the first 40
days on test. After day 40, results for these two
models were very similar. Models 8 and 9 included a
quadratic and quartic dam effect respectively. Results
from the likelihood ratio tests had already indicated
no difference between these two models and this is
confirmed by the virtually identical heritability
estimates. Allowing the dam effect to vary across the
growth trajectory (model 8) as opposed to fitting a
constant dam effect (model 7) allowed more accurate
partitioning of the total variance into genetic, dam
and environmental variance. Excluding the dam
effect from the model (model 6) resulted in the
genetic variance being inflated and hence higher
heritability estimates. This can be seen clearly in
Figure 1, which plots the genetic variance by day on
test for models 6 and 8. 

Measurement error variances in Table 5 for selected
days on test are taken from model 8, but
measurement errors for all models with six
measurement error classes were very similar.
Measurement error variances were low, ranging from
0·09 kg

 

2

 

 to 0·82 kg

 

2

 

. Although these variances were,
in general, low, Table 3 shows that increasing the
number of classes from 1 to 6 resulted in a significant
improvement in fit. 
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Figure 2 Plot of eigenfunction (▲) and of the overall fixed
live weight curve (■) by day of age.
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Figure 3 Predicted daily breeding values by day of age for
eight rams with more than 20 progeny each.
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Eigenfunctions, estimated from the eigenvectors of
the genetic (co)variance matrix (Kirkpatrick 

 

et al.,

 

1990), provide an insight into the effects of selection
across the growth trajectory. The leading eigenvalue
of the genetic (co)variance matrix accounted for
around 95% of the trace of the matrix. The
corresponding eigenfunction accounts therefore for
about 95% of the additive genetic variation and was
positive for all ages (Figure 2), showing that positive
selection at any point on the trajectory would result
in an increase at all other points. A straight-line
function parallel to the age axis would indicate that
selection at any age results in an equal response
across all ages. Our function instead increases with
increasing age, which means selected animals would
reach mature weight faster and thus grow more
quickly at any age. This implies genetic selection for
growth rate would be successful. The rate of
response to that selection depends on the relative
magnitude of the leading eigenvalue of the genetic
(co)variance matrix compared with the leading
eigenvalue of the phenotypic (co)variance matrix
(conceptually similar to a heritability). That ratio is
0·43 indicating that the response to selection would

be rapid. In contrast, response to selection based on
the function associated with the 2nd, 3rd, 4th and 5th
eigenvalues (for a fifth order polynomial as with
model 8) would be both small and slow as each
accounts for so little of the additive genetic variation. 

Taking results from model 8, Figure 2 also shows the
overall fixed curve. This is the general curve,
common to all lambs with records in the data,
whereas the random regressions allow individuals to
vary from this curve at both the genetic and the
permanent environmental level. Deviations from this
curve at the genetic level provide the breeding
values. Visual appraisal of Figure 2 suggests that
modelling the overall curve with a polynomial of
reduced order may be sufficient. 

Solutions from model 8 for the curve coefficients for
all animals in the analysis were used to calculate
predicted daily breeding values (BVs), and these are
plotted in Figure 3 for eight randomly chosen rams
with more than 20 progeny each. The figure
illustrates that the growth curves vary between the
rams, and this variation is not limited to differences
in height of the curve. 

Figure 4 presents the mean BVs by line within year.
Over time, the gap in BVs between the selection and
control line widened. In part, this was because of an
increase in BVs in selection line animals but also due
to deterioration in BVs in the control line. The latter
was not necessarily expected. The control line was
maintained at an average index score across years
and thus it could be presumed growth rate would
remain unchanged. However, live weight was only
one criterion in that index. When compared over
contemporaneous years (1991 to 1994), the reference
sire and selection line lambs were of similar genetic
merit.
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Table 6 Simple (below diagonal) and Spearman rank (above
diagonal) correlation coefficients for mean breeding values at day
56 (BV-56) and at day 150 (BV-150) among sire families predicted
by random regression (RR) or a Gompertz function (GF)†

BV-56 BV-56 BV-150 BV-150
Measure RR GF RR GF

BV-56, RR — 0·774 0·904 0·750
BV-56, GF 0·808 — 0·780 0·896
BV-150, RR 0·913 0·826 — 0·876
BV-150, GF 0·774 0·920 0·907 —

† Based on 44 sire families with 20 or more progeny. All
coefficients differ from zero (P < 0·001).

Forty-four rams had 20 progeny or more. For these
half-sib sire families, the correlation among predicted
BVs at day 56 and day 150 from the RR analyses and
from fitting a Gompertz function (Lewis 

 

et al.,

 

 2002)
were calculated (Table 6). The simple and rank
correlation coefficients between the prediction
methods at both 56 and 150 day were moderate to
high (0·77 to 0·91). Particularly at the end of test (150
days), similar individuals would be chosen
irrespective of whether the random regression or
Gompertz methodology was used to predict
breeding value. 

 

Discussion

 

This investigation has indicated that live weight
early in a lamb’s life is a different trait to live weight
later in life (Tables 4 and 5) and hence to some extent
is under different genetic control. RR methodology
allows different genetic variances at each point on
the trajectory but, unlike multivariate analysis, is a
smoothed analysis which takes account of the
continuity of the trajectory. Figure 3 demonstrates
that there is genetic variation in the growth curves of
individual animals and an evaluation model which
included only fixed regressions of weight on age
would result in less accurate evaluations of a number
of animals. RR models allow differences between
animals to be accounted for and hence are a useful
tool in the evaluation of growth curves. 

Researchers have used both linear (Portolano and
Todaro, 1997) and non-linear (Detorre 

 

et al.,

 

 1992;
Lewis 

 

et al.,

 

 2002) representations of the growth
curve, but the latter are difficult to employ in
variance component estimation and genetic
evaluation. We used simple orthogonal polynomials
to model both the overall curve and deviations from
this curve at both the genetic, permanent
environmental and maternal environmental levels. It
may be possible to improve the fit of the model by
using a mixture of parametric and semi-parametric

curves. Verbyla 

 

et al.

 

 (1999) suggested modelling
growth curves with smoothing splines and White 

 

et
al.

 

 (1999) used cubic smoothing splines to model
lactation curves. Note that the overall curve may
vary between males and females. Nesting the fixed
regression coefficients within the sex of the animal
could result in a lower order of polynomial being
sufficient to model deviations from the overall curve. 

Currently only linear (including polynomial) models
can be fitted pragmatically in RR analyses. This is
limiting since the coefficients of such curves often do
not have a clear biological interpretation and 

 

a priori

 

beliefs or hypotheses about the appropriate form of a
descriptive function, such as the non-linear
Gompertz equation, cannot be accommodated. An
alternative could be to transform non-linear
functions to their linear analogue. With the
Gompertz form this involves two log
transformations. When attempting to fit such a
model, defining starting values and convergence
criteria has proven problematic. Daily breeding
values can, however, be expressed in a variety of
ways of use to the farmer, and predictions of genetic
merit with biological interpretation could be derived
either from the daily breeding values or from each
animal’s (genetic) curve coefficients. For example, we
could re-express the genetic curve coefficients in a
way that is consistent with, say, mature size or
relative growth rate, and the coefficients themselves
would then be meaningful to breeders and useful as
criteria for selection. 

Despite these potential limitations, random
regression has ‘better’ properties for genetic
evaluation. Solutions for genetic and environmental
effects are obtained simultaneously for all animals
allowing family information to be used in the
estimation. This was not the case in the two step
process used in the Gompertz approach.
Environmental effects peculiar to the time of
recording also can be accounted for and differences
in the frequency of recording between animals do
not pose problems. Clearly the RR methodology
offers a more powerful and flexible means than the
Gompertz approach to evaluate repeated live weight
information to determine genetic merit. 

When comparing breeding values for 56 and 150
days of age predicted by RR and by the Gompertz
approach, the ranking of animals was similar. With
both methods, if breeding values predicted at day
150 were used as the selection criterion effectively
the same individuals would be chosen. What
remains unclear is which technique more accurately
reflects the true breeding values for the coefficients
or growth parameters evaluated, or the breeding
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values predicted from these at specific ages.
Undoubtedly addressing this issue requires
stochastic simulation where true breeding values are
known. A fundamental difficulty would be the way
growth was modelled at the genetic level in such
simulations. If modelled as a sigmoidal curve, for
instance, one would expect the Gompertz approach
to be better than it may be if growth was instead
modelled as an asymptotic curve (e.g.

 

 

 

Brody growth
equation). Still, such an investigation is necessary to
properly compare these and other approaches for
assessing genetic merit for growth. 
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