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METHODOLOGY ARTICLE Open Access

A genome-scale CRISPR interference guide
library enables comprehensive phenotypic
profiling in yeast
Nicholas J. McGlincy1, Zuriah A. Meacham1, Kendra K. Reynaud1,2, Ryan Muller1, Rachel Baum1 and

Nicholas T. Ingolia1,2,3*

Abstract

Background: CRISPR/Cas9-mediated transcriptional interference (CRISPRi) enables programmable gene knock-

down, yielding loss-of-function phenotypes for nearly any gene. Effective, inducible CRISPRi has been demonstrated

in budding yeast, and genome-scale guide libraries enable systematic, genome-wide genetic analysis.

Results: We present a comprehensive yeast CRISPRi library, based on empirical design rules, containing 10 distinct

guides for most genes. Competitive growth after pooled transformation revealed strong fitness defects for most

essential genes, verifying that the library provides comprehensive genome coverage. We used the relative growth

defects caused by different guides targeting essential genes to further refine yeast CRISPRi design rules. In order to

obtain more accurate and robust guide abundance measurements in pooled screens, we link guides with random

nucleotide barcodes and carry out linear amplification by in vitro transcription.

Conclusions: Taken together, we demonstrate a broadly useful platform for comprehensive, high-precision CRISPRi

screening in yeast.

Keywords: CRISPR interference, Budding yeast, Pooled screening

Background
Systematic genetic analysis — the comprehensive assess-

ment of phenotypes across a large and defined collection

of genetic perturbations — is a powerful approach for

learning the organizing principles of molecular and

cellular processes. Systematic analyses provide quantita-

tive phenotypic profiles that serve as a rich and nuanced

source of information, as well as identifying key candi-

date genes in the manner of a classical genetic screen.

Truly comprehensive, systematic analysis was realized

first in budding yeast (Saccharomyces cerevisiae), with

the creation of the deletion collection, an arrayed library

of ~ 6000 yeast strains that each contain one barcoded

gene knock-out [1, 2]. Subsequently, RNA interference

was harnessed for large-scale genetic analysis in many

organisms [3, 4] and cell models [5]. More recently,

programmable RNA-guided DNA targeting by Cas9 and

other CRISPR-associated proteins has emerged as an

enabling technology for systematic genetic analysis. In

its native form, Cas9 cleaves DNA at sites complemen-

tary to a short guide RNA [6], often leading to mutations

mediated by error-prone repair pathways [7]. Guide

RNA libraries thereby enable comprehensive, targeted

mutagenesis that offers advantages for comprehensive

genetic screening [8].

Catalytically inactive Cas9 (dCas9) retains RNA-guided

DNA binding activity that can be harnessed for many

other purposes. When dCas9 is fused with another
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protein, it targets this fusion partner to the genomic se-

quence specified by a guide RNA, enabling an array of

novel approaches to measure and manipulate the gen-

ome [9]. Targeting co-repressor proteins to eukaryotic

promoters leads to CRISPR-mediated transcriptional

interference (CRISPRi), a powerful and general approach

to reduce transcription from the targeted locus [10].

CRISPRi yields reproducible, partial loss-of-function

phenotypes that are well suited for systematic genetic

analysis [11, 12]. Essential genes can be analyzed easily

with CRISPRi, and knock-down can be quickly activated

and quickly relieved by conditional expression of the

dCas9 fusion protein or the guide RNA. Genome-wide

CRISPRi libraries are thus highly desirable even in bud-

ding yeast, where deletion collections and other re-

sources are available.

Optimized tools exist to support CRISPRi screening in

budding yeast. Transcriptional interference by dCas9-

mediated recruitment of repressor domains was pio-

neered in yeast, and potent CRISPRi has been achieved

with a dCas9-Mxi1 fusion that links dCas9 with a frag-

ment of a mammalian repressor [10]. Single guide RNAs

(sgRNAs) can be expressed from an RNA Polymerase III

promoter taken from the yeast RPR1 gene [13]. Further-

more, embedding tetracycline operator (tetO) sites in

this promoter confers tetracycline-inducible guide ex-

pression, and thus regulated CRISPRi activity [13]. This

inducible guide expression system has been used to cre-

ate substantial collections of effective guides spanning

up to ~ 1600 genes [14–18], which have provided rules

for guide RNA design [14, 15, 19, 20]. In yeast, as in

many eukaryotes, chromatin accessibility at a target

DNA sequence and the position of this sequence relative

to the transcription start site are key determinants of ef-

fective CRISPRi [14]. Guides binding nucleosome-free

sites in the region 200 bp just upstream of the transcrip-

tion start site were most likely to be active; although

these two factors are correlated, each appears to be im-

portant individually.

Using these rules, we have generated and validated a

genome-wide CRISPRi screening system for budding

yeast. We first constructed a comprehensive library of

episomal guide expression plasmids. In order to quantify

guide abundance in screens, we link guide RNAs with

random nucleotide barcodes and amplify these barcodes

by in vitro transcription. We used this barcoded guide li-

brary to carry out a pooled growth screen in a continu-

ous culture of prototrophic yeast in minimal synthetic

media. Guides produced distinctive, reproducible fitness

effects that could be inferred from exponential dynamics

of their abundance during competitive growth. We

found guides having strong growth defects for the great

majority of essential genes, showing that our library pro-

vides excellent coverage. Comparisons of the active and

inactive guides allowed us to further refine design rules

for yeast CRISPRi and better assign target genes to guide

sites at closely-spaced, divergent promoters, which are

common in yeast. Our system for high coverage, high ef-

ficacy inducible CRISPRi screening provides a broadly

useful tool for the budding yeast community with

numerous applications.

Results
Design of a guide RNA library for genome-wide CRISPRi

in budding yeast

We set out to design a library of yeast guide RNAs suit-

able for genome-wide CRISPRi screening. In yeast, the

efficiency of transcriptional interference is affected by

the distance between the target sequence and the tran-

scription start site and by the accessibility of the DNA at

that target [14]. Even after controlling for these parame-

ters, only a fraction of guide RNAs inhibit transcription

effectively [14, 15, 19], and so we aimed to select up to

ten guides for each of the annotated genes in the yeast

genome [21].

We implemented a deterministic target site selection

scheme based on heuristics that seemed likely to pick

active and specific guides (Fig. 1a). We chose guides first

by preferring target sequences that were unique in the

genome, and target positions expected to inhibit tran-

scription from one promoter specifically. We then prior-

itized guides according to accessibility as determined by

ATAC-Seq [22]. We also ensured that our guides were

distributed across the full range of positions where CRIS

PRi appears effective [14] by selecting at least one target

site from each of a few different zones within the overall

promoter region (Fig. 1b). When the transcription start

site was known from transcript isoform sequencing [23],

we picked targets in a range from 220 base pairs up-

stream of this transcriptional start through 20 nucleo-

tides downstream [14]. When no transcriptional start

site was available, we picked targets between 350 and 30

nucleotides upstream of the coding sequence. Using

these rules, we designed 61,094 guides targeting all an-

notated protein-coding genes, excepting those predicted

open reading frames characterized as “dubious”, and also

against non-coding RNAs (Additional file 1: Table S1).

The majority of genes were targeted by ten unique and

unambiguous guides (Fig. 1c).

The compact yeast genome, containing many diver-

gently transcribed genes separated by only a few hun-

dred base pairs, poses challenges for guide design.

Guides falling in the overlapping region between two di-

vergently transcribed promoters have at least the poten-

tial to target either gene (Fig. 1d). Roughly 10% of the

guides we selected were potentially ambiguous in this

way, in addition to a very small fraction of non-unique

guide sequences. Since the distance between a guide and
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a promoter is a key determinant of its efficacy [15], we

were able to assign many of these potentially ambiguous

guides to one likely target. As described below, our own

results corroborate this assignment based on large-scale

empirical measures of guide activity, further enhancing

our coverage of the genome.

Linear amplification of guide-linked nucleotide barcodes

by in vitro transcription enables precise measurements of

guide frequency

Pooled CRISPR screening relies on measurements of

guide RNA abundance in a population of cells, typically

carried out by high-throughput sequencing [12]. Pheno-

typic effects manifest as changes in these guide frequen-

cies caused by competitive growth under different

conditions or by flow cytometric sorting for specific

phenotypes. We therefore sought the most precise and

robust approach to measure the abundance of guide

RNA expression plasmids from yeast. Rather than se-

quencing guides directly, we used arbitrary nucleotide

barcodes embedded in the guide RNA expression plas-

mid. One advantage of sequencing these barcodes is that

each guide can be linked to a few different barcodes,

providing replicate measurements of its effect within a

single experiment [24, 25]. In contrast, direct guide se-

quencing cannot distinguish between independently

transformed lineages within a single experiment. Bar-

code sequencing also allows us to distinguish defective

guide RNA expression constructs, which typically cause

no phenotypic effects, from sequencing errors arising

during quantitation. We can detect and correct single-

nucleotide sequencing errors that we observe when

Fig. 1 Design of a genome-wide yeast CRISPRi library. a Candidate guide RNA sites in promoter regions were identified and scored to prioritize

target sites that were unique in the genome, specific to one promoter, and located in accessible chromatin. b Promoter regions targeted by

guide RNAs. When transcription start sites were known, we selected one guide each from three separate regions around the transcription start

site, along with seven others in the overall promoter. When transcription start sites were not known, we targeted a wider area upstream of the

start of the coding sequence. c Cumulative distribution of genes targeted by up to ten distinct guides. Unambiguous guides do not fall within

the potentially active region for any other gene. Assigned guides have a single likely target based on empirical measurements of guide activity

and location. d Schematic of an ambiguous guide at a divergent promoter
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quantifying barcodes while excluding barcodes linked to

guides with errors introduced during synthesis or

cloning.

High-throughput sequencing of barcodes (or guide

RNAs) requires substantial, selective amplification of

DNA recovered from cells. Pooled screening approaches

typically use populations of 1 million to 100 million

cells, each yielding one or a few copies of the DNA to be

counted [12]. High-throughput sequencing requires

roughly 10 billion input molecules, and the DNA sam-

ples recovered from cell pools are generally amplified at

least a thousand-fold to create a sequencing library [26].

Exponential PCR can easily achieve this amplification,

but also introduces multiplicative noise, and stochastic

events occurring in early PCR cycles are amplified along

with the underlying barcode abundances. Linear amplifi-

cation by in vitro transcription offers an attractive alter-

native to PCR amplification [27] and has been used

productively in single-cell DNA and RNA sequencing

approaches [28–30]. We confirmed that in vitro

transcription of template plasmid isolated from budding

yeast yielded ~ 5000-fold amplification over a wide range

of template DNA amounts and tolerated substantial

non-template DNA. Amplification by in vitro transcrip-

tion is also specific for the promoter sequence embed-

ded in the plasmid, in contrast to effective but non-

specific amplification approaches used in single-cell

genome sequencing [31].

We devised a strategy for measuring barcode abun-

dance by sequencing, using initial linear amplification by

in vitro transcription, that substantially reduced noise

relative to direct PCR amplification (Fig. 2). The RNA

product of in vitro transcription is reverse transcribed

back into DNA (IVT-RT), which serves as a template for

limited PCR that generates double-stranded DNA with

flanking sequences required for high-throughput

sequencing (Fig. 2a). In order to validate our IVT-RT

library generation strategy and compare it directly with

PCR amplification, we transformed yeast with a plasmid

library containing ~ 250,000 random nucleotide

Fig. 2 Linear amplification by in vitro transcription improves precision of barcode abundance measurements. a, b Schematics of barcode library

generation by a in vitro transcription followed by RT-PCR and b direct PCR amplification. c, d Barcode read counts in libraries prepared from

replicate DNA samples by c IVT-RT-PCR and d direct PCR. e Dispersion between replicate measurements as a function of read count
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barcodes, carried out batch selection for transformants,

and recovered plasmid DNA from two replicate samples

drawn from this transformed population. IVT-RT

libraries generated from these replicate DNA samples

showed substantially better quantitative agreement than

matched libraries constructed by direct PCR amplifica-

tion (Fig. 2c, d). Duplicate IVT-RT libraries from the

same population showed a correlation r = 0.98, whereas

PCR libraries correlated substantially worse, r = 0.93.

Dispersion estimates from replicate IVT-RT libraries

showed markedly lower variances than matched PCR

libraries at equivalent read depth (Fig. 2e), which trans-

lates into more precise guide abundance measurements

and thus greater statistical power to resolve phenotypic

differences.

Construction of a barcoded, genome-wide library of

inducible guide RNAs

Based on these observations, we generated a genome-wide

yeast CRISPRi guide expression library with linear IVT-RT

amplification of linked nucleotide barcodes (Fig. 3a). Our li-

brary includes only the guide RNA cassette, and requires

separate expression of the rest of the inducible CRISPRi

machinery, as we found that smaller plasmids containing

just the guide RNAs improved both the diversity of pooled

transformations and the yield of subsequent plasmid recov-

ery. We first introduced guide RNAs into a tetracycline-

inducible derivative of a RNA polymerase III promoter in a

high-efficiency, bacterial cloning reaction that maximized

library diversity (Fig. 3b and Additional file 2: Fig. S1). We

then added barcodes in a second cloning step and con-

trolled the yield of the bacterial transformation in order to

capture an average of 4 barcodes per guide RNA (Fig. 3b

and Additional file 2: Fig. S2). While greater barcode diver-

sity is beneficial to a point, limiting the number of barcodes

allows us to maintain a substantial number of cells per bar-

code, which is important for robust barcode counting, and

to assign barcodes to guide RNAs reliably.

We linked each barcode to its associated guide by

high-throughput sequencing. In order to ensure reliable

guide RNA assignments, we required at least three inde-

pendent, concordant sequencing reads to establish a

barcode-to-guide assignment. This criterion should

exclude cases where PCR amplification during library

preparation “uncouples” a barcode from the associated

guide RNA, which has been reported to confound a

range of barcoded screening techniques [32]. We identi-

fied ~ 270,000 barcodes, in good agreement with our

expectation for ~ 250,000 distinct clones in the library.

We excluded ~ 10% of barcodes that were linked to

guides with errors introduced in cloning and synthesis

(Fig. 3c). The high rate of defective guides emphasizes

the value of barcoded libraries, which can identify these

ineffective constructs. We also eliminated barcodes with

substantial evidence linking them to two distinct guide

RNAs (~ 5% of the total), which probably reflect tech-

nical artifacts uncoupling the true, unique association

[32]. Our final barcoded library included ~ 45,000

Fig. 3 Construction of a barcoded library for inducible guide RNA expression. a Schematic of the guide RNA expression library. The RPR1

promoter is regulated by two tetO operator sites. In the presence of tetracycline, this promoter is de-repressed and drives expression of a variable

guide RNA sequence in a constant sgRNA scaffold. A random nucleotide barcode with an adjacent T7 RNA polymerase promoter is embedded

elsewhere in the plasmid. b Schematic of the process for generating the guide RNA library. Guides are cloned first, and then barcodes are added

in a transformation with controlled diversity. c Distribution of barcode-to-guide assignment results, illustrating the high frequency of errors in

cloned guide RNAs. d Cumulative distribution of the number of barcodes assigned to each guide RNA
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distinct guides, with a median of 3 barcodes per guide

and ~ 35,000 guides linked to more than one barcode

(Fig. 3d and Additional file 3: Table S2). We also recov-

ered 344 distinct barcodes (~ 1% of the total) lacking a

guide RNA entirely and thus expressing only the trun-

cated single guide RNA scaffold. We presume that these

“empty” guide RNA expression constructs will have little

phenotypic effect and treat these barcodes as internal

negative controls.

CRISPRi growth phenotypes recapitulate known loss-of-

function phenotypes genome-wide

We wished to assess the growth phenotypes of our CRIS

PRi guides in a pooled yeast population. Plasmids con-

taining guides that slow cell growth will decrease in

abundance because they replicate along with the host

cell, and we can measure the depletion of the associated

barcodes by high-throughput sequencing. We wanted to

ensure that even guides with strong negative phenotypes

were present in our population at the start of the experi-

ment, however. By using an inducible promoter to drive

guide RNA expression [13, 14], we were able to establish

a pooled population of cells that contain a diverse library

of guide RNA plasmids, but do not express these guides

(Fig. 4a, b). We then induced guide expression and

followed the changes in the abundance of each guide,

driven by its CRISPRi phenotype (Fig. 4a, c).

We also sought to maintain consistent culture condi-

tions during the course of our competitive pooled

growth experiment. After transforming our guide RNA

expression library into yeast, we selected transformants

— without guide induction — by growth in continuous

liquid culture using a turbidostat bioreactor [33]. We

then used this selected population to inoculate a second

bioreactor culture in yeast minimal media. After the bio-

logical replicate cultures achieved a consistent growth

rate in minimal media, we sampled the population and

added tetracycline to induce guide RNA expression in

these two replicate cultures (Fig. 4d, e). We then took

three additional samples from each replicate over ~ 60 h

of growth in the presence of tetracycline and prepared

high-throughput sequencing libraries to quantify bar-

code abundance at each timepoint and in each replicate

(Additional file 4: Table S3). We further prepared tech-

nical duplicate samples from each culture at the final

timepoint in order to obtain an empirical estimate of the

technical variability in our barcode abundance

measurements.

Barcode abundances followed exponential dynamics

during competitive growth, reflecting the fitness of the

associated guide RNA. For example, the barcodes linked

with one individual guide targeting SUI3, an essential

gene encoding a translation initiation factor, declined

consistently following guide induction and were almost

gone after 12 generations (Fig. 5a). The rate of decline

was similar for two distinct barcodes linked to this guide

in each of the two replicate cultures, demonstrating that

barcode abundance changes provide a robust and quan-

titative measure of fitness. Likewise, two distinct bar-

codes for a guide targeting STV1, a non-essential gene,

show a reproducible but more gradual decline in abun-

dance (Fig. 5b). In contrast, three distinct barcodes with

no guide showed constant or slightly increasing

Fig. 4 Pooled competitive growth of a diverse guide RNA library. a

Schematic of the competitive growth experiment. b Cells expressing

the dCas9-Mxi effector protein are transformed with guide RNA

expression plasmids and selected under non-inducing conditions. c

Upon guide induction, dCas9-Mxi binds target gene promoters and

reduces transcription. d, e Replicate competitive growth

experiments. Dilution rate corresponds to growth rate after cultures

reach the target cell density. Timepoints for guide RNA induction

and initial sampling is shown, along with subsequent

sampling timepoints
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abundance, starting from a wide range of initial values

(Fig. 5c). The consistency of these individual trajectories,

for distinct barcodes and in replicate cultures (Fig. 5d),

suggested that we could model these barcode sequencing

data and infer quantitative growth rates.

We took this approach to determine the fitness ef-

fect of 35,223 guide RNAs. We analyzed 123,506 bar-

codes showing adequate abundance (at least 64 reads)

at the pre-induction timepoint. Barcode count data

from four timepoints was fit with a negative binomial

regression in a generalized linear model including a

parameter that estimated the rate of change in bar-

code frequency across time. This change corresponds

to the change in abundance of cells expressing the

linked guide during pooled competitive growth, and

thus to the fitness effect caused by guide expression.

We verified the robustness of these measurements

using two kinds of internal replication in our

experimental design. We compared fitness estimates

between different barcodes associated with the same

guide RNA and found a strong correlation between

these barcodes (r = 0.79), which represent independent

lineages expressing the same guide. Furthermore,

higher correlations could be obtained by filtering

more stringently on pre-induction read counts,

suggesting that statistical sampling during high-

throughput sequencing contributes to apparent differ-

ences between barcodes linked to the same guide. We

then produced guide-level fitness estimates by

averaging barcode-level estimates using inverse-

variance weighting (Additional file 5: Table S4). When

we analyzed our biological replicate cultures individu-

ally, we found a strong (r = 0.69) correlation between

the fitness estimates in the two replicates. This

correlation was substantially stronger (r = 0.83) when

restricted to guides with more than one barcode

Fig. 5 Inferring fitness effects from guide RNA abundance changes. a, b Consistent rate of exponential decay in abundance for guides targeting

a SUI3, which encodes eIF2β, and b STV1 during pooled, competitive growth. Two distinct barcodes are shown for each guide in two replicate

cultures. c As in (a) and (b), showing the constant or slightly increasing abundance for three distinct barcodes linked to no guide RNA. d Barcode

abundance changes across replicate cultures. Fitness estimates of associated guide RNAs are shown as well. e Enrichment of strong negative

fitness effects in guides targeting essential genes. Guide-level fitness estimates are shown for all unambiguous promoters, as well as classification

according to essentiality. Barcode-level analysis is shown for all barcodes linked to non-targeting guides. f Most essential genes have at least one

strongly deleterious guide. The most negative fitness effect across all guides is shown for genes with unambiguous promoters. The cumulative

distribution of barcode fitness effects is shown for non-targeting barcodes
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measured in each replicate, highlighting the value of

barcoding in producing reliable fitness measurements.

A substantial subset of guides showed a strong nega-

tive fitness, while we saw no strong positive effects, con-

sistent with our expectation that gene knock-down is

much more likely to slow growth than to accelerate it

(Fig. 5e). As we knew the number of generations be-

tween each sample, we could calibrate these measure-

ments and obtain an actual selective coefficient s

reflecting the change in abundance over one doubling of

the overall population. We use the fitness score log2 s,

where a fitness score of 0 corresponds to doubling at the

same rate as the population overall, and a cell that

ceases growth entirely has s = 0.5 and a fitness score of

− 1. We saw many fitness scores around − 0.8 or below,

but essentially none below − 1. The minimum fitness we

observe does not reflect any inherent limitation of our

model, which could capture the dynamics of a guide

whose abundance declined faster than 2-fold each gener-

ation. We interpret this lower bound as an indication

that our fitness estimates are quantitatively accurate.

Our experiment measures directly the abundance of

guide expression plasmids, which are likely to persist in

genetically eliminated cells that could never again divide,

and even in the cell wall “ghosts” remaining when yeast

lose plasma membrane integrity. Such a persistent, non-

replicating plasmid will decline in relative abundance by

half each generation, yielding a fitness of − 1.

We expected that strongly negative fitness effects

would arise most often in guide RNAs that block expres-

sion of essential genes. To avoid ambiguity in determin-

ing the gene targeted by a guide RNA, we excluded

divergent promoters where CRISPRi could in theory

affect either or both genes (Fig. 1d) and restricted our

analysis to 3521 unambiguous genes. Among this group,

guides targeting one of 644 essential genes showed a

clear bimodal fitness distribution with a distinct peak at

very low fitness (Fig. 5e). In contrast, non-essential genes

showed a modest depletion at very low fitness. Even in

carefully designed guide RNA libraries, the majority of

guides are ineffective, and so it is expected that many

guides targeting essential genes nonetheless show little

or no growth defect. Importantly, however, our library

contained at least one guide with a strong fitness effect

for almost every essential gene (Fig. 5f). It does not seem

that CRISPRi efficacy should be higher on essential

genes than on any others, and so this result argues that

our library contained effective guides against most

genes.

We also saw guides that provoked a serious fitness

defect (log2 s < − 0.5) by targeting non-essential genes.

Gene ontology analysis of the fitness estimates for non-

essential gene knock-down provided two explanations

for this phenomenon (Additional file 6: Tables S5

through S7). This analysis revealed a strong enrichment

for ribosomal proteins (“translation” (GO:0006412)

Mann-Whitney q < 3 × 10− 7). Many yeast ribosomal

proteins are encoded by paralogous duplicate genes, and

so they are not individually essential but show significant

growth phenotypes when deleted [34]. We also observed

enrichment for amino acid and nucleotide biosynthetic

pathways (“purine nucleotide biosynthetic process” (GO:

0006164), “leucine metabolic process” (GO:0006551),

and “histidine biosynthetic process” (GO:0000105) all

Mann-Whitney q < 0.05). These metabolic processes

should be required for growth in our experimental

conditions — prototrophic yeast grown on minimal syn-

thetic media lacking these nutrients. In contrast, the ca-

nonical list of essential genes was defined by viability of

yeast on rich media, where these pathways are not re-

quired. Our ability to detect the conditional essentiality

of histidine, leucine, threonine, and purine biosynthesis

thus illustrates the value of our library for genetic

screening.

Logistic regression provides well-calibrated predictions of

guide RNA activity

Our guide RNA library includes effective guides against

most essential genes, along with many ineffective guides

for these same targets. This compendium offered the op-

portunity to better understand what features predicted

guide efficacy. Focusing on the 644 essential genes with

unambiguous promoters, we analyzed 1967 guides that

targeted one of these genes and had at least two distinct,

high-abundance barcodes in our data set.

The position of the guide relative to the transcription

start site greatly impacted the efficacy of CRISPRi

(Fig. 6a), consistent with previous observations [14]. All

of our guides fell within a 240 nucleotide window

around the transcription start site, and we ensured that

guides were distributed across this region at each pro-

moter. As seen in other analyses of budding yeast CRIS

PRi, strong fitness effects were most likely for guides

binding roughly 50 bases upstream of the transcription

start site, and fell off substantially on either side [15].

Furthermore, we saw differences between guides match-

ing the coding versus the template strand (Fig. 6b). On

either strand, guides showed the strongest average fit-

ness effect when the invariant protospacer-adjacent

motif (PAM) recognized directly by the Cas9 protein fell

50 bases upstream of the transcription start site.

Notably, the Mxi1 repressor domain is fused to the C-

terminus of dCas9 [10], which interacts with the PAM

in the target-bound complex [35]. It seems that the dis-

tance between the repressor domain and the transcrip-

tion start site is the key predictor of efficacy, rather than

the region of DNA occupied by the dCas9 protein.
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We used the strong positional bias of CRISPRi effi-

ciency to resolve the likely target genes for guides at

divergent promoters. Transcriptional start sites are typ-

ically separated by over 200 nucleotides, and so very few

guides fall into the high-efficacy region for both genes.

At a few closely-spaced promoters, it may prove impos-

sible to inhibit just one gene potently and specifically by

CRISPRi. In most cases, however, we can determine the

target gene for each guide, increasing the number of spe-

cific guides for each gene in our library (Fig. 1c).

Accessibility of target site DNA correlates with guide

activity in yeast and mammalian CRISPRi. Chromatin

accessibility is partly confounded with position effects, as

active yeast promoters show well-defined organization,

with a nucleosome-free region around the transcription

start site bounded by a positioned + 1 nucleosome [36].

To investigate this effect in our library, we took accessibil-

ity measurements from a recent study that probed for

DNA sensitive to in vitro methylation (ODM-Seq), which

is blocked by nucleosome occupancy [37]. While the cor-

relation between accessibility and position is apparent, it

does not seem to explain the pattern of guide activity.

Open chromatin typically extends over 100 bp upstream

of the transcription start site, whereas guide activity falls

off at shorter distances (Fig. 6a). Thus, it appears that

position and accessibility contribute separately to guide

activity, leading us to seek a statistical model that could

predict effective CRISPRi.

We developed a logistic regression model for active

guides based on the target site position, sequence, and

accessibility. We accounted for the complex relationship

between position and activity empirically, using the local

regression of quantitative fitness effect against the dis-

tance to the transcription start site (Fig. 6a) as one par-

ameter in a larger regression model. Position alone

predicted activity well (AUC 0.74; Fig. 6c), and perform-

ance improved substantially when methylation-based

ODM-Seq accessibility and nucleotide sequence features

were added (AUC 0.79; Fig. 6c). Both accessibility and

sequence features individually improved model perform-

ance in k-fold cross-validation (Additional file 7: Fig. S3).

Incorporating strand-specific position effects (Fig. 6b)

decreased residual variance significantly, but did not im-

prove model performance in cross-validation (Additional

file 7: Fig. S3), and so we retained the strand-independent

model. We also tested the relative contributions of ODM-

Seq and ATAC-Seq accessibility data. While ATAC-Seq

alone did contribute to model performance, we found that

ODM-Seq yielded significant further improvement,

whereas adding ATAC-Seq data did not improve on a

Fig. 6 Accurate predictions of guide activity. a Highly active guides against essential genes bind ~ 50 bp upstream of the transcription start site.

The fitness effect produced by guides targeting essential genes serves as a proxy for their activity. Individual guides targeting non-divergent

essential genes with at least two independent barcodes are plotted according to their position, fitness effect, and absolute chromatin occupancy

as determined by DNA methylation accessibility, along with a local regression of fitness effect against position. b Guide activity varies according

to the guide strand, as seen in local regressions for guides on the same (Fwd) or opposite (Rev) strand as the target gene. c Receiver operating

characteristic for logistic regression models of guide activity. The full model includes methylation-based accessibility data (ODM-Seq) and guide

sequence along with the position of the guide relative to the transcription start site. d Guide score predicts fitness effects in a held-out test set of

guides targeting essential genes
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model that already incorporated ODM-Seq data, and so

we used ODM-Seq accessibility alone.

Our model produced well-calibrated predictions of

guide activity when assessed on a separate set of 3480

guides. These guides were held out of model develop-

ment and validation, either because they targeted essen-

tial genes at divergent promoters, or because they were

linked with only one high-abundance barcode. Most

high-scoring guides produced fitness effects, whereas

few low-scoring guides impaired growth, demonstrating

that our regression model generalized well to these other

guides (Fig. 6d). Furthermore, among guides with a

logit-transformed score of 0, corresponding to equal

odds of activity or inactivity, we observed a median fit-

ness close to our threshold value for active guides. This

quantitative agreement between model predictions and

measured activity on a distinct test set not used for

model development indicates that our score directly

indicates the likelihood that a guide is active.

Discussion
We provide a strategy for genome-wide CRISPR interfer-

ence screening in budding yeast. We overcome the

unpredictable activity of guide RNAs by designing up to

ten distinct guides per gene, producing a library that

contains at least one active guide against most genes, as

assessed by our ability to induce growth defects on

essential targets (Fig. 5e). Our library is similar in size

and design to other, contemporaneous budding yeast

CRISPRi guide libraries [38, 39], and we expect that

these similar designs achieve comparable coverage. In

our work, we also show that random nucleotide bar-

codes with linear IVT-RT amplification provide signifi-

cant advantages for robust and quantitative CRISPR

screening. Random nucleotide barcodes enable multiple,

independent measurements of guide RNAs within a sin-

gle experiment (Fig. 5a, b) and distinguish sequencing

errors from defective guides (Fig. 3c). Linear amplifica-

tion by in vitro transcription improves the quantitative

reproducibility of barcode abundance measurements in

sequencing data and reduces the occurrence of extreme

outliers (Fig. 2). Barcoding and linear amplification are

complementary and separable features — barcodes can

be amplified by PCR, of course, and an embedded T7

RNA polymerase promoter can be used to transcribe

guides themselves in vitro.

Systematic genetics in budding yeast benefits from a

wealth of techniques for analyzing defined loss-of-

function phenotypes. Most notably, barcoded deletion

strains are available for most non-essential genes [2],

along with mating and selection schemes for high-

throughput crosses [40, 41]. Many essential genes are

addressed by resources such as partial loss-of-function

“DAmP” alleles [42] and titratable promoter alleles [43].

Inducible CRISPRi offers a valuable addition to this

arsenal. It treats essential and non-essential genes on an

equal footing by providing consistent partial-loss-of-

function effects resulting from reduced transcription. It

also limits the accumulation of suppressor mutations

and other genetic aberrations that arise during long-

term propagation of strains with heritable genetic

lesions. Our library of inducible guides, and other similar

efforts [39], now bring comprehensive and inducible

CRISPRi screening to yeast.

Conclusions
Genome-wide CRISPRi also provides practical features

that are advantageous for many comprehensive genetic

analyses. It is straightforward to carry out screens in

nearly any genetic background, as guides are introduced

in a single, pooled transformation of episomal plasmids.

Indeed, the ease of carrying out a screen using this CRIS

PRi library approaches that of standard forward genetic

screens. Deep sequencing of guide-linked barcodes (or

guides themselves) then reveals a quantitative profile of

phenotypes across the genome. We anticipate many uses

for this screening system [44], as well as future refine-

ments of guide RNA design based on data presented

here.

Methods
Plasmids

Plasmids were constructed by standard molecular

biology techniques as described below and verified by

Sanger sequencing (Additional File 8: Table S8). Restric-

tion enzymes were obtained from NEB and high-fidelity

(HF) variants were used when available. Q5 polymerase

(NEB M0491S) was used for PCR, assembly reactions

were carried out using Gibson Assembly Master Mix

(NEB E2611L).

pNTI647 was generated by amplifying the adjacent

dCas9-Mxi and TetR expression cassettes from pNTI601

(pRS416-dCas9-Mxi1 + TetR + pRPR1(TetO)-NotI-gRNA,

Addgene #73796) [14] using primers NM721 and NM734

(Additional file 8: Table S8). This insert was assembled

into pCfB2225 (AddGene #67553), an “EasyClone 2.0”

vector for KanMX-marked integration into the XII-2 safe

harbor location [45].

pNTI661 was generated in several steps from

pNTI601. The URA3 marker was replaced by the K.

lactis LEU2 marker from pUG73 [46] by amplifying this

marker using primers NI-993 and NI-994 (Additional

file 8: Table S8), as well as amplifying a backbone frag-

ment of pNTI601 using primers NI-995 and NI-996

(Additional file 8: Table S8), and assembling these back

into pNTI601 digested with SpeI and KpnI. Primers

KS524 and KS525 (Additional file 8: Table S8) were used

to amplify the region of the vector excluding dCas9-
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Mxi1 and TetR, which was recircularized by Gibson

assembly. The barcode site was introduced by amplifying

the guide RNA expression cassette with NI-1019 and

NI-1020 and re-ligating the resulting product back into

the vector after a SacI/SpeI digestion of both vector and

PCR amplicon. Finally, the NotI site for guide RNA

cloning was replaced with a BamHI-HindIII cassette by

digesting the vector with NotI and performing Gibson

assembly with the NI-1030 oligonucleotide.

pNTI698 was generated by amplifying the HIS3,

MET17, and URA3 genes from pHLUMv2 (AddGene

#64166) [47] using p698Fwd and p698Rev primers

(Additional file 8: Table S8). This insert was assembled

into pCfB2223 (AddGene #67544), an “EasyClone 2.0”

vector for KanMX-marked integration into the X-3 safe

harbor location [45], digested with EcoNI. Note that the

KanMX marker is disrupted by the HIS3-MET17-URA3

cassette and the plasmid no longer confers resistance.

Yeast

Strains

Yeast were derived from S. cerevisiae strain BY4741

(ThermoFisher), a haploid MATa his3Δ1 leu2Δ0 LYS2

met15Δ ura3Δ0 derivative of S288c.

NIY416 was derived from BY4741 by transformation

with integrating plasmid pNTI647 digested with NotI,

followed by selection for kanamycin resistance.

NIY425 was derived from NIY416 by transformation

with integrating plasmid pNTI698 digested with NotI,

followed by selection for Ura and Met prototrophy.

Media

Minimal media was prepared using 67. g / l yeast nitro-

gen base with ammonium sulfate and without amino

acids (BD 291920) and 200. g / l dextrose (Fisher D16–

500). Synthetic complete drop-out media minus leucine

(SCD -Leu) was prepared using 67. g / l yeast nitrogen

base with ammonium sulfate and without amino acids,

1.62 g / l synthetic drop-out mix minus leucine (US Bio

D9626), and 200. g / l dextrose.

High-efficiency transformations

High-efficiency yeast transformations were carried out

by growing yeast cultures overnight at 30 °C with shak-

ing and diluting these cultures to prepare fresh dilution

cultures at an OD600 of 0.05. Dilution cultures were

grown at 30 °C with shaking until they reached an OD600

of 0.5 and then 20 ml of culture was taken for each

transformation. Cells were pelleted by centrifugation at

3000×g for 10 min and the supernatant was decanted.

Cells were resuspended in 10. ml sterile deionized water

and pelleted again by centrifugation at 3000×g for 5 min,

the supernatant was decanted, and any residual liquid

was removed with a pipettor. Cells were then

resuspended in 1.0 ml lithium acetate 100 mM, trans-

ferred to a microcentrifuge tube, and pelleted by centri-

fugation at 10,000×g for 10 s. Supernatant was removed

by aspiration and cells were resuspended in 1.0 ml lith-

ium acetate 100mM and pelleted again at 10,000×g for

10 s. Supernatant was removed by aspiration, and 240 μl

of 50% w/v polyethylene glycol was layered gently on top

of cells, followed by 20. μl of freshly boiled salmon

sperm DNA 10mg / ml (Invitrogen 15,632,011), 36. μl

lithium acetate 1.0M, and 64. μl plasmid DNA. The

microcentrifuge tubes were then vortexed vigorously to

resuspend cells and incubated for 20 min in a 42 °C

water bath, vortexing once during the incubation to

maintain cells in suspension. Following this incubation,

cells were pelleted by centrifugation at 10,000×g for 10 s

and the transformation mixture was removed with a

pipettor. Cells were resuspended in 1 ml sterile deion-

ized water, pelleted by centrifugation at 10,000×g for 10

s, and the water was removed with a pipettor. Finally,

cells were resuspended in 1.0 ml sterile deionized water

per transformation.

Guide library design

External data sets

Yeast genome sequence (R64–1-1, sacCer3) [48] and

CDS annotations [21] were downloaded from the UCSC

genome browser, and yeast gene information was down-

loaded directly from the Saccharomyces Genome Data-

base [21]. Transcript isoform data was obtained from

Pelechano et al. [23]. ATAC-seq data was obtained from

from Schep et al. [22], GEO accession GSE66386.

Gene annotations

All major transcript isoforms (mTIFs) from Pelechano

et al. [23] annotated to cover one intact ORF were con-

sidered for gene annotation. Considering the set of

mTIFs for a gene, the modal (highest read count) tran-

scription start site (TSS) was chosen as the representa-

tive transcription start site for the gene. When no

transcript was annotated for the ORF, the annotated

CDS was used for guide design and target prediction.

Guide scoring

All possible guides were identified by searching for GG

dinucleotides, representing the Cas9 protospacer adja-

cent motif (PAM) in the yeast genome sequence. Guide

site uniqueness was assessed by aligning each target se-

quence (20 base protospacer followed by “NGG” PAM)

against the yeast genome reference using Bowtie2 [49].

Target sequences with multiple perfect genomic align-

ments were considered non-unique. Guides were associ-

ated with gene TSSes when the center of the target

sequence fell between − 220 and + 20 nucleotides relative

to the TSS. Guides were associated with CDS genes
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when the center of the sequence fell between − 350 and

0 nucleotides relative to the CDS. Guides were consid-

ered specific when these targeting rules associated the

guide with only one single target gene. Target accessibil-

ity was determined by averaging ATAC-Seq accessibility,

ranging from 0.0 for inaccessible to 1.0 for fully access-

ible, across all nucleotide positions in the target

sequence in two replicate ATAC-Seq data sets. When

no data was available, a value of 0.0 was used.

Guide selection

Guides were prioritized by first preferring unique guides,

and then specific guides, and finally by greater ATAC-

Seq accessibility. For each TSS-annotated gene, the

highest-scoring guides were chosen for three zones

spanning [− 220, − 141], [− 140, − 61], and [− 60, + 20]

nucleotides relative to the TSS. For each CDS-annotated

gene, the highest-scoring guides were chosen for four

zones spanning [− 350, − 271], [− 270, − 191], [− 190, −

111], and [− 110, − 30] nucleotides relative to the start of

the CDS. Additional guides were chosen, highest score

first, until ten guides were chosen or all possible guides

in the targeting region were exhausted.

Barcoded guide expression library

Guide library construction

The guide RNA expression vector pNTI661 was digested

by taking 3.0 μg plasmid in a 75. μl reaction with 1x final

concentration CutSmart buffer (NEB B7204S) with 60 U

BamHI-HF (NEB R3136L) and 60 U HindIII-HF (NEB

R3104S), incubated for 1 h at 37 °C, and then purified

with a DNA Clean & Concentrator (Zymo D4013). The

guide RNA oligonucleotide library was amplified using

Q5 polymerase (NEB M0491S) according to the manu-

facturers instructions, using 100 pg guide oligonucleotide

pool (CustomArray, Inc.) as a template and oligonucleo-

tides NM636 and NM637 (Additional file 8: Table S8)

for amplification, with 15 cycles of amplification using

10 s denaturation, 15 s annealing at 58 °C, and 15 s

extension. Amplified guide RNAs were cloned in a

100 μl assembly reaction with 1.0 μg linearized pNTI661

and 1.7 μl guide RNA PCR using 2 × NEBuilder HiFi

DNA Assembly Master Mix (NEB E2621L), which was

incubated for 1 h at 50 °C and then purified with a DNA

Clean & Concentrator with final elution into 10. μl.

Purified DNA was used to transform high efficiency

competent 10-beta E. coli (NEB C3019H), using 2.5 μl

purified DNA per reaction in four independent transfor-

mations of 50 μl competent cells. Following transform-

ation, transformations were pooled into 100 ml LB Carb

liquid media and grown with vigorous shaking until

reaching an OD600 of 3. Plasmid DNA was extracted

with a QIAGEN Plasmid Midi Kit (QIAGEN 12143).

Barcode addition

The guide expression library was digested again with

BamHI-HF along with exonucleases in order to digest

and degrade the majority of the guide-free plasmids.

A 50 μl digestion reaction was prepared using 2 μg

plasmid DNA in 1x final concentration CutSmart buf-

fer with 20 U BamHI-HF, 5 U lambda exonuclease

(NEB M0262S), and 20 U E. coli exonuclease I (NEB

0293S). Digestion was carried out for 1 h at 37 °C,

followed by heat inactivation for 20 min at 80 °C.

DNA was then purified using a Zymo DNA Clean &

Concentrator column, with elution into 20. μl. The

library was then linearized for barcode assembly in a

50 μl digestion reaction using 18. μl of eluted DNA

from the previous digestion in 1x final concentration

CutSmart buffer with 20 U SphI-HF (NEB R3182S).

Digestion was carried out for 1 h at 37 °C, and DNA

was purified again using a Zymo DNA Clean & Con-

centrator column.

Random nucleotide barcodes with embedded T7 RNA

polymerase promoters were generated by PCR amplifica-

tion from 1.0 μl NI-1026 oligonucleotide using NI-1027

and NI-1041 oligonucleotide primers (Additional file 8:

Table S8). A 50 μl PCR using Q5 polymerase (NEB

M0491S) according to the manufacturers instructions,

with 15 cycles of amplification using 5 s denaturation,

10 s annealing at 65 °C, and 5 s extension. Product was

purified using a DNA Clean & Concentrator column.

Amplified barcodes were introduced in a 100 μl NEB-

uilder HiFi Assembly reaction containing 1 μg linearized

guide library and 110 ng purified barcode PCR. DNA

was purified using a DNA Clean & Concentrator column

with final elution into 10 μl. Purified DNA was used to

transform high efficiency competent 10-beta E. coli,

using 2.5 μl purified DNA per reaction in four independ-

ent transformations of 50 μl competent cells. Following

transformation, transformations were pooled into a sin-

gle, 4.0 ml pool. Dilutions were plated on LB Carb agar

plates to assess transformation efficiency, and 55% of the

transformation was used to inoculate a 50 ml LB Carb

culture while 22, 8, 6, and 4% were used to inoculate

four separate 25 ml LB Carb cultures. Higher-inoculum

55 and 22% cultures were grown at 26 °C overnight,

while lower-inoculum 8, 6, and 4% cultures were grown

at 30 °C overnight. Based on the estimated yield of ~ 1.1

M transformants, the 22% culture was selected. DNA

was isolated using a QIAGEN Plasmid Mini kit to

produce the barcoded guide expression library.

Comparative barcode amplification

Guide library transformation and yeast growth

BY4741 was transformed with barcoded guide expres-

sion library in one high-efficiency transformation of ~

100M cells using 64 μl of plasmid DNA at 100 ng / μl.
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Dilutions were plated on SCD -Leu agar plates in order

to estimate the transformation efficiency, indicating a

yield of ~ 330,000 independent transformants. The rest

of the transformation was used to inoculate 100 ml of

SCD -Leu media and grown for ~ 24 h at 30 °C with

shaking, at which point the OD600 increased roughly 4-

fold, to 0.82. A new 100ml SCD -Leu culture was inocu-

lated with 400 μl of this culture and growth at 30 °C with

shaking was continued overnight to yield a final OD600

of 1.7. Four aliquots of 25 ml each were taken for yeast

plasmid DNA extractions. Yeast were pelleted by centri-

fugation for 10 min at 3100×g, and media was discarded.

Cells were resuspended in 1.0 ml sterile deionized water,

pelleted 10,000×g for 30 s, and water was removed by as-

piration. Washed yeast pellets were stored at − 80 °C.

Linear amplification by in vitro transcription

Half of one plasmid extraction was used to prepare a

25 μl digestion in 1x final concentration CutSmart buffer

with 20 U XhoI (NEB R0146L) and incubated 1 h at

37 °C. DNA was purified using a DNA Clean & Concen-

trator column with elution into 20. μl, and 18 μl of puri-

fied DNA was used as template in a 30 μl HiScribe T7

Quick High Yield RNA Synthesis reaction (NEB E2050S)

following the protocol for short templates and incubated

overnight at 37 °C. Template was degraded by adding

20 μl water followed by 4 U DNase I and continuing in-

cubation for 15 min at 37 °C and RNA was then purified

using an RNA Clean & Concentrator, with final elution

into 15. μl. Purified RNA was assessed using a High Sen-

sitivity RNA ScreenTape with an Agilent TapeStation

2200. Reverse transcription was carried out using 10 ng

of purified RNA in a reaction with ProtoScript II (NEB

M0368S) using 2.0 pmol NI-1032 as a gene-specific pri-

mer (Additional file 8: Table S8). Primer and template

were denatured 5 min at 65 °C, kept on ice to prepare re-

actions, and then incubated 1 h at 42 °C followed by heat

inactivation at 65 °C for 20 min. A 50 μl PCR reaction

using Q5 was prepared using 5.0 μl RT product as a

template without further purification, along with NEB-

Next Multiplex Oligos for Illumina (NEB E7600S) as

primers, and amplified for 7 cycles using 5 s denatur-

ation, 10 s annealing at 65 °C, and 10 s extension. PCR

products were purified using AMpure XP beads accord-

ing to the manufacturer’s instructions, using a 2 beads: 1

PCR ratio and final elution in 20. μl Tris•Cl 10 mM, pH

8.0. Products were validated using a High Sensitivity

D1000 ScreenTape on an Agilent TapeStation 2200,

pooled, and analyzed by 50 base single-read deep

sequencing on an Illumina HiSeq with 10% phiX control.

Note that the first 25 bases comprise high-diversity

barcode libraries whereas the subsequent bases are

monotemplate.

Exponential PCR amplification

First-round PCR was performed using Q5 polymerase,

10% of extracted yeast plasmid DNA as a template, and

primers NI-956 and NI-1032 (Additional file 8: Table

S8), and amplified for 16 cycles using 10 s denaturation,

15 s annealing at 65 °C, and 10 s extension. PCR prod-

ucts were purified using AMpure XP beads according to

the manufacturer’s instructions, using a 2 beads: 1 PCR

ratio and final elution in 20. μl Tris•Cl 10 mM, pH 8.0.

Second-round PCR was performed exactly as described

for linear amplification by in vitro transcription, except

that 1.0 μl of purified first-round PCR product was used

as a template. PCR libraries were validated, pooled, and

sequenced in parallel with linear amplification libraries.

Barcode analysis

Barcode sequencing data was analyzed by trimming the 3′

adapter sequence “GCATGCGTGAAGTGGCGCGCCT-

GATA” using Cutadapt, discarding all sequences that

either lacked a linker or contained a barcode sequence less

than 10 nucleotides long. Barcodes were tabulated using a

custom tool, “bc-count”, that collapses single-nucleotide

mismatches. Barcode counts were collated across all four

libraries and filtered to remove barcodes that occurred in

only one library or had fewer than 33 reads total across all

4 libraries. Barcodes were also filtered to remove

sequences containing XhoI sites. Barcode counts were

plotted, and DESeq2 was used to estimate read count-

dispersion relationships from barcode count tables.

Barcoded-to-guide assignment

Sequencing library construction

First-round PCR was carried out in 50 μl using Q5

polymerase with 100 ng barcoded guide library as

template and primers NI-1038 and NI-956 (Additional

file 8: Table S8), and 12 cycles of amplification were

performed using 10 s denaturation, 15 s annealing at

67 °C, and 20 s extension. PCR products were purified

using AMpure XP beads at an 0.8 beads: 1 PCR ratio

and final elution in 15. μl Tris•Cl 10 mM, pH 8.0.

Second-round PCR was performed with 1.0 μl of first-

round PCR as template and primers NI-798 and NI-

826 (Additional file 8: Table S8), and 15 cycles of

amplification were performed using 10 s denaturation,

15 s annealing at 65 °C, and 20 s extension. PCR prod-

ucts were again purified using AMpure XP beads and

validated using a High Sensitivity D1000 ScreenTape

on an Agilent TapeStation 2200 prior to 150 base

paired-end sequencing on an Illumina MiSeq. PhiX

control DNA was mixed to account for monotemplate

regions of the library. Barcode sequencing data is

available under accession SRR10356224.
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Sequencing data analysis

Barcodes in R1 reads were trimmed to remove the 3′

adapter sequence “GCATGCGTGAAGTGGCGCGCCT-

GATAGCTCGTTTAAACTG” and read pairs lacking

this adapter in the R1 read, or reads with residual bar-

codes less than 12 nucleotides long, were discarded.

Trimmed barcodes were collapsed to combine barcodes

with single-nucleotide mismatches using the custom

“bc-seqs” program, and guide sequences in R2 were then

trimmed to remove the 5′ adapter “CGAAAC” and the

3′ adapter “AAGTTAAAAT”, leaving 20 bases of con-

stant sequence on each side of the variable 20 nucleotide

guide sequence. Read pairs where less than 20 nucleo-

tides of residual guide sequence remained were

discarded. Remaining guide sequences were aligned

against a library of guide sequences using bowtie2. These

alignments were used to compute barcode assignments

using the custom “bc-grna” program. This tool grouped

all guide alignments associated with the same barcode

sequence, discarded sequences with low-quality (Q < 30)

bases, and then eliminated all barcodes that lacked at

least 3 high-quality guide reads. Barcodes are assigned to

guides when they are supported by at least 3 high-

quality reads, at least 90% of these reads align to the

same guide sequence and the majority alignment to that

guide has no mismatches, insertions, or deletions.

Barcodes where < 90% of all reads aligned to a single

majority guide were considered heterogeneous and

discarded. Barcodes where the majority alignment con-

tained mismatches, insertions, or deletions were consid-

ered defective guides. The number of barcodes in each

of these categories is tabulated in the “grna-assign-bar-

code-fates.txt” file and the high-quality barcode-to-guide

assignments are given in the “grna-assign-barcode-grna-

good.txt” file.

Competitive growth

Guide library transformation

Guide RNA library was transformed into NIY425 as

described in “High-efficiency transformations.” Three

independent transformations were pooled and used to

inoculate a turbidostat [33] containing ~ 200ml SCD

-Leu media at an initial OD600 of 0.1. The culture was

maintained for ~ 24 h at a target OD600 of 0.5, at 30 °C

with continuous aeration and stirring. A 40 ml culture

was combined with 40ml fresh, pre-warmed SCD -Leu

media and grown in batch culture at 30 °C with shaking

for 4.5 h, reaching an OD600 of 2.0. Cells were pelleted

by centrifugation for 10 min at 3100×g, room

temperature and media was discarded. Cells were resus-

pended in 8.0 ml sterile deionized water and split into 8

aliquots of 1.0 ml. Cells were pelleted 10,000×g for 30 s

and water was removed by aspiration. Cells were resus-

pended in 0.80 ml sterile 30% glycerol in deionized

water, flash frozen in liquid nitrogen, and stored at −

80 °C.

Competitive growth

Two independent turbidostats [33] each containing ~

200 ml minimal media were inoculated with aliquots

of the guide library transformant pool, yielding an ini-

tial OD600 of 0.1. Turbidostats were grown at 30 °C

with continuous aeration and stirring, with a target

OD600 of 0.5. After ~ 46 h, a 50 ml sample was with-

drawn from each turbidostat and processed as

described for “Guide library transformation and yeast

growth” in “Comparative barcode amplification.

Turbidostat media was then replaced with minimal

media containing 250 μg / l anhydrotetracycline and

growth was continued, with additional 50 ml samples

taken at ~ 72 h, ~ 90 h, and ~ 107 h.

Barcode abundance library construction

Plasmid DNA was extracted from frozen yeast pellets.

Barcodes were amplified and sequenced as described

above for “Linear amplification by in vitro transcription”

in “Comparative barcode amplification,” except that 1–

10 ng of in vitro transcription product was used as a re-

verse transcription template, and 12 cycles of PCR amp-

lification were carried out in the final step of library

generation.

Sequencing data analysis

Barcode abundance was tabulated as described above for

“Comparative barcode amplification” and barcodes were

matched to guides using the results of “Barcode-to-guide

assignment.”

Fitness effect analyses

Barcodes were filtered to eliminate entries that did not

have at least 64 reads tabulated for the pre-induction

sample in at least one replicate culture. These filtered

barcode counts were then analyzed using DESeq2 with

the model counts ~ gens + culture, where gens was a

numerical factor that was 0.0 for pre-induction samples

and then 3.75, 7.5, and 11.25 for the three post-

induction timepoints, and culture was a discrete factor

for the two replicate cultures. The gens parameter from

this linear model was taken as an estimate of the select-

ive coefficient per population doubling for each barcode.

Guide-level analysis was performed by taking the

weighted mean of the estimate for each individual bar-

code, using the standard error estimate to compute 1/

Var weights for each barcode. Fitness effect distributions

were calculated by first filtering for genes with unam-

biguous guide targeting, where TSS data was available

and no guide RNA had an alternate target gene identi-

fied by our approach. A list of essential genes was
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downloaded from the Saccharomyces genome deletion

project [1, 2].

Guide efficacy analysis

Efficacy models were fitted using 1967 guides against

essential genes with unambiguous targeting and fitness

effects derived from more than one barcode. The offset

between the guide target and the transcription start site

was calculated based on the center of the 23 nucleotide

target sequence. The relationship between fitness effect

and guide-to-TSS offset was modeled with a local regres-

sion (α = 0.25) across the − 220 to + 20 range used for

guide selection. Accessibility data was derived from

Oberbeckmann et al. ODM-Seq data [37], using the low-

est occupancy value in a 33 nucleotide window including

the full target sequence and 5 flanking nucleotides on

each side. The fitness threshold for active guides, s < −

0.38 was defined according to the 5th percentile of all

negative controls. Logistic regression against activity

classification was performed using the model active ~

OffsetPred + ODM+ nt01 +… + nt20, where OffsetPred

was the predicted value from the local regression of

guide position, ODM was the ODM-Seq accessibility

data, and nt01 through nt20 were 20 discrete factors

representing the variable guide sequence. Alternative

models excluded the ODM variable or the 20 sequence

factors, included ATAC-Seq data from Schep et al. [22]

used in guide design, or used two distinct, strand-

specific local regressions for OffsetPred. Models (local re-

gression and logistic regression together) were tested by

k-fold cross-validation with k = 10, and the final model

was generated using all guides. This final model was

used to score 3480 guides (1491 active, i.e., log2 s < −

0.38) against essential genes that had been held out of

the model development because they targeted divergent

promoters or had just one barcode quantified.
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