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ABSTRACT
Cloud Computing markets arise as an efficient way to allo-
cate resources for the execution of tasks and services within
a set of geographically dispersed providers from different or-
ganisations. Client applications and service providers meet
in a market and negotiate for the sales of services by means
of the signature of a Service Level Agreement. Depending
on the status of the demand, the provider is able to offer
higher or lower prices for maximising its profit. It is diffi-
cult to establish a profitable pricing function in competitive
markets, because there are several factors that can influ-
ence in the prices. This paper deals with the problem of
offering competitive prices in the negotiation of services in
Cloud Computing markets. A Genetic Algorithms approach
is proposed, in which a naive pricing function evolves to a
pricing function that offers suitable prices in function of the
system status. Its results are compared with other pricing
strategies, demonstrating its validity.
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1. INTRODUCTION
At recent years, the big mainframes paradigm in which

users own their computing resources [1] is being progressively
transiting to an utility-driven paradigm, in which users do
not own resources and pay for the usage of remote resources
[17]. Cloud Computing [5] is the most promising current
implementation of Utility Computing in the business world,
because it provides some key features over classic utility com-
puting, such as elasticity to allow clients dynamically scale-
up and scale-down the resources in execution time, or the
possibility of customizing completely the software environ-
ment by acquiring administrator rights without putting in
risk the whole system.

Since Clouds are heterogeneous, elastic and scalable, large
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systems are too complex to be managed centrally. Market-
based resource management is proposed to deal with the
complexity because the possibility of doing business will mo-
tivate Service Providers to offer their resources in the system
and give a Quality of Service (QoS) according to their real
capacity. In addition, market mechanisms obligate the users
to adjust their reservations to their real space and time re-
quirements. Another advantage is that it is relatively easy
to implement in a decentralised architecture, whose partic-
ipants enter in the Market looking for the satisfaction of
their own necessities, and they do not need to know about
the global status of the system to maximise their utility.
Brokers that represent Service Providers or Clients en-

ter in a Cloud Computing market for selling or buying ser-
vices or resources. When a Client finds its requirements in
the market, a negotiation process is started to establish the
terms of the contract. If both parties reach an agreement,
the terms of the contract are specified in a Service Level
Agreement (SLA) and the Client can use the resource. Dur-
ing the usage of the resources, the correct fulfilment of the
terms of the SLA is watched by a neutral entity, and pe-
nalises the buyers or the sellers when they violate the SLA.
Negotiating Brokers must be provided with business models
and intelligent behavior, so they are able to take the best
decisions for maximising the utility of Clients or Providers
in the market.
From the wide bunch of economic knowledge and behavior

of Market Brokers, this paper concretely deals with finding
the more suitable offer prices in each market status: Cloud
providers want to sell their services at high prices for max-
imising their benefit; however, clients have possibility of elec-
tion, and will choose the cheapest provider for the same QoS.
The freedom of election of the client depends on the status
of the demand [12]: providers can raise their prices when
the demand is high, and they must decrease prices when the
demand is lower than the offer. The actual price that the
client pays for the service is named Exercise Price.
Previous work from the authors demonstrated that pro-

viders can acquire high benefits by pricing their services
in function of the demand [16]. This work assumes that
markets are stable and always behave rationally, according
to some pre-defined models. These assumptions can lead
providers to underperform economically in some special sce-
narios, such as very low or very high offer/demand ratios.
The proposed model considers some parameters such as de-
mand, work load of the resources, or predictions about fu-
ture load. However, there are some other parameters that
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can influence the prices, which can be difficult or impossible
to include in the models because of their random nature.

For dealing with this uncertainty problem, this paper pro-
poses Genetic Algorithms [14] as a model for analysing finan-
cial markets [7]. The basic idea of Genetic Algorithms is to
have an extensive population of generic pricing models (chro-
mosomes) whose parameters are stored as genes. At the ini-
tial moment, the genes are random, and some chromosomes
are better than others (this is, their pricing models provide
prices that are more beneficial for providers). The best chro-
mosomes are selected in base to their proposed prices, and
they are reproduced and mutated by simulating the natu-
ral evolution process. After some iterations of this process,
the population of chromosomes will tend to provide prices
that maximise the benefit of the provider. As in nature, if
the environment changes, the population will self-evolve to
become well adapted.

This paper is a step forward in the definition of pricing
strategies of Cloud Providers. Genetic Algorithms are used
because they are simple to implement, and enough dynamic
for modifying themselves (in comparison to previous mod-
els from the authors, whose pricing results were dynamic,
but the models were static). This dynamicity will allow
the model to self-adapt to changes in the market, and keep
providers offering beneficial prices in the long term. This
paper proposes a new Genetic Pricing Model that considers
the relative simplicity (compared to real financial markets)
of Cloud Computing Markets and evaluates it experimen-
tally, by comparing it with pricing models used in previous
works from the authors.

The rest of the paper is organised as follows: after the
related work of Section 2, Section 3 describes in detail the
model and algorithms used in the experiments. Section 4
starts with a concrete description of the experimentation
framework and the values used for the parameters of the
model, and ends with a visual description of the obtained
results, compared with several pricing models. At the end,
the conclusions of the work and the future trends in the
related research are enumerated.

2. RELATED WORK
Computer models have been demonstrated more efficient

than humans when making decisions [13] in many market
scenarios, especially when a high volume of data must be
considered.

Previous work from the authors [16] introduces policies for
pricing in Cloud Computing markets. We demonstrated that
providers that adapt their prices in function of the compe-
tence, time slot and SLA terms can achieve better Business
Objectives, such as Revenue Maximisation. However, the
proposed model is still too rigid, and assumes that other par-
ticipants in the market always behave rationally. In addition
to the flexibility in pricing, this paper also adds flexibility to
the pricing functions, by allowing their self-modification for
a better adaptation to changing market environments.

Genetic Algorithms are a widely used tool for the analy-
sis of financial markets due to their simplicity and capacity
of adaptation to chaotic environments [6, 7]. However, the
major usage of Genetic Algorithms is the forecasting. Fore-
casting is a valuable tool for the sales of futures in Cloud
Computing, for example batch jobs whose sales can be ne-

gotiated some days before their execution. However, values
of future predictions are not so useful when selling Web Ser-
vices, whose negotiation and execution must be performed
in real time according to some existing Utility Computing
markets [3]. This paper intends to adapt pricing models to
Web Services sales in Cloud Computing.
Cliff [9] explored a continuous space of auction mecha-

nisms via Genetic Algorithms, with artificial trading agents
operating in evolved markets. His work does not rely on the
modelling of market agents but in the market itself, by using
Genetic Algorithms to tune market dynamics. It is impor-
tant to emphasize that agents and market are more stable
against market shocks, by evolving to suitable behaviors.
Fayek et al. [11] propose the usage of Genetic Algorithms

for evaluating the validity of a set of offers by calculating
their utility. Its application of Genetic Algorithms when
modelling the behavior of agents is worth considering. This
paper intends to be a step forward, by adding pricing models
to the behavior of the agents.
Chidambaran et al. [8] study the effectiveness of Ge-

netic Algorithms in Option Pricings, but our scenario is
not strictly an Option Sales Scenario [10]. Their solution
is based in the Black-Scholes algorithm [2], in which the in-
put is not necessarily available in Cloud Computing markets
(e.g. stock prices, risk-free rates, volatility, etc). The Ge-
netic Model proposed in this paper works with any available
set of parameters that could influence in the price of Service.

3. APPLYING GENETIC MODELS TO PRI-
CING

Finding a good pricing model through Genetic Algorithms
implies solving the next three issues:
Define a chromosome. In this paper, the chromosome

is a naive function, whose parameters are some relevant data
that could influence in the price, as described in Section
4.1. The relations and weights of these parameters are de-
termined by the genes of the chromosome, which are at least
partially different between the chromosomes. This function
is called pricing function, because its evaluation corre-
sponds with the price that a provider will ask for the sale of
a Cloud service. The result of the pricing function is named
output of the chromosome.
Evaluating the chromosomes. The chromosomes in a

population must be evaluated. That means that their output
must be compared to a reference value that is given by
a teaching entity or by the actual value when trying to do
predictions. In this paper, the reference value is the Exercise
Price.
Selection and reproduction of chromosomes. The

chromosomes with lowest results in the evaluation are dis-
carded from the population. Pairs of the best adapted chro-
mosomes are selected to be reproduced by mixing their genomes,
so the population is replenished.
The rest of this section describes how the three enumer-

ated issues have been faced up.

3.1 Definition of chromosomes
Let

−→
P = {p1, ...pn} be a set of n parameters that contain

some relevant information that could influence in the price
of a requested task (for example, the amount of demand, the
load of the system, the hour of day, the amount of resources,
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etc.). It must be emphasized that some of these parameters
could influence, but actually do not necessarily do. Section
4.1 describes deeply the parameters used in the experiments
of this paper.

Let
−→
G = {g1, ...gm} be a set of m = 2n2+2n+1 genes that

vary across different chromosomes and indicate the weights
and mathematical relations between the parameters. Equa-
tion 1 shows the pricing function expressed in each chromo-

some by
−→
P and

−→
G .

Pricing(
−→
P ,

−→
G) =

∑n
i=0 gi

∏n
j=0 p

gi+j+1

j∑n2+n
i=n2 gi+n

∏n
j=0 p

gi+j+1

j

+ gm (1)

Assuming that the optimum pricing function is unknown
because it can change as the market evolves, Equation 1
describes a simple and generic function that is able to evolve
to specific approximation functions by assigning a proper

value set for
−→
G . For example, Equation 1 can be transformed

into a linear function such as p0
3 + 3p2 + 6, a division of

linear functions such as p1
2+0.5p4

p0
1/3+3p2−1 + 0.3, or other types of

nonlinear functions such as (p0p1)
4 + 2p2

6 + 4p2p3 + 3.2

3.2 Evaluation of chromosomes
The reference value (RefV al) is the lowest price that the

buyer has chosen to pay in the last market competition, after
the sale is performed. That evaluation requires of the exis-
tence of a Market Information System [4] that makes visible
some pricing information to the market participants.

The scoring of a chromosome at time t is |Pricingt(
−→
P ,

−→
G)−

RefV alt|. The closest to 0 is the score the best price has
proposed the chromosome at instant t. However, this score
is not enough to select or discard chromosomes from a popu-
lation, since it does not have any temporal perspective: the
chromosome that is proposing the best prices during the last
negotiations could be discarded by only returning one inex-
act price at a given moment. To deal with this issue, the
score at time t is weighted by a memory factor M ∈ [0, 1]
with the past scores as shown in Equation 2.

Scoret = (1−M)· |Pricingt(
−→
P ,

−→
G)−RefV alt|+M ·Scoret−1

(2)
The higher the memory rate M is, the higher importance

is given to past price offers. The lower M is, the higher
importance is given to the last offer.

3.3 Selection and reproduction of chromosomes
After all the chromosomes are evaluated, the population is

sorted in function of the score of the chromosomes. A fixed
percentage of the last chromosomes in the sorted popula-
tion is discarded. At last, the missing population is restored
with descendants of the most effective chromosomes, which
will inherit most characteristics of their parents with small
variations due to possible mutations. The chromosomes that
will be crossed for having offspring are chosen successively
from the most effective to the less effective ones, until the
population is restored again.

When two chromosomes are having offspring, a crossover
index between 0 and the length of the genome is chosen
randomly, and the genomes of the two parents are divided

Figure 1: Process of crossing two chromosomes and
mix their genome in their offspring. Genes with
black background represent random mutations

in this index. The first division of the genome of parent 1
and the last division of the genome of parent 2 are copied in
the genome of descendant 1. The first division of the genome
of parent 2 and the last division of the genome of parent 1
are copied in the genome of descendant 2 (see Figure 1).
During the process of crossing and copying genomes, some

random mutations can occur, with very low probability: a
gene is multiplied by a random number with a Normal dis-
tribution, whose mean value and standard deviation are 1.

4. EVALUATION OF THE MODEL
Four Cloud providers are competing in a services market

whose demands are variable across the day (few demand in
the early morning, peaks of demand in the evening). Each
of the four providers has a different pricing strategy:
Fixed Pricing. Offered prices are the 5% between the

minimum price that the provider can offer in order to not
lose money (Reservation Price of the Seller, RPseller) and the
maximum price that the client can pay in order to get benefit
by buying the service (RPbuyer). Instead of 5%, any other
percentage could be chosen, but previous work demonstrated
that 5% gets good results in most of the demand scenarios
[16]. Although the seller knows its own RP, the buyer does
not communicate its RP to the provider, so it only can be
estimated in function to the historic prices and other market
data. Equation 3 shows the used pricing formula.

PriceFixed = RPseller + (RPbuyer −RPseller) · 0.05 (3)

Random Pricing. Prices are offered randomly, in an
uniform distribution, between RPbuyer and RPseller. This is
not a real pricing model, but it is included in the experiments
to be compared with the genetic pricing models and show
that they do not behave randomly, as sometimes apparently
do.
Utility Maximisation Price. Previous work [16] demon-

strated the advantages of using an utility function whose
maximisation leads to a beneficial offer price (see Equation
4). up(S) is a sub-utility function that tends to 0 when the
proposed price is near the Reservation Price of the Seller and
tends to 1 when the proposed price is near the Reservation
Price of the Buyer. a(t) is the aggressiveness factor, that
tends to 0 when the resources are idle and to 1 when the re-
sources are in their maximum workload capacity. Previous
work [16] contains a detailed description of Equation 4, and
explains its idiosyncrasy.

urv(S) = 0.5 +
sin

(
π
2

(
2up(S) +

(
1− a(t)15

)))
2

(4)

Genetic Pricing. Applies the genetic pricing algorithm
explained in Section 3 with the parameters and constants
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described in Section 4.1. The offer price is the output of
the first chromosome in the list, which is ordered by the
calculated scores as explained in Sections 3.2 and 3.3. When
deciding the size of the population of chromosomes and the
mutations rate, it must be considered the advantages and
inconveniences of the choice. Providers with a large number
of chromosomes and a small mutations rate are pretty stable,
but they are less capable to adapt quickly to changes in
the environment. On the other hand, providers with less
chromosomes and more mutations converge quicker to a good
solution, but they are less stable, and small changes in the
environment could make them bouncing to bad price offers.

4.1 Simulation environment
The simulation does not simulate a complete market en-

vironment, but mainly how providers behave under different
demand scenarios. In the simulation, clients send requests
for buying cloud resources to a simple market. These re-
quests contains information about the number of resources
that the client is willing to use, the Quality of Service and the
time slot in which the client will execute the tasks. The mar-
ket forwards the requests to the providers, which will return
their proposed price according to the information contained
in the requests. Finally, the client buys the resources of the
provider that returns the lowest price.

Each request includes information about the number of
CPUs required for the deployment of the task and the range
of QoS, which can be Gold, Silver, or Bronze. The provider
will make bigger efforts for fulfilling SLAs whose QoS range is
Gold. In case of system failure, Bronze SLAs will be violated
firstly. If this is not enough, Silver SLAs will be violated then
[15]. In compensation, the Reservation Price in Gold tasks
is 25% higher than in Silver tasks and 66% than in Bronze
tasks.

The frequency of requests is variable: from 2 tasks/hour
(off-peak hours) to a maximum (peak hour) that is changed
across the multiple simulations. The value of this maximum
varies from 2 to 32 tasks per hour. Each task can require
randomly from 1 to 4 CPUs, and only providers that have
free resources can accept an incoming task and offer a price.
Each provider has 16 CPUs.

The set of parameters, chosen by their influence in the

final price, is
−→
P = {Q,C, a(t)}, where Q is the QoS category

(Bronze = 1, Silver = 2 and Gold = 3), C is the number
of CPUs, and a(t) is the aggressiveness factor of Equation
4. The memory rate M (Equation 2) is 0.9. This value
has been chosen because it allows chromosomes to ascend
in the ordered population, and avoids that a chromosome
falls down if it reports only a bad offer price. Some previous
tests revealed that M does not have to be exactly 0.9: it also
could have similar values such as 0.8 or 0.95. Small values,
such as 0.5, make the system too unstable and the provider
cannot converge to a good solution.

Regarding the flexibility of the genetic algorithm, two types
of genetic providers have been tested: a flexible one, with 200
chromosomes and a mutation rate of 6%, and a rigid provider
with 500 chromosomes and a mutation rate of 1%. Flexible
provider means that it can converge quickly to a good solu-
tion, but it is unstable and it forgets past experiences. Since
each chromosome has 25 genes (2n2 + 2n + 1 when n = 3,

according to the number of elements of
−→
P ), 200 chromo-

Figure 2: Comparison of revenues between four
types of pricing. A provider with a flexible genome
(200 chromosomes and 6% of mutations) is used.

somes in a same provider is enough diverse and it introduces
a small probability of redundancy. The quick change of pop-
ulation is strengthened by setting the mutations rate to 6%:
in average, each new chromosome will have 1.5 mutations.
The rigid provider increases its number of chromosomes by

150% to add possibility of redundancy and, with a mutation
rate of 1%, only a mutation will occur for each 4 descen-
dants. As the experiments show, those values will make the
population of chromosomes more stable and uniform, and
the provider will converge slowly to offer competitive prices,
but it is more stable against noises.
For each chromosome evaluation and selection in both

rigid and flexible providers, the lowest 50% of the ordered
population is discarded and replenished with the descen-
dants of the other 50% of population. When populations
are large enough, this replacement proportion value could
be also 40%-60%, 60%-40%, or any other equilibrated rate
that guarantees that the best chromosomes during the last
iterations are kept.
The chosen constant values of the experiments are not im-

portant from a qualitative point of view, because the goal
of this research is to observe how variations can affect pos-
itively or negatively on results. Because the experimental
environment is simulated, the goal is to show how, for ex-
ample, adding rigidness to the providers leads to more sta-
bility in the results, but less capacity of adaptation. Future
work will try to find the best constant values for real market
environments and evaluate their quantitative data.
Several simulation sets, with same environments but dif-

ferent maximum tasks per hour, have been repeated and the
comparisons of revenues in providers have been commented.
5 weeks of sales in a competing market have been simulated,
but the first week is not counted for the statistics, because
it is considered a prudential training period for the genetic
providers.
Results are evaluated in terms of revenue: the client sends

its task to the provider that offers the best price, and the
provider earns the amount of money that is agreed between
the two parts.

4.2 Comparing genetic and utility-based dy-
namic pricings

Figure 2 shows the revenues of the four providers described
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Figure 3: Comparison of revenues between four
types of pricing. A provider with a rigid genome
(500 chromosomes and 1% of mutations) is used.

in Section 4. Random-pricing provider is the most inefficient
of all the providers, excepting when the market is extremely
overloaded and any price below the Reservation Price of the
Buyer is accepted by the clients. The revenue of fixed-pricing
provider is increased linearly with the number of maximum
tasks per hour: at more tasks with fixed price, the same pro-
portion of revenue. The random nature of genetic algorithms
introduces some noises in the results, such as the small per-
turbation in the revenue of providers when the maximum
tasks are 12 per hour.

Although utility-maximisation provider is a good solution
compared with fixed pricing, Figure 2 shows that the genetic
provider gets the highest revenue in most of the scenarios.
When the maximum number of tasks is high, both solutions
are similar. Genetic pricing showed its effectiveness mainly
in equilibrium markets, which is the status that markets tend
to. Both right and left extremes of the graph (respectively
demand and offer excess) are unrealistic scenarios.

4.3 Comparing genetic providers by flexibility
Figure 3 shows how rigid genomes do not introduce so

much perturbation as flexible genomes, but it does not mean
that they are more suitable in terms of revenue maximisa-
tion. To check which flexibility grade is more suitable in
Cloud computing markets, the same experiment is repeated
with a rigid and a flexible genetic provider competing in the
same market. Figure 4 shows the results of the experiment,
and some relevant information can be extracted from it:

• Two genetic providers add instability to the results. It
is because the genetic algorithm proposed in this mar-
ket imitates the best pricing in each moment. Fixed
and utility-based pricings are predictable, if the genetic
provider takes their pricing attempts as input it will be
much more stable than if it takes the output of another
genetic (and unpredictable) provider.

• Within this instability scenario, a flexible genetic pro-
vider earns more money than the rigid one, since it can
converge quicker to best solutions.

To illustrate this last statement, the accuracy of pricing
and speed of convergence of both flexible and rigid genetic
providers are measured. Figure 5 shows the difference of the

Figure 4: Comparison of revenues when genetic
providers with both rigid and flexible genomes are
competing.

offered prices and the Exercise Price, and speed of conver-
gence of both rigid (upper graph) and flexible (lower graph)
genetic providers. If the difference is 0, it means that the
price offered by the genetic provider is actually the Exercise
Price.
Both figures show the influence of noises in the genetic

providers, which made them spontaneously evolve to offer
prices far from the Exercise Price. However, a provider with
a flexible genome is more stable against noises. The left
part of the graph in Figure 5 also shows that the rigid ge-
netic provider takes much more time in getting trained to be
competitive in its prices.

5. CONCLUSIONS AND FUTURE WORK
This paper has shown the effectiveness and capacity of

adaptation of genetic algorithms for pricing in Cloud Com-
puting Markets. In a competitive environment, where provi-
ders cannot know which strategy other providers will follow,
genetic providers earn up to the 100% more than utility-
based dynamic pricing providers, and up to 1000% more
than a typical fixed pricing provider.
The proposed genetic algorithm is easy to implement and

it is flexible enough to be used with a huge set of param-

eters
−→
P , even when there is not evidence that some of the

parameters have a real influence in the price: the evolution-
ary selection process will discard all the invalid parameters,
so the proposed model can be used to make decisions in
complex, even chaotic, environments.
In unstable/unpredictable markets, the experiments clearly

showed that a provider with a flexible genome is more stable
against noises and rough changes, and evolve to competitive
pricings quicker than a provider with a rigid genome.
This work is a first proof of concept of genetic pricing for

Cloud Computing Markets whose results have been validated
by market simulations. A future line of work is testing the
proposed model in real Cloud computing market environ-
ments. Another important line of work is creating a meta-
genome that is able to dynamically tune up some data about
the chromosomes and the population, such as the number of
chromosomes, the mutation rate, the memory rate of the
scoring process, etc. At last, new ways of representing the
generic pricing function must be explored, such as the defin-
ing more complex the relations between the parameters of
the function of the chromosome, such as logarithms, sinus,
derivatives, etc.
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Figure 5: Difference between offer price and Exer-
cise Price, and speed of convergence, of a provider
with a rigid genetic algorithm (upper graph) and
a provider with a flexible genetic algorithm (lower
graph)
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