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Abstract

Most candidate drugs currently fail later-stage clinical trials, largely due to poor prediction of 

efficacy on early target selection1. Drug targets with genetic support are more likely to be 

therapeutically valid2,3. The translational use of genome-scale data such as from genome-wide 

association studies (GWAS) for drug target discovery in complex diseases remains challenging4–6. 

Here we show that integration of functional genomic and immune-related annotations together 

with knowledge of network connectivity maximizes the informativeness of genetics for target 

validation, defining the target prioritization landscape for 30 immune traits at the gene and 

pathway level. We demonstrate how our genetics-led drug target prioritization approach (“Priority 

index”, Pi) successfully identifies current therapeutics, predicts activity in high-throughput cellular 

screens (including L1000, CRISPR, mutagenesis and patient-derived cell assays), enables 

prioritization of under-explored targets, and determines target-level trait relationships. Pi is an 

open access, scalable system accelerating early-stage drug target selection for immune-mediated 

disease.

We developed the Pi pipeline (Fig. 1a), taking as inputs GWAS variants for specific immune 

traits. These variants are predominantly regulatory, may act at a distance and are often 

context-specific7,8. We used genomic predictors to identify/score the likely genes 

responsible for GWAS, denoted seed genes, based on: (i) genomic proximity to a disease-

associated SNP (nGene score), accounting for linkage disequilibrium and genomic 

organization (Supplementary Fig. 1a,b); (ii) physical interaction evidenced by chromatin 

conformation (cGene) in immune cells, as we observed genes encoding clinical proof-of-

concept targets (phase 2 concluded, moving into phase 3 and above) and targets of approved 

drugs were enriched among genes showing evidence of physical interaction with GWAS 

variants (Supplementary Fig. 1c,d); and (iii) modulation of gene expression (eGene) 

evidenced by expression quantitative trait loci (eQTL) in immune cells, as we found 

enrichment of eGenes for drug targets at different phases of development where such eQTL 

intersect with GWAS variants (Supplementary Fig. 1c). Notably, eGenes were identified/

scored through GWAS-eQTL colocalization analysis9, enabling directionality and magnitude 

of effect integration into Pi output (Supplementary Fig. 1e). We additionally prepared 
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annotation predictors to score genes using ontologies: immune function (fGene), immune 

phenotype (pGene) and rare genetic diseases related to immunity (dGene), restricting use of 

annotation predictors to seed genes defined by genomic predictors to minimize circular 

reasoning. Since we found that interacting neighbors rather than GWAS-reported genes tend 

to be known drug targets (Supplementary Fig. 2a), we iteratively explored network 

connectivity to identify non-seed genes that lack genetic evidence but are highly ranked 

based on network connectivity, and also to enhance scoring for seed genes with evidence of 

connectivity. We then constructed a gene-predictor matrix combining genomic and 

annotation predictors to enable a genetics-led, network-based “discovery mode” 

prioritization of ~15,000 genes for a given trait.

We first applied Pi to rheumatoid arthritis (RA), using curated GWAS summary data to 

generate gene-level target prioritization (Supplementary Data Set 1). The most highly ranked 

genes included ICAM1 (role in endothelial adhesion), TRAF1 (TNF receptor associated), 

STAT4 (immune regulation), PTPN2 (inflammation), PTPN22 (T cell activation), CD40 and 

BLK (B cell function), and IRF8 (bone metabolism). Despite no direct genetic evidence, 

TNF, target for the gold standard of care (anti-TNF biologics), was highly ranked due to 

interaction partners (Fig. 1b). Pathways most significantly enriched for highly prioritized 

targets involved T cell antigen-receptor signal transduction, interferon γ, PD-1, interleukin 6 

(IL6), IL20 and TNFR1 signalling (Fig. 1c). We then determined crosstalk between 

pathways, maximizing numbers of highly prioritized interconnecting genes (Supplementary 

Fig. 2b). This identified potential nodal points for intervention including JAK1, JAK3 and 

TYK2 (targets of tofacitinib citrate), IL2, IL6, STAT1, STAT4, STAT5A, RELA, EGFR, 

TRAF2 and PTPN2 (Fig. 1d; likelihood of observing such crosstalk P = 2.2 × 10-79 on 

permutation testing). PTPN2 illustrates how directionality and magnitude of effect can be 

estimated where eGenes are identified. The increased disease risk associated with reduced 

expression in monocytes and CD8+ T cells is consistent with its anti-inflammatory role in 

myeloid cells and CD8+ Treg function10,11 and arguments for PTPN2 inhibition for cancer 

immunotherapy12. By contrast, increased CD40 expression was associated with the risk 

allele, consistent with high expression in active disease13 and current interest in blockade to 

reduce amplification of the T cell response in RA14. Evidence for directionality from eGenes 

is caveated by current restricted cell/tissue/disease state availability of eQTL and the 

complexity of relating changes in allele-dependent gene expression to phenotype (dependent 

for example on network and temporal relationships, and promotion versus protection 

mechanisms15,16). A web interface enables interrogation and visualization of gene- and 

pathway-level Pi prioritization ratings, predictors and interaction data supporting each target, 

and druggability (Supplementary Figs. 3 and 4).

We next aimed to establish evidence supporting Pi prioritization for RA and potential utility. 

We found that current clinical proof-of-concept targets for RA tend to be highly prioritized. 

Target set enrichment analysis (TSEA) revealed 75% (39/52) of such targets within the core 

subset of the Pi prioritized gene list accounting for the enrichment signal (the ‘leading 

edge’) (FDR = 1.1 × 10-4; Fig. 2a); they included all current approved biologic disease-

modifying drugs, corticosteroids (NR3C1) and non-steroidal anti-inflammatory drugs 

(PTGS1 and PTGS2). When considering the top 1% prioritized genes, we also found 

significant enrichment for clinical proof-of-concept targets (odds ratio (OR) = 13.0; FDR = 
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5.6 × 10-6) and for approved drugs (OR = 24.4; FDR = 3.4 × 10-6) (Fig. 2b). Moreover, Pi 

ranking in RA specifically recovers approved therapeutics for RA but not those approved for 

other immune traits (Supplementary Fig. 5a). We found that incorporating knowledge of 

network connectivity increases enrichment for known therapeutic targets (Fig. 2b) and Pi 

outperforms other genetics-based methods (Fig. 2c, Supplementary Fig. 5b-d and 

Supplementary Data Set 2). Highly prioritized targets were over-represented among genes 

differentially expressed in RA (Supplementary Fig. 5e) and significantly enriched for 

druggable pockets and perturbability, supporting tractability, with drugs approved for other 

diseases providing repurposing opportunities and/or supporting potential efficacy (Fig. 2d, 

Supplementary Fig. 5f-h and Supplementary Data Set 3).

Among the top 1% prioritized targets for RA (excluding targets of approved drugs), we 

found significant enrichment for mouse arthritis phenotypes, supporting therapeutic potential 

(P = 6.8 × 10-7), including validated models of autoimmune arthritis (prioritized targets 

IL6ST17 and ZAP7018) and knockout mice with altered arthritis phenotypes (HIF1A19, 

IFNGR120, IL621, IRF122, MYD8823, SOCS324 and TLR425) (Fig. 2e). Finally, we derived 

human experimental evidence using L1000 expression data for a compound screen in 

peripheral blood mononuclear cells (PBMCs). We defined disease-relevant activity based on 

similarity between an RA expression signature and compound transcriptional profiles26 

(Supplementary Fig. 6a), and found high correlation with Pi rating (Fig. 2f), robust to drug 

removal and specific to RA (Supplementary Fig. 6 and Supplementary Data Set 4).

We proceeded to apply Pi to 29 additional immune-mediated traits (Fig. 3a). Analyzing Pi 

output using knowledge of clinical proof-of-concept targets (restricted to 16 traits with >10 

such targets) and approved targets enabled us to establish the informativeness of Pi 

predictors. We found that Pi predictors are informative in the majority of traits with some 

trait-to-trait variability dependent on cell-type specific predictors (Fig. 3b,c and 

Supplementary Fig. 7a), seed genes enhance the utility of disease, function and phenotypic 

annotators in predicting drug targets versus direct use (Fig. 3b and Supplementary Fig. 7a), 

and knowledge of network connectivity improves performance for all predictors 

(Supplementary Fig. 7b). We evaluated the effect of network connectivity on highly 

prioritized genes and found that, while critical to performance, this was achieved without 

biases towards the highly connected genes (Fig. 3d and Supplementary Fig. 7c). As a 

negative control, we found no enrichment for approved immune drug targets when non-

immune disease GWAS were inputted (Supplementary Fig. 7d). We also implemented a 

“supervised mode” for Pi using machine learning, demonstrating that random forest 

consistently outperformed other algorithms (Supplementary Fig. 8a) and enabling the 

relative importance of predictors to be estimated (Fig. 3c and Supplementary Fig. 8b).

We next explored how genetics informs the therapeutic landscape across immune traits. We 

found Pi ratings (in “discovery mode”) captured a significant proportion of clinical proof-of-

concept drug targets for 15 out of 16 traits (Fig. 4a,b) or targets of approved drugs 

(Supplementary Fig. 9), robust to removal of annotation predictors (Supplementary Fig. 10). 

The most significant enrichment was seen for ulcerative colitis (UC), ankylosing spondylitis 

(AS), systemic lupus erythematosus (SLE), Crohn’s disease, RA and multiple sclerosis (MS) 

(Fig. 4b). By combining results from TSEA, we quantified the tendency of prioritized genes 
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to be known therapeutic targets for a trait, indicative of the current opportunity for genetics 

to enable drug target discovery (“Genetics-to-Current-Therapeutics (G2CT) potential”). This 

allowed us to determine a genetically defined cross-trait therapeutic landscape (Fig. 4c), on 

the basis of (i) relative informativeness of genetics (“altitude”, shaded in figure); and (ii) the 

extent to which highly prioritized targets are shared between any two traits (“location” in x-y 

2D plane, determined by similarity of Pi prioritization), with observed relationships 

consistent with recognized sharing/specificity in current therapies and phenotypic overlaps 

(for example Crohn’s disease and psoriasis are major co-occurring pathologies in AS). We 

further investigated the therapeutic landscape using an unsupervised approach27 where Pi 

ratings for the top 1% prioritized genes were self-organized into a supra-hexagon map (Fig. 

4d). We identified six clusters (C1-C6) of genes, each with similar target prioritization 

patterns (Fig. 4e, Supplementary Fig. 11a and Supplementary Data Set 5); among these, 

cluster C6 was highly rated in the majority of traits, and showed the highest druggability 

(Fig. 4f and Supplementary Fig. 11b) and enrichment for approved drugs in immune system 

diseases (Supplementary Fig. 12a), with genes involved in Th1/Th2/Th17 differentiation, 

TCR, JAK-STAT, NF-κB and TNF signalling mostly over-represented (Supplementary Fig. 

12b).

We next asked how Pi ratings for individual genes might inform pathway-level target 

prioritization (Fig. 5a and Supplementary Fig. 13). We found that pathways enriched for 

highly prioritized genes in multiple traits included Th1/Th2/Th17 differentiation, TCR, 

chemokine, NOD-like receptor, PI3K-ATK, TNF, MAPK and JAK-STAT signalling. 

Specific enrichment included type I and type II interferons and their receptors in MS, 

consistent with current therapeutics28. We hypothesized that activity of IRF1 regulators from 

a random mutagenesis screen29 would correlate with Pi rating in MS and found this was the 

case (Fig. 5b), with highly prioritized genes such as SOCS1 showing therapeutic potential in 

a mouse model30. Pi rankings support current development of IL2 therapy to promote Treg 

function in type 1 diabetes (T1D)31 with high prioritization also seen in UC, and JAK 

inhibitors for UC32 and Crohn’s disease33, with highest prioritization seen for Behcet’s 

disease where STAT3 activation is reported34. TLR pathways were highly enriched for 

prioritized targets in allergy, consistent with recent trials35 and activity of regulators of 

TLR4 activation from a genome-wide CRISPR screen36 (Fig. 5c).

We then investigated how Pi prioritization for specific protein families might relate to 

therapeutic efficacy. We analyzed a comprehensive set of small-molecule inhibitors for 

epigenetic targets, focusing on SLE given the evidence for dysregulated DNA methylation 

and histone acetylation in pathogenesis, the epigenetic effects of approved drugs, and 

therapeutic benefit from histone deacetylase inhibition in a mouse model37. We found high 

correlation between the activity of specific inhibitors in an SLE patient-derived cell assay 

and Pi ratings, specific to SLE. The top ranked gene EHMT2 encodes a methyltransferase 

promoting nuclear stability, with alterations in nuclear structure recognized to promote 

autoimmunity in SLE38 (Fig. 5d and Supplementary Fig. 14).

Finally, we considered how to identify targets highly rated across traits. We first calculated 

the degree to which a target is highly rated in the majority of traits based on rank (multi-trait 

rating score; MRS), identifying 668 genes based on 12 traits with high G2CT potential 
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(Supplementary Data Set 6). We then analyzed these genes considering pathway crosstalk, 

identifying one highly significant network (on permutation P = 5.4 × 10-67) of 50 genes 

enriched for JAK-STAT and TNF signalling (Fig. 6a,b), consistent with the established 

utility of TNF inhibition and current interest in JAK inhibitors39. Cross-validating this, we 

found that the network was highly enriched for mouse immune-mediated disease 

phenotypes, druggable perturbability, and immune disease therapeutics but not those 

approved for non-immune traits (Fig. 6b,c, Supplementary Fig. 15a-c and Supplementary 

Data Set 7). Crosstalk network genes were significantly enriched for druggable pockets (P = 

1.4 × 10-3), with highly prioritized nodal points for potential intervention relevant to a range 

of immune-mediated diseases including IL2RA, TYK2, IL2, IL12B, STAT1, STAT3, BCL2, 

and AKT1 (Supplementary Fig. 15d). We devised a multi-trait novelty score to identify 41 

highly rated but under-explored targets, with variable sharing across traits enriched for 

interferon and IL2/IL6/IL20 signalling pathways (Supplementary Fig. 15e,f).

In summary, we have shown how the value of genetic information can be translated through 

an integrated genome-scale approach to prioritize potential drug targets and nodal points for 

intervention, and also to understand the therapeutic landscape across immune traits. We have 

demonstrated that Pi is capable of recovering experimentally/clinically verified targets and 

pathways without biased inputs. We anticipate that Pi will allow users to formulate 

hypotheses to take forward under-explored but potentially druggable targets across the 

genome. Pi, an open source and scalable system designed for translational research, aims to 

promote community working to support early-stage drug development leveraging genetics40.

Methods

Identification of seed genes under genetic influence and non-seed genes under network 

influence

We developed Pi for drug target prioritization in immune-mediated diseases, given the 

substantial immunogenomic summary data now available. We selected 30 immune-related 

traits for which curated GWAS summary data were sourced from the GWAS Catalog41 and 

ImmunoBase. SNPs in linkage disequilibrium (LD) (r2 > 0.8) were calculated based on 1000 

Genomes Project data (Phase 3) according to the European population from which the 

majority of GWAS studies were derived. Scoring for SNPs considers the P-values, the 

threshold (5 × 10-8 for typical GWAS), and (for LD SNPs) LD strength r2 (Supplementary 

Fig. 1a).

We then used GWAS SNPs to define/score genomic seed genes (genomic predictors). 

Firstly, we defined nearby genes (nGene, Supplementary Fig. 1a) based on genomic 

proximity (located within a certain distance window of SNPs) and genomic organization 

(found within the same topologically associated domain (TAD) as SNPs using a TAD dataset 

generated for GM12878 reflective of immune-context genomic organization42). Scoring for 

nGene considers distance influential range, optimized to minimize false positives 

(Supplementary Fig. 1b). Recognizing that genes driving GWAS hits are not necessarily the 

most proximal, we next defined/scored genomic seed genes evidenced by physical 

chromatin interaction: chromatin conformation genes (cGene) based on summary data 

produced from promoter capture Hi-C studies43, with evidence of gene promoters physically 
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interacting with SNP-harboring genomic regions (Supplementary Fig. 1d). Thirdly, we 

defined/scored expression-associated genes (eGene) based on summary data produced from 

eQTL mapping8,44–47. Recognizing the value of colocalization analysis in eQTL-GWAS 

integration, and the value of incorporating information on directionality and magnitude of 

effect into the output, we implemented the most widely adopted method for colocalization, 

coloc9, into the Pi pipeline (Supplementary Fig. 1e). For allele-matched SNPs within a 

region (a gene), this method uses a Bayesian framework to estimate the posterior 

probabilities (PP) that a SNP is causal in both GWAS and eQTL studies/traits (hypothesis 4 - 

H4). The default priors in coloc are used (1 × 10-4 for association with either trait; 1 × 10-5 

for association with both traits). An eGene was identified with H4 PP > 0.8, and scored 

based on its best SNP with the highest SNP-specific H4 PP (i.e. eGene score). The 

directionality and magnitude of effect were estimated based on the effects observed in both 

GWAS and eQTL studies (Supplementary Fig. 1e; conceptually similar to SMR48), made 

available in Pi outputs (Supplementary Fig. 3).

We also used gene-level ontology annotations to further define annotation predictors related 

to immune function/dysfunction: (i) immune function genes (fGene) using Gene 

Ontology49, annotated to an immune response term (and its descendants) with experimental 

or manual evidence codes; (ii) disease genes (dGene), causing rare genetic disease related to 

immunity using OMIM50 and also annotated to an immune system disease (and its 

descendants including primary immunodeficiency diseases) using Disease Ontology51; and 

(iii) immune phenotype genes (pGene) annotated both to abnormality of the immune system, 

blood and blood-forming tissues (and their all descendants) using Human Phenotype 

Ontology52 and to immune/hematopoietic system phenotypes (and their all descendants) 

using Mammalian Phenotype Ontology53. Notably, we restricted application of such 

annotations to genomic seed genes (Fig. 1a).

For each type of seed genes, we identified non-seed genes under network influence using the 

random walk with restart algorithm54, that is, non-seed genes based on network 

connectivity/affinity of gene interaction information (defined by the STRING database55) to 

seed genes. We used interactions with high-confidence score, corresponding to ~15,000 

nodes/genes. A network gene having a higher connectivity/affinity to seed genes receives a 

higher affinity score. We optimized the restarting probability parameter controlling network 

influential range (Supplementary Fig. 1b).

In summary, given GWAS summary data for a trait, we constructed a gene-predictor matrix 

containing affinity scores, with columns for genomic and annotation predictors and rows for 

seed and non-seed genes (~15,000 genes in total). The way of calculating affinity scores 

ensures that different predictors are comparable, while the inclusion of non-seed genes 

increases the completeness of potential targets.

Definition of gold standard drug targets

We performed ontology-based extraction of current drug therapeutics and target genes from 

the ChEMBL database56 in which drug indications are annotated using Experimental Factor 

Ontology (EFO). For each indication, we defined the known target gene list as non-

promiscuous therapeutic target genes (i) of non-withdrawn drugs that show some evidence 
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of clinical efficacy (sourced from ATC, ClinicalTrials, DailyMed, and FDA), (ii) with 

explanation of the mechanism of action and the efficacy of drugs in disease. For a gene 

being the target of drugs at different development phases, the maximum phase is recorded 

for the gene. As such, each immune disease trait has a list of reliable target-phase pairs 

(Supplementary Data Set 2).

For an immune trait, we established three sets of gold standard positives (GSPs): therapeutic 

target genes of drugs (i) reaching development phase 2 and above (more specifically, phase 2 

concluded and moving into phase 3 and above, called “clinical proof-of-concept targets”); 

(ii) reaching development phase 3 and above; and (iii) at phase 4 (approved). Unless 

otherwise specified, we focused on GSPs defined as clinical proof-of-concept targets; these 

have shown some evidence of efficacy in humans to validate the target and provide the 

greatest power for analysis given the relatively small number of approved drugs in specific 

immune traits. We simulated gold standard negatives (GSNs) using a strategy illustrated in 

Supplementary Figure 5b and detailed in the Supplementary Note.

Target gene prioritization in discovery mode and target set enrichment analysis

We achieved this mode by integrating predictors in a way similar to Fisher’s combined meta-

analysis (Supplementary Note). Briefly, for each predictor in the gene-predictor matrix, we 

first converted the gene affinity scores into P-like values, and then combined these P-values 

across predictors for each gene using a Fisher’s combined method57. The resulting 

combined P-value was rescaled into a Pi rating (scored 0-5).

Conceptually similar to gene set enrichment analysis58, we implemented target set 

enrichment analysis (TSEA; or called “leading edge analysis”) to quantify the degree to 

which a target set (e.g. clinical proof-of-concept targets) is enriched in the “leading edge” of 

the Pi prioritized gene list. TSEA is a rank-based test for the target set enrichment, running 

from the top to the bottom of the prioritized list, to identify a leading edge. The leading edge 

contains the core subset of the prioritized gene list accounting for the enrichment signal, 

with normalized enrichment score and the significance level estimated by the permutation 

test (20,000 times).

Machine learning, prioritization in supervised mode and predictor importance

We applied a range of machine-learning algorithms (Supplementary Fig. 8a and 

Supplementary Note) for supervised prioritization from the gene-predictor matrix in which 

genes were labelled as GSPs, GSNs or putative targets (all the remaining genes). Predictive 

models were first built from the predictor matrix for GSPs and GSNs, and then used to 

prioritize the putative targets. For each algorithm, tuning parameters were optimized using 3-

fold cross-validations (repeated 10 times) to achieve the best average Area Under the ROC 

curve (AUC). Each 3-fold cross-validation created balanced splits preserving the overall 

GSP versus GSN distribution, with two thirds used for training and the remaining one third 

for testing to evaluate performance (AUC) in terms of the ability to separate GSPs and 

GSNs. To streamline comparison, we used the caret package for model building and 

performance evaluation. Applying built models to the gene-predictor matrix produced the 

probability of genes being GSP against GSN. We used an importance measure resulting 
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from random forest to quantify predictor informativeness (Supplementary Fig. 8b). A very 

informative predictor, if being disabled/removed, would lead to a large decrease in accuracy 

– a more robust measure estimating predictor importance.

Prioritization of target pathways individually and at crosstalk

We prioritized individual pathways based on highly prioritized gene list, that is, 

identification of Reactome pathways59 and KEGG pathways60 significantly enriched for the 

top 1% (top 150) prioritized genes using one-sided Fisher’s exact test. The enrichment 

strength quantified by odds ratio was used as the pathway-level prioritization rating; we also 

calculated false discovery rate (FDR) measuring the enrichment significance.

We developed an algorithm searching for a subset of a gene network (merged from all 

KEGG pathways) in a way that the resulting gene subnetwork (or crosstalk between 

different pathways) contains highly prioritized genes with a few less prioritized genes as 

linkers (Supplementary Fig. 2b). The significance (P-value) of the identified/observed 

subnetwork (pathway crosstalk) was assessed by how often it would be expected by chance 

according to a degree-preserving node permutation test61. In brief, we first permutated node/

gene rating but preserved node degrees, and then performed the crosstalk identification from 

the permutated list of genes (with the same/similar size as the observed crosstalk). These 

expected crosstalks identified via permutation (100 times) were used as the null distribution 

to estimate the significance of the observed one.

Benchmarking on drug target prioritizations in RA

We carried out benchmarking to compare the performance of Pi (prioritization in discovery 

mode) with other methods. The performance was evaluated to separate clinical proof-of-

concept (or approved) drug targets for RA from simulated ones (GSNs) (Fig. 2c and 

Supplementary Fig. 5c). Firstly, we compared with a naïve method, the baseline prioritizing 

a gene by how often it is targeted by existing drugs. Secondly, we compared with other 

genetics-based methods including the methods of Okada et al.6 and Open Targets5. For the 

latter, the genetic component only is used since the overall score already integrating 

knowledge of approved drug targets cannot be used for the purpose of performance 

evaluation.

Analysis using disease and drug gene signatures

We obtained disease-specific gene signatures and drug perturbation gene signatures from 

CREEDS62, crowd-sourced curation/identification of gene signatures from the Gene 

Expression Omnibus. Each signature is associated with metadata including diseases (or 

drugs), cell types or tissues of origin, and GSE accession number. We used disease-specific 

gene signatures to perform TSEA in Supplementary Figure 5e. We used drug perturbation 

gene signatures to evaluate the significance of highly prioritized genes (e.g. RA novel target 

genes in Supplementary Fig. 5g) that are perturbed in expression by drugs. Differential 

genes specific to disease were integrated to Pi outputs, accessible through Pi web interface 

(Supplementary Fig. 3).
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Pocketome analysis of known protein structures

We performed genome-wide pocket (pocketome) analysis using all known protein structures 

from the Protein Data Bank (PDB) database63 in which ~38,000 PDB protein structures at 

the chain level were mapped onto human proteins (involving ~ 5,800 genes). For a PDB 

protein structure, we used the fpocket software64 to predict drug-like binding sites (a 

pocket), resulting in ~16,000 PDB protein structures (involving ~3,800 genes) with 

druggable pockets. We used Fisher’s exact test to evaluate the significance of highly 

prioritized targets that were enriched for genes with druggable pockets.

Evidence supporting potential value of RA novel targets

We defined RA novel targets as top 1% prioritized genes (excluding targets of current 

therapeutics in RA), and provided evidence supporting their utility. Briefly, we tested the 

enrichment for genes with druggable pockets, for genes in drug perturbation signatures and 

for genes annotated to mouse arthritis phenotypes (the Monarch Initiative65), and explored 

repurposing opportunities as targets of approved drugs in other disease indications 

(ChEMBL). Together with pathway crosstalk identified by Pi (Fig. 1d), we identified 116 

RA novel targets with one or more utilities, illustrated by set visualization (Fig. 2d and 

Supplementary Data Set 3).

Correlation with disease-relevant activity of compounds

We hypothesized that our prioritization identifies targets of potential therapeutic utility by 

investigating if Pi rating for targets correlates with disease-relevant activity of drugs 

modulating those targets. We tested this for RA, calculating the correlation between Pi rating 

for targets in RA and disease-relevant activity of compounds/drugs modulating those targets 

using L1000 data (generated in-house by Janssen) (Supplementary Fig. 6a and 

Supplementary Note). The significance (empirical P-value) of correlations was estimated by 

randomly sampling the same number of targets from Pi outputs 20,000 times. We also 

estimated the sensitivity and specificity of observed correlations (Supplementary Fig. 6b), 

with sensitivity estimated by removing drugs of different percentages (repeated 100 times), 

and the specificity by calculating the correlations based on Pi rating in other 29 immune 

traits. For the top 1% prioritized genes in RA with available compounds screened in L1000, 

we identified significant compounds targeting these encoded proteins (Supplementary Fig. 

6c and Supplementary Data Set 4).

Genetics-to-Current-Therapeutics potential

We introduced a metric to quantify Genetics-to-Current-Therapeutics (G2CT) potential for a 

trait, defined as the tendency of the Pi prioritized gene list to be clinical proof-of-concept 

targets. We implemented TSEA to test such tendency by examining the degree to which 

clinical proof-of-concept targets are enriched at the top of the prioritized gene list. We 

defined G2CT potential to accommodate three aspects of enrichments: change, significance 

and coverage (Supplementary Note).

Given that the prioritization uses immune-related annotations, we assessed the sensitivity to 

the use of immune-related annotation predictors when testing enrichments for immune drug 

targets, and found that enrichments are robust to the removal of one or more of these 
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annotators (Supplementary Fig. 10). We also provided a negative control showing that 

enrichment of immune drug targets is not observed for GWAS SNPs exclusively from non-

immune mediated diseases (Supplementary Fig. 7d).

Construction of G2CT landscape

We defined this landscape for 16 immune traits in which a sufficient number of clinical 

proof-of-concept targets was available and the target gene prioritization profiles were 

generated in discovery mode. Based on these profiles, we calculated the x and y coordinates 

using the Rtsne package that implemented the t-SNE algorithm. The output of t-SNE is a 

projection of the input data where the nearby points in multi-dimensional space are locally 

preserved in the 2D representation while also preserving global structure of the input data. 

As a result, two nearby points in the 2D plane of the landscape had similar target 

prioritization representing similar immune traits, and two far away points for dissimilar 

immune traits. The coloring of the landscape is the G2CT potential, interpolated linearly 

using the packages akima and plot3D.

Cluster analysis of highly prioritized target genes

We identified a total of 878 target genes within the top 1% of prioritized gene lists for 16 

immune traits (Supplementary Data Set 5), used for gene clustering and visualization within 

a supra-hexagon map27. The resulting map was overlaid with druggable pocket data to 

estimate the probability of each hexagon containing druggable genes (Supplementary Fig. 

11b). For each cluster, we performed enrichment analysis using the XGR package66 to 

identify enriched ChEMBL approved drug indications (represented by EFO terms) 

(Supplementary Fig. 12a) and enriched KEGG pathways (Supplementary Fig. 12b).

Correlation analysis using datasets from CRISPR and mutagenesis screens

We obtained positive genetic regulators for IRF1 (FDR < 0.05 and mutation index < 1) 

identified using a random mutagenesis-based haploid screen29. TNF regulators involving in 

TLR4 pathway activation (FDR < 0.05) were obtained from a genome-wide CRISPR screen 

in primary dendritic cells36. We calculated Pearson’s correlation for regulators between 

screen activity and Pi rating.

Patient-derived cell assays using a panel of epigenetic inhibitors

We performed patient-derived cell assays using a panel of epigenetic inhibitors (chemical 

probes) to provide experimental validation for our prioritization among epigenetic targets for 

SLE. These assays were approved by the Regional Ethical Review Board in Stockholm 

(approval number 2015/2001-31/2) and complied with all relevant ethical regulations 

(written informed consent obtained from patients). We used a set of high-quality probes with 

high selectivity over proteins in the same family and significant on-target cellular activity at 

1 μM, defined a single target per probe with lowest IC50 (Supplementary Fig. 14a), and 

applied these probes to patient-derived cell assays for SLE with cytokine-stimulated (IL4, 

IL10, IL21, sCD40L, ODN2006) IgG production in PBMCs as readouts (Supplementary 

Fig. 14b). We calculated Spearman’s rank correlation between assay activity (reduction of 

IgG secretion level) and Pi rating, with the significance (empirical P-value) estimated by 
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randomly sampling the same number of targets from Pi outputs 20,000 times, and the 

specificity by calculating correlation between assay activity and Pi rating in other 29 

immune traits (Fig. 5d).

Multi-trait rating and pathway crosstalk

We introduced multi-trait rating score (MRS) to quantify the degree to which a target gene is 

highly rated across traits (Supplementary Note). Based on 668 genes with MRS 

(Supplementary Data Set 6), we identified pathway crosstalk using the same algorithm 

previously described in “Prioritization of target pathways individually and at crosstalk”. 

Here, we labelled the KEGG-merged gene network with MRS. We assessed the significance 

(P-value) of the identified pathway crosstalk according to a degree-preserving node 

permutation test. To dissect the pathway composition (the involvement of individual 

pathways) from the identified crosstalk, we used Fisher’s exact test to identify individual 

KEGG pathways whose member genes are enriched for genes in the crosstalk, compared to 

all genes with MRS as the test background (Supplementary Fig. 15a). We tested pathway 

crosstalk genes for the enrichment in terms of mouse immune-mediated disease phenotypes 

(the Monarch Initiative), drug perturbation signatures (CREEDS), phased and approved 

therapeutics in immune disease indications (ChEMBL), and druggable pockets (Fig. 6b, 

Supplementary Fig. 15b-d and Supplementary Data Set 7). We also introduced multi-trait 

novelty score (MNS) to quantify the extent to which a target is under-explored in most traits 

(Supplementary Note).

Statistical analysis

Unless otherwise specified, we performed enrichment analysis based on one-sided Fisher’s 

exact test to calculate odds ratio and the 95% confidence interval, and to estimate the 

significance level (P value and/or FDR (accounting for multiple tests)).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

A genetics-led translational approach integrating functional genomic predictors, 

knowledge of network connectivity and immune ontologies defines the drug target 

prioritization landscape for 30 immune traits at the gene and pathway level.
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Fig. 1. Overview of Priority index (Pi), applied to rheumatoid arthritis (RA).
a, Pi pipeline. Seed genes are defined using scores for genomic predictors to determine a 

gene (denoted by circle) being functionally linked to the input disease associated genetic 

variant (denoted by triangle) based on proximity, conformation and expression, each 

represented as different pie segments; scores for annotation predictors (immune function/

phenotype/disease) are then only applied to such seed genes. Knowledge of network 

connectivity defines non-seed genes. Predictor matrix generates numerical Pi prioritization 

rating (scored 0-5) and ranking (out of ~15,000 genes) with affinity scores ensuring different 
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predictors are comparable. b, Example of how network connectivity with highly prioritized 

seed genes can identify a non-seed gene (TNF). c, Prioritized target pathways. Fisher’s exact 

test (one-sided) used to calculate odds ratio (OR) with 95% confidence interval (CI; 

represented by lines). FDR, false discovery rate. d, Visualization of target pathway crosstalk 

with associated evidence tabulated. The heatmap illustrates directionality and magnitude of 

effect estimated from allele-specific intersection of disease and eGene in GWAS-eQTL 

colocalization analysis. Positive (orange) and negative (blue) values indicate increased or 

decreased expression levels, respectively, associated by allele with increased risk of the 

disease. Also available at http://pi.well.ox.ac.uk.
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Fig. 2. Validating Pi target prioritization for RA.
a, 39 clinical proof-of-concept targets (phase 2 and above) found within the leading edge of 

prioritized rankings (defined as left-most region ahead of the peak indicated by dark blue 

marker) on target set enrichment analysis. b, Enrichment analysis of top 1% prioritized 

genes for RA with targets of approved drugs or clinical proof-of-concept targets, using Pi 

(targets with network connectivity) or Pi output without knowledge of network connectivity 

(that is, targets with direct genetic evidence only). Lines represent 95% CI (one-sided 

Fisher’s exact test). c, Benchmarking Pi, comparing performance of a naïve method (how 
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often a gene is targeted by drugs), and two other genetics-based methods5,6 to separate 

clinical proof-of-concept targets (gold standard positives, GSPs) from gold standard 

negatives (being gene druggable space with GSPs and interaction partners removed). AUC, 

area under the ROC curve. Similar performance was observed when approved drug targets 

were used (Supplementary Fig. 5c). d, Evidence supporting utility of RA novel targets with 

intersections color-coded (left) and corresponding target genes listed (right). e, Venn 

diagram illustrating significant enrichment of mouse arthritis phenotypes for novel RA 

targets (left), with prioritization interaction plot for ZAP70 (right). The significance level 

(P), OR and 95% CI calculated according to one-sided Fisher’s exact test. f, Correlation of 

Pi ratings with disease-relevant activity of a compound (transcriptional similarity between an 

RA disease gene expression signature and the compound transcriptional profile in PBMCs 

quantified using Zhang’s connection score26), shown at the drug (left) and target (right) 

level. Spearman rank correlation calculated, with the significance level estimated empirically 

(randomly sampling 20,000 times).
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Fig. 3. Cross-trait application of Pi informing utility of approach and predictors.
a, Taxonomy showing 30 immune-related traits analyzed in Pi. b, Performance comparisons 

for individual predictors across traits (within Pi and direct use). c, Relative importance of 

predictors in RA. Measured by decrease in accuracy (disabling that predictor) scaled relative 

to maximum decrease, estimated by random forest (see also Supplementary Fig. 8b for all 

traits). The horizontal line in grey indicates the decrease averaged across all predictors. d, 

Effect of network connectivity on highly rated genes. Network connectivity (degree) for 

targets binned by Pi rank across traits.
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Fig. 4. Landscape of prioritized target genes across immune traits.
a, Target set enrichment analysis (TSEA) for 16 immune traits. Bar plot shows the 

proportion of clinical proof-of-concept targets at “leading edge” of prioritized rankings. 

Coverage (total number within the leading edge / total number of targets for that trait) 

indicated, together with FDR. b, Scatter plot shows TSEA results including normalized 

enrichment score (NES), coverage and FDR (the horizontal line in blue indicating the FDR 

threshold at 0.01) for the Pi prioritized gene list. c, Genetics-led therapeutic landscape for 16 

immune traits, with altitude indicating Genetics-to-Current-Therapeutics (G2CT) potential. 

d,e, Target clustering for top 1% prioritized genes across 16 traits (supra-hexagonal map). f, 
The druggable map indicating the probability of each hexagon containing druggable genes, 

with the percentage (%) of druggable genes for each cluster shown (pie chart).
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Fig. 5. Landscape of prioritized target pathways across immune traits.
a, Overview of prioritized immune system pathways with radial layout based on Reactome 

with nodes shaded per trait according to the significance of enrichment (FDR) and the 

enrichment strength (odds ratio) calculated using one-sided Fisher’s exact test. b, 

Correlation analysis for IRF1 positive regulators (n = 65) between mutation index29 and Pi 

rating for MS (left), with prioritization interaction plot for SOCS1 (right). Correlation based 

on Pearson’s test (two-sided). c, Scatter plot of TNF positive regulators (n = 53) identified 

using a CRISPR-based secondary screen36, in terms of CRISPR z-score and Pi rating in 
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allergy. Inserted below the TLR pathway for allergy with member genes colored by Pi rating 

(top 1% highlighted in bold text). Correlation based on Pearson’s test (two-sided). d, 

Epigenetic probe activity at 1 μM for cytokine stimulated Immunoglobulin G (IgG) levels in 

PBMCs from patients with SLE (n = 5) versus Pi rating. Spearman’s rank correlation 

calculated, with the significance level (empirical P-value) estimated based on randomized 

test (left) and the specificity assessed versus 29 other immune traits (right; the error bar for 

standard deviation with the mean centered).
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Fig. 6. Multi-trait comparisons.
a, Visualization of target pathway crosstalk with nodes color-coded according to the multi-

trait rating score (MRS). b, Trait-specific Pi ranking for 50 genes in identified crosstalk 

network with annotations to TNF or JAK-STAT signalling pathways, together with presence 

of druggable pocket, perturbability, mouse immune-mediated disease phenotypes or if 

approved therapeutic. c, Target enrichment (immune and non-immune) and detail of 

approved therapeutics in crosstalk network. 95% CI calculated according to two-sided 

Fisher’s exact test.
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