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Abstract

Exploiting biological processes to recycle renewable carbon into high value platform chemi-

cals provides a sustainable and greener alternative to current reliance on petrochemicals. In

this regard Cupriavidus necator H16 represents a particularly promising microbial chassis

due to its ability to grow on a wide range of low-cost feedstocks, including the waste gas car-

bon dioxide, whilst also naturally producing large quantities of polyhydroxybutyrate (PHB)

during nutrient-limited conditions. Understanding the complex metabolic behaviour of this

bacterium is a prerequisite for the design of successful engineering strategies for optimising

product yields. We present a genome-scale metabolic model (GSM) of C. necator H16

(denoted iCN1361), which is directly constructed from the BioCyc database to improve the

readability and reusability of the model. After the initial automated construction, we have

performed extensive curation and both theoretical and experimental validation. By carrying

out a genome-wide essentiality screening using a Transposon-directed Insertion site

Sequencing (TraDIS) approach, we showed that the model could predict gene knockout

phenotypes with a high level of accuracy. Importantly, we indicate how experimental and

computational predictions can be used to improve model structure and, thus, model
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accuracy as well as to evaluate potential false positives identified in the experiments. Finally,

by integrating transcriptomics data with iCN1361 we create a condition-specific model,

which, importantly, better reflects PHB production in C. necator H16. Observed changes in

the omics data and in-silico-estimated alterations in fluxes were then used to predict the reg-

ulatory control of key cellular processes. The results presented demonstrate that iCN1361 is

a valuable tool for unravelling the system-level metabolic behaviour of C. necator H16 and

can provide useful insights for designing metabolic engineering strategies.

Author summary

Genome-scale metabolic models (GSMs) provide a tool for unravelling the complex meta-

bolic behaviour of bacteria and how they adapt to changing environments and genetic

perturbations, and thus offer invaluable insights for biotechnology applications. For a

GSM to be used efficiently for strain development purposes, however, the model must be

easily readable and reusable by other researchers, whilst being able to predict metabolic

behaviour with a high level of accuracy. In this work, we developed a GSM for Cupriavidus
necatorH16 that is linked to the BioCyc database, which provides an efficient way of

application, model update, integration of experimental data and network visualisation for

other researchers. Using our model, we demonstrate how integrating experimental obser-

vations, including Transposon-directed Insertion site Sequencing (TraDIS) and omics

data, can be used to compensate for the lack of regulatory, kinetic and thermodynamic

information in GSMs, and thus improve model accuracy. Importantly, we found that Tra-

DIS in vivo screening and GSM analysis are complementary approaches, which can be

used in combination to provide reliable gene essentiality predictions. Overall, our results

offer an informed strategy for the deliberate manipulation of C. necatorH16 metabolic

capabilities, towards its industrial application to convert greenhouse gases into biochemi-

cals and biofuels.

Introduction

The development of alternative and sustainable routes for producing chemicals and fuels is

one of the major challenges of the 21st century, due to the diminishing supply of fossil fuels

and their severe damaging impact on the environment and human health through pollution

and global warming [1]. Exploiting microbes as cellular factories converting renewable feed-

stocks into biomaterials, biochemicals and biofuels has thus attracted both academic and

industrial interest as an alternative to fossil fuels [2]. Recent advances in metabolic engineering

and synthetic biology tools have enabled genetic manipulation of selected microbial chassis to

redirect carbon towards native and heterologous pathways for optimising the production and

properties of desirable chemicals [3].

Cupriavidus necatorH16 (previously known as Alcaligenes eutrophus and Ralstonia eutro-
pha) is amongst the most attractive species to engineer as a microbial factory for producing

bulk chemicals, due to its highly flexible metabolism, ability to grow to high cell densities and

its genetic tractability [4–6]. Interestingly, the bacterium is capable of growing on an extremely

wide variety of substrates, including sugars, fatty acids and aromatic compounds [7–9]. Of par-

ticular interest, however, is C. necator’s ability to utilise carbon dioxide (CO2) as its sole carbon

source, whilst utilising hydrogen (H2) as its energy and electron source [10]. CO2 is highly
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abundant in waste off-gas from many industrial processes, such as steel and concrete manufac-

ture, as well as energy generation, and is thus a major contributor to air pollution and global

warming [11]. Metabolically engineering C. necatorH16 to valorise CO2 into chemicals and

biofuels, thus has become an attractive next generation solution that simultaneously mitigates

climate change and reduces our reliance on fossil fuels without competing with food resources

[4], provided ‘green’ hydrogen is used.

Of further interest to industry, is the bacterium’s natural ability to produce large quantities

of polyhydroxyalkanoates (PHAs) as storage compounds during nutrient-limited conditions,

such as nitrogen or oxygen, when carbon is readily available [7,12–15]. Importantly, PHAs are

being considered as an alternative to the petrol-based thermoplastics due to their comparable

material properties and biodegradability [16,17]. The current limitation for commercial use of

PHAs, however, is the high cost of their synthesis compared to petrol-based plastics [18,19].

Exploiting C. necatorH16 to produce PHAs, whilst also growing on cheap feedstocks, may

therefore provide an economically viable and greener solution [15].

To successfully employ C. necatorH16 as a chassis for the production of platform chemi-

cals, however, requires a greater understanding of the bacterium’s metabolic responses to per-

turbations [20]. Genome-scale metabolic models (GSMs) representing an organism’s

metabolic capabilities are an invaluable computational tool for such an endeavour. With the

advent of whole genome sequencing and high-throughput data of all levels of biological orga-

nisation, their construction, parametrisation, and validation have been increasingly improved

and initiated the development of advanced methods for their application [21,22].

Despite their key role in biotechnological applications, many GSMs, including the previ-

ously published model of C. necatorH16 (named RehMBEL1391) [9], are constructed using

non-conventional identifiers for reactions and metabolites, which limits their reusability and

further development. Manually mapping identifiers in GSMs is extremely time-consuming for

large-scale models and applying naive string comparisons can often lead to inconsistencies

that invalidate curated models [23]. Notably, the authors of [24] have made some significant

improvements to the original RehMBEL1391 model in their recent publication, including the

addition of identifiers for a subset of metabolites and reactions. Stoichiometric and mass

inconsistencies, however, remain in this updated model, which are challenging to correct with-

out the manual curation of metabolite and reaction information due to the incomplete cover-

age of database-linked identifiers.

In this work, we therefore present a GSM that is directly constructed from the BioCyc Path-

way Genome DataBase (PGDB) [25] for C. necatorH16 using the ScrumPy software [26]. The

benefits of constructing a GSM using this approach is 3-fold. First, the GSM includes metabo-

lite and reaction identifiers that match the BioCyc database and thus enables accessibility to

the plethora of tools available in BioCyc, including visualisation (such as metabolic pathways

and metabolite chemical structures), omics data integration and comparisons to other organ-

isms. Additionally, the BioCyc identifiers also provide greater accessibility to additional

resources using their links to external databases, such as KEGG [27] and BRENDA [28]. Sec-

ond, the model can be frequently updated as information in BioCyc is updated and improved.

Third, unlike the standard SBML models, the ScrumPy model uses a modular approach that

enables the capture of changes made during the model’s development lifetime, as well as sepa-

rately defined metabolic subsystems, improving the model’s readability.

Furthermore, we tested the model’s ability to predict gene-knockout phenotypes by

employing a genome-wide essentiality screening using a TraDIS approach [29]. In addition,

we used our new GSM to investigate the system-level metabolic changes that occur in C. neca-
torH16 during nitrogen-limited conditions, and importantly, provide new insights into the

alterations of metabolic fluxes under these conditions.
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Results

Construction of the C. necator H16 genome-scale model

For the construction of our GSM of C. necatorH16 we have used the semi-automated pipeline

outlined in [30–34]. It applies a modular framework for GSM construction using the ScrumPy

metabolic modelling software package [26]. Employing this approach, we developed a model

that is divided into the following 7 submodules comprised of reactions derived either automat-

ically (using ScrumPy) or manually:

• AutoReutro. A draft set of reactions automatically extracted from the BioCyc Pathway

Genome Database (PGDB) (Reutro, v. 21.0) [25].

• Transporters. A set of reactions for the import and export of metabolites known to be taken

up and/or secreted.

• ETC. Manually derived reactions related to the electron transport chain.

• Biomass. A lumped biomass equation representing a pseudo-stoichiometric reaction that

consumes all essential precursors in the molar proportions, required for producing 1 gram

dry cell weight.

• PLS. Reactions involved in the biosynthesis of phospholipids manually curated to consume

specific fatty acids.

• LPS. Reactions involved in the lipopolysaccharides biosynthesis pathway manually curated

to consume specific fatty acids.

• ExtraReacs. Manually added reactions based on gap filling for known metabolic capabilities,

which were not included in BioCyc.

A top-level module (MetaReutro) then combines all submodules into the final GSM. This

approach provides a convenient way of managing the development and curation of GSMs.

The MetaReutro model (hereafter referred to as iCN1361) has a total of 1,292 reactions (98

of which are transporters) and 1,265 metabolites. Importantly, iCN1361 fully obeys the law

of mass conservation for carbon, nitrogen, sulfur, oxygen, phosphate and hydrogen (includ-

ing protons), and is also free from erroneous energy-generating cycles, which result from

incorrect reaction directions or atom imbalances (see Methods for details of the theoretical

validation tests and the MEMOTE report: https://github.com/SBRCNottingham/

CnecatorGSM/blob/main/MEMOTE_repo/sbrc_cnecator_gsm/iCN1361_MEMOTE_

report.html).

Next, to enable the model to predict gene knockouts and to allow integration of gene

expression data, we derived the relationships between genes and reactions (i.e., the combina-

tion(s) of genes required for the enzyme activity). Here, ScrumPy was again used to extract the

gene(s) information associated with each reaction. The gene-reaction relationship was defined

as a protein complex if multiple genes from the same operon were associated to the same reac-

tion. We could assign a gene-reaction rule to 1,085 of the internal reactions in the model. The

remaining reactions consisted of 15 spontaneous reactions and 94 reactions that had been

added due to gap filling but for which no homologous gene could be found with the correct

functional annotation.

The final version of the model is provided in both ScrumPy and SBML formats in the

GitHub repository (https://github.com/SBRCNottingham/CnecatorGSM/tree/main/Model).

An Excel file listing the metabolites, reactions and gene-relationships and biomass equation is

also provided in the supplementary material (Tables A-E in S1 Data).
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Comparison to RehMBEL1391

We have carried out a comparison of the network properties of iCN1361 to the recently

updated version of RehMBEL1391 GSM of C. necatorH16 (Table 1). It should be noted that

the significantly higher number of reactions in the recently updated version of RehMBEL1391

is mostly caused by a considerably larger number of reactions associated with transport. Only

17 of these transport reactions have been assigned a gene association, and thus it is unclear

whether C. necatorH16 is able to carry out the function. In iCN1361, we instead include only

transporters where experimental evidence confirms the function is present. In all other catego-

ries listed in Table 1, our model iCN1361 scores higher than the updated version of

RehMBEL1391. The MEMOTE report for RehMBEL1391 shows that, in strong contrast to

iCN1361, stoichiometric inconsistencies and reaction imbalances remain in the model despite

the significant improvements. A more detailed comparison of the two models, including a

comparison of their predictive capabilities, can be found on our GitHub repository: https://

github.com/SBRCNottingham/CnecatorGSM/blob/main/JupyterNotebooks/Comparisons_

RehMBEL1391.ipynb.

Metabolic pathways in iCN1361

We identified the number of functional metabolic reactions in the model by calculating the

minimum (vmin
i ) and maximum (vmax

i ) flux values for each reaction using flux variability analy-

sis (FVA), whilst the lower and upper bounds of all transport reactions were left uncon-

strained. Reactions for which the minimum and maximum flux values are both equal to zero

are blocked from carrying flux in iCN1361. The total number of active reactions (i.e., vmin
i < 0

and/or vmax
i > 0) in iCN1361 is 850, whilst the remaining reactions are unable to carry flux.

The active reactions can be associated to 239 different biosynthesis subsystems in BioCyc.

These subsystems include biosynthesis pathways for amino acid metabolism, pyrimidine and

purine metabolism, lipid metabolism, cofactors and vitamins metabolism and PHB metabo-

lism. Additionally, the model includes the Entner-Doudoroff (ED) pathway for metabolising

sugars into pyruvate and glyceraldehyde-3-phosphate (GAP). Notably, C. necatorH16 lacks a

gene encoding phosphofructokinase (EC 2.7.1.11) and is therefore unable to utilise sugars via

Table 1. Network property comparisons between iCN1361 and RehMBEL1391.

Property iCN1361 RehMBEL1391 [24]

Number of reactions 1292 1538

Number of transporters 98 384

Number of internal reactions 1194 1154

Number of metabolites (cytosol) 1263 1172

Number of genes 1361 1345

Reactions with GPR� 1110 1051

Blocked reactions 443 593

Functional reactions 793 738

Balanced reactions (%) 99.67 49.23

Erroneous energy-generating cycles 0 0

Unconserved metabolites 0 235

Stoichiometric consistency Yes No

�GPR: Gene-protein-reaction relationships (see the Methods section for a detailed explanation)

https://doi.org/10.1371/journal.pcbi.1010106.t001
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the glycolytic Embden-Meyerhof-Parnas (EMP) pathway. Furthermore, the non-oxidative

branch of the pentose-phosphate (PP) pathway is also included, whereas the oxidative branch

is incomplete because the bacterium lacks a gene coding for phosphogluconate dehydrogenase

(EC 1.1.1.44). The model also includes the complete Calvin-Benson-Bassham (CBB) cycle for

CO2 fixation that enables autotrophic growth.

In the model, ATP is generated strictly via a respiratory electron transport chain (ETC),

which agrees with the literature [4,14,35]. The ETC of C. necatorH16 is highly flexible, allow-

ing for ATP generation under heterotrophic and autotrophic conditions, as well as under both

aerobic and anaerobic conditions. The model therefore includes several dehydrogenases that

transfer electrons to quinones in the first step of the ETC. Under heterotrophic conditions for

instance, either NADH or succinate, both of which are generated from the tricarboxylic acid

(TCA) cycle, can be used as electron donors into the ETC, whilst hydrogen or formate donate

electrons under autotrophic conditions. The electrons can then be transferred from the qui-

nones to the final electron acceptor via several terminal oxidoreductases. During aerobic

growth, two quinol oxidases are present (bo3-type oxidase and bd-type oxidase) that use oxy-

gen as the final electron acceptor. Additionally, ubiquinol-cytochrome-c reductase (CytC)

transfers electrons from ubiquinol to cytochrome c. A cytochrome-c oxidase (aa3/cbb3) then

relocates the electrons from cytochrome to oxygen. Under anaerobic conditions, the model

includes the complete denitrification pathway, which allows for nitrate or nitrite to act as alter-

native electron acceptors.

A total of 442 reactions are currently blocked in the model. Notably, we found that 130

(29%) of these reactions could be associated to BioCyc degradation pathways, and thus the

inclusion of additional transport reactions, and/or further curation for growth on additional

carbon sources (beyond this study) may allow feasible flux through many of these reactions. A

further 95 (22%) blocked reactions are linked to biosynthesis pathways and thus suggest areas

where enzyme-reaction annotations are inaccurate or incomplete (see Table A in S1 Data).

Additionally, we found that a total of 130 (29%) of the dead reactions were linked to enzymes

with promiscuous activity, such that a functional reaction was present in the model with the

same EC number. It is possible that these reactions are correctly predicted as non-functional

and may become activated when simulating versions of the model incorporating heterologous

genes.

Validation of iCN1361 against experimental data demonstrates high

predictive performance for heterotrophic growth conditions

To assess the performance of iCN1361 at predicting metabolic phenotypes, we have compared

the results from the model against experimental data.

iCN1361 accurately predicts metabolic growth phenotypes for a variety of

carbon sources

Firstly, using FBA, we tested the ability of iCN1361 to predict the growth phenotype (i.e.,
growth or no growth) of 131 different carbon sources with known phenotype in vivo, as was

carried out for the previous GSM of C. necatorH16 (RehMBEL1391) in [9]. iCN1361 predicted

the correct phenotype for 62 out of 64 growth supporting substrates and 52 out of 67 non-

growth supporting substrates (see S2 Data), which resulted in an 87% overall accuracy. The

number of false positives (i.e., the 14 carbon sources supporting growth in the GSM but not in
vivo) may be due to C. necator lacking genes required for transporting these substrates, which,

in our analysis, were assumed present to carry out the test.
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iCN1361 accurately predicts central carbon metabolism fluxes for growth

on fructose

Next, we tested the GSMs ability to quantitatively predict growth rates and intracellular fluxes

of C. necatorH16 growing on fructose. First, we used the experimental data reported in [9] to

validate whether the model is capable of predicting growth rates that are comparable to those

found in vivo. For this simulation, the uptake rate of fructose was constrained using the experi-

mentally determined value (see Fig 1A), whilst all other minimal media nutrients were freely

available. As shown in Fig 1A, the GSM predicts growth and oxygen uptake rates that are in-

line with the in vivo data.

To test whether the optimal solution using FBA involved the correct pathways in the GSM,

we compared our results to previously published metabolic flux data obtained using 13C-

labelled fructose [36]. There, the authors employed 13C-Metabolic Flux Analysis (13C-MFA) to

quantify the intracellular fluxes of central carbon metabolism for growth on fructose, which

provides an independent experimental method for comparing the flux solution predicted

using the GSM. First, we aligned 33 reactions from the 13C-MFA model to the GSM, consisting

of the ED pathway, the PP pathway, EMP pathway, the CBB cycle and the TCA cycle. Note

that this excludes the anaplerotic reactions (R23, R24, R25, R27, R28 and R29 of Fig 1B), since
13C-MFA lacks the ability to accurately predict flux through these reactions [37]. To predict

the fluxes in iCN1361, we then applied parsimonious FBA (pFBA), which identifies the opti-

mal solution in the GSM that maximises growth rate, whilst also minimising the total sum of

fluxes.

Importantly, we found a high agreement between the fluxes, and their directionality, for 25

of the 33 reactions (Fig 1B), resulting in a high correlation between the two model predictions

(R2 = 0.88, calculated using the Pearson correlation coefficient). The small discrepancy

involved reactions in the PP pathway and the CBB cycle. Specifically, the small amount of flux

through the PP pathway active in the GSM solution was required for producing 5-phospho-α-

D-ribose 1-diphosphate (PRPP), an essential precursor for nucleotides biosynthesis, which is

not accounted for in the 13C-MFA model. The 13C-MFA, on the other hand, predicted a small

amount of flux through the CBB cycle, but this was inactive in the optimal pFBA solution.

These differences in flux, however, accounted for only 6% or less of the total fructose flux

entering the system in either model. Notably, malate dehydrogenase (Reaction 37 in Fig 1B)

contributed the largest discrepancy, carrying 33% of the total fructose flux in the pFBA solu-

tion but no flux in the 13C-MFA solution.

Furthermore, we also tested whether the 13C-MFA predictions were feasible in the GSM, if

considering alternative sub-optimal solutions. To this aim, we carried out flux variability anal-

ysis (FVA) to calculate the minimum and maximum flux values for each of the 33 reactions in

iCN1361, whilst constraining the growth rate to a minimum of 90% of the optimum value (Fig

1C). Importantly, all 13C-MFA determined fluxes were reachable in iCN1361 (including

malate dehydrogenase that was responsible for the largest disagreement between the two mod-

els), with the exception of 3 reactions of the TCA cycle (citrate synthase, fumarate hydratase

and aconitate hydratase), 2 reactions from the PP pathway (transketolase and ribulose-phos-

phate 3-epimerase) and 2 reactions involved in glycolysis (phosphoglycerate kinase and glycer-

aldehyde-3-phosphate dehydrogenase). The reason for these discrepancies is possibly due to

the 13C-MFA being limited to central carbon metabolism and thus excluding other important

processes, whilst also neglecting cofactor balancing. The results from the pFBA and FVA simu-

lations are provided in S3 Data.

Finally, we also analysed the fluxes through the ETC that were active in the FBA optimal

growth solution. Experimental flux values are not available for these reactions; however, we
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Fig 1. Experimental validation of central carbon metabolic fluxes for the iCN1361 GSM for growth on fructose. a) GSM prediction of substrate uptake

rates and growth rate using iCN1361 for growth data provided in [9]. Units for the substrates are in mmol/gDCW/h, whereas the growth rate is h-1. Note that

the uptake rate of fructose was constrained in the model using the experimentally determined value. b) Comparison of the fluxes predicted by iCN1361 (blue

bars) and 13C metabolic flux analysis (red bars) for growth on fructose mineral media. The flux in the GSM have been normalised to correspond to a fructose

uptake of 1 mmol/gDCW/h to allow comparison with the 13C-MFA data. c) Minimum and maximum flux values for each reaction, calculated using flux

variability analysis. Blue data points correspond to the pFBA flux prediction, whereas red dots correspond to the 13C-MFA flux prediction. d) Two feasible

routes through the electron transport chain of C. necatorH16 predicted using iCN1361 growing at the maximum growth rate. The flux units are all in mmol/

gDCW/h. See the abbreviations section for the metabolite and reaction names.

https://doi.org/10.1371/journal.pcbi.1010106.g001
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can estimate the amount of ATP produced per oxygen atom consumed (P/O ratio). Two

alternative routes were found available for oxidative phosphorylation for optimal growth on

fructose (Fig 1D), both of which result in a P/O ratio of 1.63. This is close to the P/O ratio

determined for aerobic growth of Escherichia coli, which was estimated at 1.5 [38]. The

route involving NADH dehydrogenase (NDH) and ubiquinol oxidase (b03), is analogous to

the route in E. coli, which couples a proton motive force to the transfer of electrons from

NADH to oxygen. The alternative route transfers electrons from NADH to oxygen, whilst

utilising NADH dehydrogenase, ubiquinol-cytochrome-c reductase (CytC) and cyto-

chrome-c oxidase (aa3/cbb3). Interestingly, the latter route has previously been found active

during conditions of high oxygen availability [39], and thus iCN1361 can be constrained

accordingly.

TraDIS analysis provides a genome-scale in vivo assessment of iCN1361

To test the ability of iCN1361 at determining gene KO phenotypes, we have performed TraDIS

[29], which is a high-throughput in vivo approach for determining gene essentiality in bacteria.

To this end, a library of over 1 million C. necatorH16 transposon mutants was constructed

and the number of insertions per kilobase per million (IPKMc) was calculated for each CDS,

as previously described by Hwang et al. (2018) [40]. A log2(IPKMc+1) (insertion index)

threshold of 3.9 was determined as described in the Methods section, so that the C. necator
H16 genes with insertion indexes equal or lower than this cut-off value (log2(IPKMc+1)� 3.9)

were identified as essential (see Table A in S4 Data and Methods for details). Similarly, a

log2(IPKMc+1) threshold of 4.4 was determined, such that C. necatorH16 genes with an inser-

tion index greater or equal to this cut-off (log2(IPKMc+1� 4.4) were classified as non-essen-

tial. Genes with an insertion index falling in between the 3.9 and 4.4 thresholds were not

classified as essential or non-essential. Also note that, due to low sequencing coverage of some

genomic regions of C. necatorH16, a total of 204 and 198 genes were excluded from the Tra-

DIS analysis for the super optimal broth (SOB) and fructose mineral media (FMM) conditions,

respectively (see Table A in S4 Data for details). Notably, however, only 20 and 15 of these

genes are involved in the GSM, respectively.

Gene essentiality estimations have recently been published for C. necatorH16 grown on

fructose, as well as on other carbon sources [24], using Tn-Seq analysis. Notably, however, our

TraDIS approach uses a significantly larger transposon mutant library (over 1 M mutants

compared to approximately 60,000 mutants in the Tn-Seq analysis–see Table 2 for a detailed

comparison of these two datasets), and thus provides a more complete coverage of the C. neca-
torH16 genome. Nevertheless, we have used the data to further validate our gene classifica-

tions, particularly for cases where the GSM and TraDIS analysis differed, as discussed in the

next section.

For clarity, we herein refer to an experimental gene deletion as a gene knockout and a

computational gene deletion as a gene deactivation.

Table 2. Comparison of transposon mutant library sizes and average insertion frequencies between TraDIS and the Tn-Seq analysis from [24].

Library Size of coding

regions (bp)

Number of genes

analysed

Average gene length

(bp)

Total

insertions

Insertions after

curation

Unique

insertions

Average insertions per

gene

TraDIS

(FMM)

6,454,517 6,637 972.2 9,415,576 7,158,925 1,335,710 201.2

TraDIS

(SOB)

6,454,517 6,637 972.2 8,315,651 6,226,973 1,050,800 158.2

Tn-Seq (LB) 6,106,532 6,549 932.4 107,708 84,761 60,000 9.2

https://doi.org/10.1371/journal.pcbi.1010106.t002
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iCN1361 accurately predicts gene essentiality under heterotrophic growth

Using the results from the TraDIS analysis, we have experimentally validated the gene essenti-

ality predictions of iCN1361. Here, we predicted in silico the set of genes, amongst those

included in the model, that are essential for growth on FMM.

In Table 3 we show the performance of the FBA predictions for gene essentiality, as com-

pared to TraDIS results, in terms of the number of true (T) and false (F) predictions for essen-

tial (P) or non-essential (N) phenotypes. The overall accuracy of 92%, calculated from the

confusion matrix, provides evidence that the model is capable of predicting gene knockout

phenotypes with comparable accuracy to the well-curated E. colimodel [41].

Using the overall accuracy as a measure of performance, however, can lead to bias when

considering unbalanced classes. Therefore, precision and recall performance measures were

also considered. The precision measure shows that 81% of the genes predicted to be essential

in the model were also identified as essential in TraDIS. On the other hand, recall shows that

only 62% of the TraDIS essential genes were also required for growth on fructose in the model.

For the sake of comparison, we also tested the accuracy of iCN1361 using the Tn-Seq data and

found similar results for the overall accuracy (89%) and precision (77%) scores but a weaker

recall score (51%). The relatively low performance via recall in the model compared to both

approaches is due to the number of genes being classified as non-essential in the model but

identified as essential using the TraDIS-based approaches. This underestimation of the num-

ber of essential genes predicted by iCN1361, with respect to the TraDIS in vivo analysis, was

not entirely unexpected. Indeed, the model does not consider information about gene expres-

sion regulation and, as a result, alternative pathways or isoenzymes identified in the GSM may

not carry enough flux to sustain C. necatorH16 growth in vivo. The number of false-negative

genes coding for isoenzymes that are potentially inactive or poorly expressed during growth

on fructose in vivo was therefore further investigated. Notably, using the GSM we found that

30 of the 79 FN genes were associated with at least 1 essential reaction that could be catalysed

by at least 1 other isoenzyme. Using previously published RNA-Seq data obtained for C. neca-
torH16 growing on fructose [42], we compared the expression levels of genes encoding for iso-

enzymes associated with reactions identified as essential in the GSM. For each of these

reactions, the most expressed isoenzyme-encoding gene was identified, and any other isoen-

zyme-encoding gene, which showed expression levels at least 5-fold lower than the most

expressed gene (see Table D in S4 Data), was subsequently deactivated in the model. The con-

strained model was then used to update the GSM gene essentiality predictions, and, impor-

tantly, showed that gene expression integration was able to improve the recall performance

metric to 69%. The isoenzymes that were associated to essential reactions but had low gene

expression and thus deactivated in the model, may indicate inaccurate enzyme-reaction anno-

tations. Alternatively, however, the isoenzymes may each have unique kinetic properties that

are required for varying the metabolic flux activity and/or direction, and thus may be impor-

tant for growth under different environmental conditions or during specific growth phases.

Even though additional information is required to further investigate the role of isoenzymes,

constraining the model using gene expression data for specific growth conditions currently

offers a valuable solution, as demonstrated here.

Table 3. Confusion matrix showing the number of true positives (TP), true negatives (TN), false positives (FP)

and false negatives (FN), obtained by comparing TraDIS results with GSM predictions.

Essential in GSM Non-essential in GSM

Essential in TraDIS experiments 127 (TP) 79 (FN)

Non-essential in TraDIS experiments 29 (FP) 1080 (TN)

https://doi.org/10.1371/journal.pcbi.1010106.t003
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We compared the false-negatives to the Tn-Seq analysis and found that 55 of the 79 FN

genes were also essential in the Tn-Seq data. One of the intrinsic limitations of TraDIS-related

approaches (including Tn-Seq), however, is that transposon insertions in genes associated

with viable but slow-growing gene knockout mutants are often under-represented in the

sequencing results, since these mutants are outcompeted by faster growing strains. As a result,

these genes may be misclassified as essential in the TraDIS predictions [29]. Therefore, we

tested whether any FN genes were predicted to be growth-limiting in the model (i.e., reduced

the growth rate in the GSM to 85% of the wild-type growth rate or lower). The GSM predic-

tions show that deactivating any of the 9 genes encoding the NADH dehydrogenase complex,

or any of the 4 genes coding for the succinate dehydrogenase subunits, results in inactive

enzymes, which severely affect the in silico growth rate. Indeed, even though alternative solu-

tions exist in the model, these are not as efficient at transferring electrons as the NADH and

succinate dehydrogenases, which play key roles in the ETC. For example, the model predicts

that additional membrane-bound enzymes, including NADH type-II, alcohol, glycerol and

proline dehydrogenases, are able to partially restore the flux through the ETC via electron

donation from NADH, ethanol, glycerol and proline, respectively. The availability of these sub-

strates, particularly the amino acid proline, however, may be tightly regulated with amino acid

biosynthesis being required for growth and thus may not be feasible in vivo.
Additionally, the GSM predicted that deactivation of the 2 genes encoding subunits of the

2-oxoglutarate dehydrogenase complex, which is part of the TCA cycle, does not result in an

attenuated growth phenotype, but increases the demand for oxygen. The alternative solution

predicted by the model involves the activation of the glyoxylate shunt, which enables the

replenishment of the essential TCA metabolites (succinate and malate). Additionally, the GSM

also predicted increased oxygen uptake when deactivating theH16_A1188 gene, coding for a

2-phospho-D-glycerate hydrolase, which catalyses the conversion of 2-phosphoglycerate

(2-PG) to phosphoenolpyruvate (PEP) in one of the final steps of the ED pathway, leading to

pyruvate production. An alternative route in the model exists, however, that utilises the serine

biosynthesis pathway to convert 3-phosphoglycerate (G3P) to serine, and then subsequently

converts serine to pyruvate via serine ammonia-lyase, which thus bypasses the last two steps of

the ED pathway. However, as discussed for proline, the flux through the biosynthetic pathway

for the amino acid serine is again likely controlled by tight regulation. Therefore, this alterna-

tive route may not be feasible in vivo.
Further inspection into the 33 remaining FN genes (see Table D in S4 Data), revealed sev-

eral cases where again missing regulatory information and/or kinetic parameters are likely lim-

iting the GSM predictability. Other FN genes were involved in the oxidative stress response.

Since the setup of the FBA formulation only considers biomass components as essential cellu-

lar processes, incorrect classification of genes involved in stress response is to be expected.

Some of the FN genes may indicate areas of the model that are still incomplete and may

require additional curation. Several FN genes, for instance, were involved in dTDP-rhamnose

biosynthesis, which is a nucleotide sugar used in the O-antigen component of lipopolysaccha-

rides (LPS). The LPS composition in C. necatorH16, however, is not well defined and the LPS

biosynthesis pathway is poorly annotated. For that reason, a generic pathway from E. coli was

used in iCN1361. These forementioned discrepancies, thus point to areas of future develop-

ment of the model, which will become possible as gene annotation improves and as data avail-

ability increases to enable the integration of the GSM with more advanced modelling

techniques that can account for enzyme kinetics and regulation.

Despite these discrepancies, the iCN1361 achieves a high overall accuracy for predicting

gene essentiality phenotypes that is comparable to the performance of the well-curated E. coli
model, iAF1260 [41].
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Experimental verification of C. necator null mutants for selected FP genes

Essentiality predictions produced by iCN1361 disagreed with in vivo observations also for a set

of 29 FP genes (see Table C in S4 Data), which were not identified as essential for growth in

FMM using TraDIS. Out of these 29 false positive predictions, 19 were also classified as false

positives when comparing to the Tn-Seq data, whilst 9 were predicted as essential in agreement

with the GSM predictions. To verify which of these approaches was correct, 6 of these genes

were inactivated in C. necatorH16. The insertion index values observed following growth in

FMM for 3 of these genes (H16_A0792,H16_A3408 andH16_A3434) were just above the non-

essentiality classification threshold (log2(IPKMc+1) > 4.4), since they ranged between 4.64

and 5.13, while the remaining 3 genes (H16_A3038,H16_A3084 andH16_A3165) showed

very high insertion index values (log2(IPKMc+1) > 10). TheH16_A0792 (pheA) and

H16_A3434 (aroB) genes code for a prephenate dehydratase and a 3-dehydroquinate synthase,

respectively, and are involved in the biosynthesis of the aromatic amino acids tryptophan, phe-

nylalanine and tyrosine. In particular, aroB is involved in the synthesis of all three amino

acids, while pheA only plays a role in the production of phenylalanine and tyrosine. The other

gene characterised by an insertion index of around 5,H16_A3408 (hisE), codes for a phosphor-

ibosyl-ATP pyrophosphatase and is also involved in amino acid metabolism (histidine biosyn-

thesis). The remaining genes,H16_A3038 (nadA),H16_A3084 (panB) andH16_A3165 (ubiC)

are linked to different cellular processes (biosynthesis of NAD/NADP; (R)-pantothenate and

CoA; and ubiquinone) and respectively encode a quinolinate synthetase A protein, a keto-

pantoate hydroxymethyltransferase and a chorismate lyase. To test whether any of these

enzymes was essential for growth, C. necator single mutants in each of these genes and their

parental strain C. necatorH16 wild type were cultivated in SOB and FMM (Fig 2).

As shown in Fig 2, all 6 mutants retained the ability to grow in SOB complex medium and

showed growth rates comparable to the wild-type strain. These results are consistent with the

TraDIS data since the insertion index values calculated for these genes under these growth

conditions (ranging between 9.76 and 11.77) were all significantly higher than the essentiality

threshold. On the other hand, none of the mutants managed to grow in FMM. This outcome

was somehow expected for the ΔA0792, ΔA3408 and ΔA3434mutants since the FMM inser-

tion indexes associated with the genes inactivated in these strains were very close to the essenti-

ality cut-off and most of the transposon insertions identified in these genes mapped in

proximity of their 5’ and 3’ ends. However, the nadA, panB and ubiC genes showed FMM

insertion indexes over 2-fold higher than the essentiality threshold, with values comparable to

those observed following growth in SOB. Therefore, according to the TraDIS predictions, the

nadA, panB and ubiC genes are not essential and the ΔA3038, ΔA3084 and ΔA3165mutants

should have been able to grow in FMM. Notably, 2 out of these 3 genes (H16_A3038 and

H16_A3165) were also incorrectly predicted as non-essential in the Tn-Seq data. These incon-

gruencies could be explained as the result of an intrinsic limitation of the TraDIS approach.

Indeed, in these experiments, a large number of different strains are pooled together under

growth conditions of interest, where they are made to compete for limited amounts of

resources. Within this bacterial population there would be a subset of cells that is unfit for this

specific ecological niche and would therefore die and, eventually, lyse. The metabolites released

in the culture medium by lysed cells or excreted by viable mutants that may accumulate inter-

mediates as a consequence of metabolic pathways disruption, become available to the rest of

the bacterial population. It is possible that, in our TraDIS experiment, traces of nicotinate,

2-dehydropantoate/(R)-pantoate and 4-hydroxybenzoate may have been present in FMM at

sufficiently high concentrations to sustain the growth of null mutants for the nadA, panB and

ubiC genes, respectively, thus by-passing the need for the essential enzymes encoded by these
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genes. However, when cultures were set up in FMM starting from clonal populations of the

ΔA3038, ΔA3084 and ΔA3165mutants, these failed to grow since they were unable to synthe-

sise the essential metabolites NAD/NADP, (R)-pantothenate/CoA and ubiquinone, respec-

tively. Interestingly, most of the other genes involved in these three metabolic pathways,

especially those controlling the enzymatic reactions located downstream of the steps catalysed

by the products of the nadA, panB and ubiC genes, were identified as being essential for

growth in both SOB and FMM by the TraDIS approach. These observations suggest that avail-

ability of other key intermediates of the NAD/NADP, (R)-pantothenate/CoA and ubiquinone

biosynthetic routes (e.g., deamino-NAD+, (R)-pantothenate and 3-polyprenyl-4hydroxybenzo-

ate, respectively) in FMM during the course of the TraDIS experiment, may not have been suf-

ficient to rescue the C. necatormutants unable to produce these metabolites. Alternatively, the

uptake rates for these metabolic intermediates may have been significantly slower than their

biosynthetic rates, under these experimental conditions. As a result, mutants for the genes con-

trolling the synthesis of deamino-NAD+, (R)-pantothenate and 3-polyprenyl-4hydroxybenzo-

ate (H16_A0913/nadD,H16_A2959/panC andH16_A3107/ubiA, respectively) were

Fig 2. Growth of C. necatorH16 wild type (H16 wt) and its isogenic mutants ΔA0792, ΔA3038, ΔA3084, ΔA3165,

ΔA3408 and ΔA3434 on a) SOB (top panel) and FMM (bottom panel) plates, and liquid SOB (b) and FMM (c). Details

about cultures set up are reported in the Methods section.

https://doi.org/10.1371/journal.pcbi.1010106.g002
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outcompeted by faster growing strains. Consequently, only very few transposon insertions

could be detected in these genes at the end of the TraDIS experiment. This limitation may be

responsible for the misclassification of genes as non-essential in both our TraDIS and the Tn-

Seq approaches. The small number of discrepancies found between the two transposon-

sequencing based approaches, however, is likely the result of using slightly different experi-

mental conditions.

Overall, these results indicate that GSM and TraDIS offer complementary approaches for

the identification of essential genes in bacteria and should therefore be used in combination to

obtain more reliable gene essentiality predictions.

Integration of transcriptomics data to investigate nitrogen-limited

conditions

To demonstrate the relevance of the curated GSM for biotechnological applications, we

employed iCN1361 to investigate the metabolic changes occurring in C. necator H16 during

nitrogen-limited conditions, where carbon flux is re-directed towards the PHB biosynthesis

pathway. This pathway consists of 3 enzymes, β-ketothiolase (encoded by phaA), acetoacetyl-

CoA reductase (encoded by phaB) and PHB synthase (encoded by phaC), which convert ace-

tyl-CoA to PHB, whilst consuming NADPH, and thus provides a sink for storing the excess

carbon and energy generated from the Entner-Doudoroff pathway.

Applying standard FBA however, whilst mimicking nitrogen-limited conditions, resulted

in pyruvate and lactate production rather than PHB. Notably, pyruvate production is in-line

with experimentally observed behaviour of PHB-negative strains [43]. By applying FVA, we

found that several alternative solutions are available in the model under nitrogen-limited con-

ditions, which can result in various by-products, including acetate, lactate, pyruvate, succinate,

formate, ethanol, hydrogen, propionate and also PHB (Fig 3). Therefore, we next applied flux

sampling analysis to iCN1361, which generates a probability distribution for each reaction and

thus allows us to explore the likeliness that each product is synthesised [44]. Using this

approach, however, we found that the probability distribution of 505 reactions were signifi-

cantly different across repeated sampling runs, which suggests a lack of convergence due to the

high number of alternative solutions. To reduce the number of alternative solutions, and

hence the variety of different by-products, we therefore integrated RNA-Seq data derived from

nitrogen-depleted conditions to generate a condition-specific version of iCN1361, which is

highly constrained according to the expression levels of the corresponding genes. We will refer

to iCN1361, without RNA-Seq integration, as the base model from this point forward to distin-

guish it from the condition-specific models.

Condition-specific models for growth- and PHB-phases

In this work, we integrated the transcriptomic data reported in [42] with iCN1361 to generate

growth phase and PHB-phase specific models by employing the well-established tool iMAT

[45,46]. This approach searches for a solution that maximises the agreement between the active

fluxes and the transcription data. Specifically, metabolic reactions are categorised as lowly,

moderately or highly active based on the expression levels of their encoding genes.

To run iMAT, we first downloaded the reads per kilobase per million (RPKM) values of the

genes for both growth phase (f16) and nitrogen-limited (or PHB-producing) phase (f26) from

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47759. Lower bound thresholds of

212 and 21 were determined for classifying reactions as lowly expressed, whilst upper bound

thresholds of 11439 and 17535 were determined for classifying reactions as highly expressed,

for the f16 and f26 conditions, respectively (see Methods for details on threshold
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determination). The reactions with expression values that lie in between the low and high

threshold were then categorised as moderate. Growth rates of 0.2 h-1 and 0.009 h-1 were esti-

mated for the f16- and f26-phase conditions, respectively, using the residual biomass curve in

[42] (see Methods for details), which were then used to constrain the model. The minimum

amount of nitrogen required to achieve a growth rate of 0.009 h-1 was also used to constrain

the model for generating the f26-condition specific GSM. The fructose uptake rate was fixed at

2.1 mmol/gDCW/h, which corresponds to the minimum fructose required for achieving a

growth rate of 0.2 h-1. Note that the fructose uptake rate for the nitrogen-limited condition

was assumed to remain at the same level as the growth condition. All transport reactions were

unconstrained in the direction of production to test whether the approach was capable of cor-

rectly predicting PHB as the main by-product. iMAT was then applied to the model con-

strained according to each condition, resulting in two condition-specific models (hereafter

named iCN1361-f16 (growth phase) and iCN1361-f26 (nitrogen-limited phase), which are

provided on https://github.com/SBRCNottingham/CnecatorGSM/tree/main/

JupyterNotebooks/Data).

Predicting the metabolic changes during nitrogen-limited conditions

Next, using the two condition-specific models we investigated the differences in metabolic

fluxes between the two conditions. For this analysis, we again applied flux sampling to each

model to explore the possible range of feasible flux values for each reaction. Unlike the sam-

pling results of the iCN1361 base model, only 3 reactions in the iMAT models were not able to

converge in the sampling results. The probability distribution for each reaction was subse-

quently used to assess whether the flux had significantly altered between the two conditions.

Fig 3. The predicted range of fluxes for by-products in iCN1361 using flux variability analysis, whilst simulating

nitrogen-limited conditions.

https://doi.org/10.1371/journal.pcbi.1010106.g003
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To select the reactions with differentially altered flux, we used the approach outlined in [47],

which uses the Kolmogorov-Smirnov (KS) test to compare flux distributions. Reactions that

are significantly different, which also have a high fold-change (i.e., the ratio of the mean flux

value of the samples for each condition) were selected for further analysis. The reactions with a

negative fold-change are those that are predicted to have a down-regulated flux, whereas those

with a positive fold-change are predicted to have an up-regulated flux.

Using this approach, we found 66 reactions that were significantly up-regulated in the

iCN1361-f26 (nitrogen-limited) model, and 396 reactions that were significantly down-regu-

lated. A large proportion of the down-regulated reactions involved reactions associated with

biomass-related processes, which are essential for growth (as shown in Fig 4). A total of 390 of

these reactions, in fact, showed minimal variation in the flux values across all samples for each

condition (standard deviation < 0.001), suggesting that reaction activity is regulated with the

growth state of the cell.

Importantly, included in the up-regulated reactions was the poly-hydroxybutyrate (PHB)

biosynthesis pathway. The method correctly predicted that excess carbon in the nitrogen-lim-

ited iCN1361-f26 model is redirected towards PHB biosynthesis (ranging between 1.89 and 2.2

mmol/gDCW/h). In addition, no other by-products were produced in the GSM simulations,

which is in agreement with previously reported in vivo observations [48]. Additionally, the

model predicted that the increased production of acetyl-CoA, which is the precursor to PHB

(Fig 5), is achieved via a decrease in flux through the TCA cycle, in agreement with [49], as

well as an increased flux through pyruvate dehydrogenase. Notably, however, despite the sig-

nificant decrease in fluxes, the TCA cycle is still active, in agreement with [48].

Furthermore, the reactions of the CBB cycle, which are involved in CO2-fixation, were also

up-regulated in the iCN1361-f26 model, in agreement with the experimental results in [42,48].

The reason why the CBB cycle is activated during heterotrophic growth conditions is unclear,

therefore we investigated whether the activation of the CBB cycle could be associated to other

metabolic pathways. Here, we used the Pearson’s correlation coefficient to identify reactions

whose probability distribution from the flux sampling was highly correlated to the probability

distribution of the ribulose biphosphate carboxylase (RuBisCo). From these results, we found

an almost perfect anti-correlation to the reactions of the ED pathway (r < -0.99), which is due

to the flux from glucose-6-phosphate isomerase being redirected towards the pentose

Fig 4. The number of reactions predicted to be up-regulated (orange) or down-regulated (green) in the nitrogen-

limited conditions using the genome-scale metabolic model analysis.

https://doi.org/10.1371/journal.pcbi.1010106.g004
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phosphate pathway (Fig 5). More interestingly, however, was the high correlation found to

reactions in the TCA cycle (r > 0.76) and pyruvate dehydrogenase (r > 0.8), which supports

the idea that the bacteria activate CO2-reutilising reactions to maximise PHB production [50].

Notably, the probability distributions of the CBB reactions were not highly correlated to the

Fig 5. Flux diagram of the central carbon metabolism, electron transport chain and the PHB cycle comparing the

predicted flux in the growth and nitrogen-limited phase. The bar charts show the mean flux value from the flux

sampling simulated on iCN1361-f16 (red) and iCN1361-f26 (blue). Reactions that were predicted to have significantly

up-regulated or down-regulated flux in iCN1361-f26 are highlighted with an asterisk. See the abbreviations section for

the metabolite and reaction names.

https://doi.org/10.1371/journal.pcbi.1010106.g005
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PHB pathway reactions. However, by deactivating the RuBisCo reaction from iCN1361, whilst

maximising for PHB production, we could show that the PHB yield was reduced by 16%, simi-

lar to the experimental results from [50].

Furthermore, quite unexpectedly, the fluxes through the reactions involved in PHB-degra-

dation (Reactions 43–45 in Fig 5) were also up-regulated in iCN1361-f26. In this pathway, the

PHB is recycled back to acetoacetate by 3-hydroxybutyrate (3-HB) dehydrogenase, whilst also

releasing an NADH (Reaction 44 in Fig 5). Succinyl-CoA transferase is then utilised to convert

acetoacetate to acetoacetyl-CoA, whilst also converting succinyl-CoA to succinate (Reaction

45 in Fig 5). The cycling of flux through the PHB biosynthesis and PHB degradation pathways

may therefore act as a transhydrogenase for balancing the level of NADPH to NADH during

nitrogen-limited conditions. The excess NADH can then be consumed by the CBB cycle for

sinking the excess electrons, as discussed above. Interestingly, PHB recycling is also supported

by the results in [51], which validated experimentally that PHB production and consumption

can occur simultaneously.

Other reactions with up-regulated flux levels included those involved in the methylcitrate

cycle, which converts propionyl-CoA to pyruvate and succinate. These reactions may become

activated during nitrogen-limited conditions to detoxify the cell from toxic levels of propio-

nyl-CoA, which results from the down-regulation of flux through fatty acid biosynthesis path-

ways. Alternatively, however, the pathway may be activated for replenishing the TCA cycle

metabolites.

A number of reactions involved in glutamate, alanine and aspartate metabolism also had

up-regulated flux levels. These metabolites are nitrogen-rich compounds and thus changes to

their metabolism may be required for scavenging during nitrogen starvation. Similarly, reac-

tions involved in purine metabolism also had up-regulated flux levels, which again may be

required for scavenging. Alternatively, however, some of these reactions are also involved in

consumption of GTP via adenylosuccinate synthase and may therefore be important for regu-

lating the levels of GTP, which has previously been found to be important for survival of bacte-

ria during stress [52].

Finally, the predicted up-regulated fluxes also included reactions of the NAD salvage path-

way, which replenishes the essential NAD molecules by recycling degraded NAD products,

and thus bypassing the de novoNAD biosynthesis pathway from aspartate.

Predicted regulatory control of metabolic pathways for designing

engineering strategies

Understanding the type of control on reactions is important for identifying promising targets

for optimising flux towards a product of interest in metabolic engineering applications. Over-

expressing a gene, which is predicted to increase flux towards the target product, for example,

would be non-effective if its associated reaction is regulated by feed-back inhibition. By com-

paring the changes in flux to the changes in gene expression between the conditions f16

(growth phase) and f26 (nitrogen-limited phase), we can predict whether a reaction is con-

trolled at the transcriptional or post-translational level, in a similar way to the approach

described in [53]. Using this approach, we predicted that 143 (31%) of the up- and down-regu-

lated reactions under nitrogen limitation were likely controlled at the post-translational level.

For validation purposes, we have compared the type of regulatory control predicted for 14

amino acids biosynthetic pathways for which regulation is reported in the EcoCyc database

[54] and that are conserved in C. necatorH16. Importantly, the prediction of transcriptional-

level regulation, post-translational-level regulation, or a combination of the two, for the 14

amino acid biosynthesis pathways, shown in Table C in S5 Data, was in high agreement with
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the regulation outlined in EcoCyc, suggesting these pathways are controlled in a similar way to

E. coli.
Next, we analysed the type of regulation predicted for PHB metabolism. First, the data from

Shimizu et al. (2013) [42] showed that the genes encoding the PHB biosynthesis pathway,

phaA and phaB (Reactions 40 and 41 in Fig 5), were highly expressed under both the f16 and

f26 conditions, whereas up-regulation at the flux level was only predicted for the nitrogen-lim-

ited model. This result suggests that PHB biosynthesis is regulated at the post-translational

level to avoid PHB accumulation competing with cellular growth, which is in-line with the reg-

ulation described in [49] that reported inhibition of β-ketothiolase (Reaction 40 in Fig 5) by

CoA. Evolving this enzyme to prevent CoA inhibition, as well as increasing the concentrations

of the precursor acetyl-CoA and the cofactor NADPH, may therefore offer possible strategies

for increasing PHB (and more generally PHAs) yields in C. necatorH16. Notably, however,

phaC was only moderately expressed during the growth phase, and subsequently increased in

the nitrogen-limited phase (log2 fold change = 1.8) suggesting that PHA synthase may also be

a limiting factor. Over-expression of the phaC gene may thus be a suitable target for increasing

PHAs.

The results from the flux analysis also suggested that flux to acetyl-CoA, the precursor to

the PHB pathway, was increased via pyruvate dehydrogenase in the iCN1361-f26 (nitrogen-

limited) model. Expression of the genes associated to this reaction, however, is down-regulated

in the f26 condition, and thus over-expression of these genes may provide opportunities for

increasing PHB in vivo. This strategy has already been demonstrated experimentally using an

E. coli strain expressing the C. necatorH16 PHB pathway genes [55].

Additionally, the genes involved in increased flux through the CBB cycle in the flux analysis

were up-regulated in the f26 (nitrogen-limited phase) gene expression data [42], which sug-

gests transcriptional regulation. Over-expressing these genes during the optimal growth phase

may therefore offer an opportunity for reducing the CO2 waste from fructose catabolism,

which is then redirected towards PHB or any target product of interest. Increasing product

yields by introducing CO2-fixing pathways to heterotrophic organisms has previously been

suggested for reducing waste CO2 in [56]. An additional electron source, such as H2, however,

is likely required to provide the energy to drive the CBB cycle, as also suggested in [24].

The flux analysis also predicted activity through the PHB degradation pathway, in-line with

the up-regulated gene expression in the f26 (nitrogen-limited) condition [42]. The predicted

ratio of PHB consumption to production rate, however, was very low, and maintaining this

balance likely requires post-translational regulation. Indeed, a previous study suggested that

PHB depolymerase activity in C. necatorH16 is inhibited, either directly or indirectly, by the

signalling molecule alarmone (p)ppGpp [57] since increased intracellular levels of this mole-

cule resulted in improved PHB accumulation.

The predicted regulatory control of the flux for all up- and down-regulated reactions are

provided in Table B in S5 Data, and, importantly, provide useful information for assessing

whether a flux increase through a target reaction would be more readily achieved using inter-

ventions at either the transcriptional (i.e., gene over-expression) or post-translational (i.e.,
enzyme evolution) levels. Such strategies can be applied for increasing PHB, or even more

interestingly, PHA yields in C. necatorH16, through the up-regulation of 3-hydroxybutyrate

(3HB) and other hydroxy-alkanoate CoAs.

Discussion

The natural ability of C. necatorH16 to grow on a variety of low-cost feedstocks, including

CO2, whilst also producing large quantities of PHB during nutrient-limited conditions, make
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it a particularly attractive host for producing biochemicals and biofuels [4]. However, identifi-

cation of genetic modifications and cultivation conditions for its optimal application as a

microbial cell factory requires a comprehensive system-level understanding of its metabolism.

A curated genome-scale metabolic model is fundamental for such a task. A major challenge in

GSM development and analysis, however, is the readability and reusability of models. Often

GSMs, including the original GSM of C. necatorH16 [9], are constructed using non-systematic

identifiers for metabolites and reactions, which considerably complicates the application of

analysis packages, interpretation of results and further improvements of the model. Although

a huge effort was recently made to improve the model readability of RehMBEL1391 [24], the

lack of identifiers and chemical formulae for a significant subset of metabolites, makes it diffi-

cult to perform theoretical validation, such as stoichiometric and mass balance checks.

In this work, we integrated the BioCyc PGDB into the model construction process using

the ScrumPy software package to generate iCN1361, a GSM of C. necatorH16 that includes

the database identifiers for metabolites and reactions, whilst also enabling faster and auto-

mated model refinement as the database is updated. Furthermore, the ScrumPy version of our

model uses a modular framework, which separates the automated and manually curated reac-

tions, as well as different metabolic subsystems, and thus enhances the readability of the model

for future researchers to understand and use. Importantly, unlike the RehMBEL1391 model,

we could demonstrate that iCN1361 is stoichiometrically and mass balanced.

We tested the performance of our new GSM using a more comprehensive set of experimen-

tal data. As part of this validation, we first demonstrated that the model can predict growth

phenotypes for a variety of feedstocks. Additional validation, which compared the GSM results

to previously published 13C metabolic flux analysis, demonstrated that iCN1361 is accurately

predicting internal fluxes of central carbon metabolism, whilst C. necatorH16 is growing on

fructose. Notably, accurately predicting internal metabolic fluxes is fundamental to the rational

design of metabolic engineering strategies for strain development.

Also important in strain development, is the ability of the model to predict metabolic

behaviour during targeted engineering. In this work, we have therefore carried out a genome-

wide gene essentiality screening using a TraDIS approach to determine in vivo knockout phe-

notypes for assessing iCN1361’s predictive ability. Importantly, iCN1361 achieved an overall

performance of 92%, precision accuracy of 81% and recall accuracy of 62% for predicting gene

essentiality phenotypes. Moreover, we could improve the recall performance to 69% by inte-

gration of gene expression data to remove inactive isoenzymes. To improve the recall measure,

further, incorporation of regulation, enzyme kinetics and/or thermodynamic constraints are

likely required to remove alternative flux solutions in the model, which are not feasible in vivo.
Comparing the discrepancies to Tn-Seq gene essentiality predictions available from a recent

study [24], showed that 70% of the false negatives agreed with the TraDIS results, further sug-

gesting additional constraints are required to correct these gene knockout phenotypes in

iCN1361.

To address the discrepancies between the GSM and TraDIS gene essentiality predictions

defined as false positives, a classical genetics approach was carried out to test the fitness of C.

necatorH16 mutants, carrying the in-frame deletions of 6 genes that were predicted to be

essential by iCN1361 but not by TraDIS (or by the Tn-Seq predictions for 3 out of the 6

genes), during growth in FMM. None of these mutants grew under these experimental condi-

tions, thus confirming the in silico predictions. The ambiguity of gene essentiality for genes

that lie close to the determined threshold, as well as intrinsic limitations of the TraDIS-based

approaches are likely responsible for these misclassified genes. Overall, our results clearly indi-

cate that GSM and TraDIS present complementary advantages and limitations in predicting

gene essentiality. We therefore propose a new “gold standard” pipeline for the identification of
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conditionally essential genes in bacteria that is based on the integration of in silico (GSM) and

in vivo (TraDIS and/or Tn-Seq) system-level approaches. Wherever feasible, additional data

derived from transcriptomic and classical genetics analysis should also be incorporated in this

pipeline to minimise the points of conflict between the in silico and in vivo genotype-pheno-

type relationship predictions.

Notably, useful insights from a metabolic engineering point of view can be extracted from

the results. Indeed, the identification of the essential core genome of a given bacterial species

represents the first step towards the construction of streamlined strains that only retain the

minimal set of essential genetic functions. The use of these strains as microbial chassis for bio-

technological applications should improve yields and economics of these bioprocesses since

the inactivation of non-essential cellular functions is likely to result in a more efficient utilisa-

tion of resources, with respect to wild-type strains. Moreover, because of their decreased meta-

bolic complexity, genome streamlined bacterial strains can serve as powerful tools to improve

GSM predictions and, in turn, facilitate further strain development processes. Furthermore,

such information can also be useful when considering suitable growth-coupling strategies,

which rely on the inactivation of an essential function to force flux towards heterologous path-

ways for restoring growth.

Additionally, we used iCN1361 to investigate the metabolic changes occurring during

nitrogen-limited conditions to provide insights for designing strains with improved produc-

tion of PHB or, more generally, PHAs, which are co-polymers generated by the combination

of 3HB with other hydroxy-alkanoates and have improved chemical and mechanical proper-

ties, as compared to PHB. We found that performing standard FBA under conditions simulat-

ing nitrogen depletion resulted in pyruvate production, as previously demonstrated in vivo
using a PHB-negative strain [43]. Using the iMAT method, we generated a condition-specific

model to represent C. necatorH16 during nitrogen-limitation, which correctly predicted PHB

production as the sole product (other than CO2). Further insights from the predicted internal

fluxes suggested metabolic rewiring that interestingly included the up-regulation of the CBB

cycle, which balances excess electrons whilst simultaneously avoiding carbon loss via CO2.

Importantly, an active CBB cycle for growth on fructose has previously been observed experi-

mentally but could not be predicted using the iCN1361 base model, due to the high level of

redundancy in the model that prevented the results from converging in our analysis. Both

results demonstrate the importance of solution space reduction by experimental data for a reli-

able analysis of biological properties using GSMs. Notably, the iMAT algorithm can also be

integrated with proteomics data, and thus it would be interesting to investigate whether a pro-

teomics-based iMAT model produces similar results. Currently, however, only transcriptomics

data are available for C. necatorH16 growing in batch culture. For continuous culture see [24].

Additionally, we predict whether metabolic activity is transcriptionally or post-translation-

ally controlled for several important metabolic pathways, including amino acid biosynthesis

and PHB metabolism. This provided valuable information that can be used for determining

potential overexpression candidates to redirect metabolic fluxes towards production of a target

chemical. As future work, it would be interesting to carry out dynamic modelling at the path-

way level, to validate any candidates proposed from our analysis.

Whilst we have shown that iCN1361 can predict metabolic behaviour with a high degree of

accuracy, there are many ways in which the model can be improved and developed further,

which could reduce the number of discrepancies with in vivo results. The current model is a

simplified representation of metabolism, lacking information regarding enzyme kinetics, ther-

modynamic feasibility, and gene expression regulation, and thus can sometimes lead to solu-

tions that are not possible in vivo. Approaches such as iMAT are useful for constraining the

model according to gene expression or proteomics data for a given environmental condition,
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however, the approach is based on the assumption that gene expression or protein abundance

is highly correlated to reaction flux, and thus still ignore the effect of kinetic and thermody-

namic regulation. More advanced techniques, such as Resource Balance Analysis [24],

GECKO [58] and matTFA [59], overcome these limitations by incorporating enzyme turnover

rates and metabolite concentrations, to reduce the solution space. As data availability improves

for C. necatorH16, these tools can be applied to iCN1361 to improve the predictive accuracy

of the model.

To summarise, we have presented a new GSM of C. necatorH16, named iCN1361, that

allows for easier reusability by other researchers, which should benefit the greater scientific

community by facilitating the further development of the model as future experimental data

become available. Importantly, we demonstrated that combining iCN1361 and TraDIS data

provides an accurate platform for predicting gene knockout phenotypes in C. necatorH16.

Additionally, we showed that incorporation of omics data to overcome the lack of regulatory,

kinetics and thermodynamic information in iCN1361, improves predictions and provides use-

ful metabolic insights. More broadly, we expect that the model, as well as the results presented,

will provide useful information for guiding engineering efforts for facilitating the implementa-

tion of C. necatorH16 as a microbial chassis for biotechnological applications.

Methods

Genome-scale model construction pipeline

We used the pipeline outlined in [30,31,33] for constructing the model using the ScrumPy2.0

software package [26]. This approach uses a modular framework for building a genome-scale

metabolic model, such that the model is divided into several submodels that are combined by a

top-level module (‘MetaReutro.spy’). This approach allows for reactions, derived automatically

or manually, to be defined separately, which is helpful for managing the development and

curation of the model. In the following we describe the 7 submodels that were constructed for

the iCN1361 model.

Extraction of BioCyc reactions for C. necator H16 (AutoReutro.spy)

The initial step of the construction pipeline involves the construction of a draft model based

on the information provided in BioCyc’s Pathway Genome Database (PGDB) for C. necator
H16. To do this in an automated way, we downloaded the flat files of the PGDB (Reutro, v.

21.0) from BioCyc’s FTP site. The module ‘PyoCyc’ in ScrumPy was then used to parse the

information from these files to extract a draft model of reactions and metabolites. Some reac-

tions in the PGDB include generic metabolite names, such as a ‘carboxylate’, an ‘amino acid’

and an ‘aldehyde’ and were either removed from the model or substituted with specific metab-

olite instances. The remaining reactions were checked and corrected for any stoichiometric

inconsistencies in regard to C, N, S, P, O and H atoms.

Electron Transport Chain (ETC.spy)

The electron transport chain (ETC) reactions were manually defined in the submodel ETC.

spy. These reactions involve proton translocation from the cytoplasmic space to the periplas-

mic space, generating energy in the form of a proton gradient, which results in protons being

re-consumed via the ATP synthase reaction. The protons in the intracellular and periplasmic

space compartments have unique identifiers to avoid problems with stoichiometry. The reac-

tions involved in the ETC were extracted from [35].
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Biomass transport reaction and ATP maintenance (Biomass.spy)

Cellular growth is represented in the model by an artificial reaction (included in Biomass.spy)

that consumes the individual components, in the correct composition, that are required for

producing 1 g dry cell weight of biomass. The units of the biomass precursors (defined on the

left-hand side of the reaction) are in mmol�gDCW-1. Additionally, we include the growth-asso-

ciated maintenance (GAM) in the biomass reaction, as previously described in [60]. Previous

work [9] has estimated GAM as 15.3 gATP�gDCW-1, which we then converted to 30.166

mmol�gDCW-1 and include in the left-hand-side of the biomass equation. The non-growth

associated maintenance (NGAM), which has been estimated as 3.0 mmol�gDCW-1�h-1 in [9],

is represented by an independent reaction that consumes ATP:

ATPM : ATPþH2O➔ADPþ Pi þHþ

We also include this reaction in the submodel ‘Biomass.spy’.

The full list of biomass components and the calculations are provided in Table D in S1

Data). Here, we have used the data from [9] to define the compositions of the protein, DNA,

RNA, phospholipids (including the fatty acids within), carbohydrate, cofactors and vitamins.

The macromolecular composition provided in [9], however, includes a considerably high pro-

tein content and very low RNA content. We therefore adjusted these values based on the aver-

age E. coli cell that is provided in [41].

Alternative biomass representation (BiomassTrReacs.spy)

An alternative approach for modelling biomass involves the addition of individual transport

reactions for each biomass precursor. The flux through the lower and upper bounds of the

reaction can then be set according to the molecular composition of the cell. This kind of repre-

sentation of the biomass is useful for identifying which biomass components are growth limit-

ing in the curation stage, and for carrying out sensitivity analysis to small changes in the

biomass composition. This representation also enables variation in the biomass composition

that can occur at different growth rates and for growth on different substrates.

Phospholipids and fatty acid biosynthesis pathways (PHL.spy)

The generic pathways for phospholipid biosynthesis were extracted from the PGDB database

using the PyoCyc module in ScrumPy. These pathways contain the metabolite ‘an acyl-[acyl-

carrier protein]’ in some of the reactions, which is to account for the possibility of different

fatty acids being consumed. We therefore manually added a copy of these reactions to the sub-

model ‘PHL.spy’ file for each of the fatty acids found in C. necator. Each reaction was given a

distinct identifier by adding a suffix relating to the number of carbons in the specific fatty acid

(e.g., ‘_C16’ was added if palmitate was consumed). The BioCyc database is limited to the bio-

synthesis of even chain saturated fatty acids. We therefore manually added the reactions

involved in the synthesis of odd chain fatty acids to this submodel. Similarly, the biosynthesis

of palmitoleate was available but the other unsaturated fatty acids were manually added and

included in this submodel.

Lipopolysaccharides biosynthesis pathways (LPS.spy)

We included the generic pathway to lipopolysaccharide (LPS) biosynthesis available in the

MetaCyc PGDB (v 21.0) for E. coli in a separate submodel. The LPS composition can vary in

different bacteria, therefore including it as a separate submodel allows easy curation of the
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reactions. To our knowledge, the LPS composition has currently not been defined for C. neca-
tor, and so was assumed to be the same as the LPS composition in E. coli in iCN1361.

Gap filling (ExtraReacs.spy)

Due to the incompleteness of the BioCyc PGDB, essential reactions for producing the biomass

precursors were absent from the model. These missing reactions were identified via Blast+ or

the KEGG database and added to the ExtraReacs.spy module. Similarly, gap-filling was carried

out to fulfil growth in the model on feedstocks for which experimental evidence exists for C.

necatorH16.

Transport reactions for uptake and secretion of metabolites (Transporters.

spy)

A transport reaction for each metabolite known to be consumed or produced by C. necator
H16 was added to a separate submodel. These reactions all include the suffix ‘_tx’, which

makes them easily identifiable for setting constraints on uptake and production. The prefix

‘x_’ was also added to metabolites that were in the extracellular compartment. Notably, we also

represent PHB storage using an artificial transport reaction in this submodel.

Gene-reaction relationships

The gene-reaction relationships are defined in a GSM using boolean logic [60,61]. A reaction

that is associated with an enzyme complex is dependent on all genes within the complex being

expressed and are therefore represented by an ‘AND’ relationship. Alternatively, there exist

some reactions that are associated with multiple genes (i.e., isoenzymes), and rely on only 1 of

the genes being active. Reactions associated with isoenzymes are represented using an ‘OR’

relationship. To identify the gene-relationships for C. necator, we first used the PyoCyc module

in ScrumPy to automatically derive a list of genes associated to each reaction. The genes associ-

ated with a reaction were defined as a complex only if they were present in the same operon. If

the genes are being expressed simultaneously then it is highly likely they form a complex. The

information regarding which operon a gene was contained in, was also automatically extracted

from the PGDB database using the PyoCyc module in ScrumPy. The remaining genes were

then assumed to be acting as isoenzymes. Any reaction that had been added to the model

through the initial automatic construction but was not essential for a known metabolic func-

tion and for which a gene association could not be determined, was removed from the model.

Missing gene annotation for essential reactions were checked in KEGG and UniProt and

added to the model if available.

Model analysis

The set of reactions in the GSM are represented mathematically using a stoichiometric matrix,

N, in which rows represent themmetabolites and columns represent the n reactions. The

entries in N correspond to the stoichiometries of the metabolites in the reaction. Negative and

positive entries are used to represent metabolite consumption and production in the reaction,

respectively. The changes of metabolite concentrations can be modelled using a system of

kinetic equations, such that

dx
dt
¼ Nv ð1Þ

where v is a vector of length n corresponding to the fluxes through reactions and x is a vector

PLOS COMPUTATIONAL BIOLOGY A genome-scale metabolic model of Cupriavidus necator H16

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010106 May 23, 2022 24 / 35

https://doi.org/10.1371/journal.pcbi.1010106


of metabolite concentrations of lengthm. Eq 1 can then be simplified by assuming the metabo-

lite concentrations have reached a state where they are not changing over time (Nv = 0). For

most metabolic networks, the number of reactions exceeds the number of metabolites (n>m),

and results in multiple solutions existing for this coupled system of equations. Constraint

based approaches can be applied to explore possible flux distributions.

Flux balance analysis (FBA)

In this work, we identified feasible flux distributions using flux balance analysis (FBA) [62].

FBA finds the optimal flux distribution that maximises or minimises some biologically relevant

objective function, Z, whilst also satisfying a set of constraints. The objective function can be

any linear combination of fluxes multiplied by a vector of weights (Z = cTv). Additional con-

straints are added to the LP to reduce the feasible solution space. Knowledge of reaction direc-

tionality and metabolite uptake and production rates are incorporated into the LP as lower

and upper bounds on reactions (vlb, vub), for example. The LP is formulated as follows:

max: Z ¼ cTv

s:t: Nv ¼ 0

vlb � v � vub

ð2Þ

In this work, we assumed that bacteria evolve to optimise their cellular growth, whilst also

minimising their enzymatic burden. This method is called parsimonious flux balance analysis

(pFBA) and involves solving two LPs [63]. Standard FBA is performed in the first step with

maximisation of the growth rate (i.e., the flux towards the biomass equation) as the objective

function. The optimal growth rate is then fixed as an additional constraint. The second LP is

then solved with minimisation of the total sum of fluxes as the new objective function:

min: jvj

s:t: Nv ¼ 0

vlb � v � vub
cTv ¼ Z

ð3Þ

where c contains a weight of 1 in the position corresponding to the biomass reaction and zero

elsewhere. To mimic minimal media in aerobic conditions, we constrained both LPs to allow

for the free uptake of sulfate, phosphate, ammonium, oxygen, water and protons. All other

transport reactions had their lower bounds set to zero.

Testing biomass precursor production

Throughout the curation stage, we tested whether the model could synthesise each precursor

in the biomass composition. To test an individual precursor, we added an artificial transport

reaction that consumed the metabolite. The LP in Eq (2) was then modified to maximise this

transport reaction as the objective function. If no solution existed, then the model was

inspected for incorrect reaction directionality and/or gaps in the network. To check the reac-

tion directions, we re-ran the LP but with all reactions set as reversible. If a solution to the LP

is now feasible, then the set of reactions carrying a negative flux, which were previously con-

strained as irreversible, are selected as candidates for further curation. Each candidate was

then checked in BRENDA [28] and eQuilibrilator [64] for any evidence to suggest the reaction

is reversible.
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Theoretical validation

We checked that the model obeyed the law of mass and energy conservation. First, we verified

that the model was not capable of synthesising energy-equivalents without the input of elec-

trons. To do this, we modified the LP in Eq (2), to maximise the ATP maintenance reaction as

the objective function, whilst constraining the transport of all carbon and energy sources to

zero. If a solution exists, then reactions were checked for inconsistencies in their stoichiometry

and their directionality. Second, we also computed the set of unconserved metabolites using

ScrumPy [65]. Any reaction that involves an unconserved metabolite requires rechecking for a

stoichiometric imbalance. We provide a MEMOTE report [66] in the supplementary material

(https://github.com/SBRCNottingham/CnecatorGSM/tree/main/MEMOTE_repo/sbrc_

cnecator_gsm), which shows the results of these consistency checks.

Carbon source utilisation simulations

For this analysis, a simple transport reaction that consumed the carbon source under study

was added to the model with a lower bound fixed at 10 mmol�gDCW-1�h-1. The uptake rate of

all other carbon sources in the model were fixed to zero. Maximisation of the biomass equation

was then set as the objective in the pFBA simulation (Eq 2). If a feasible solution was found

with a growth rate greater than 0.01 h-1, then the carbon source was considered as growth

supporting.

GSM gene essentiality analysis

A gene deletion was simulated in the model by constraining the flux through any associated

reaction, to which no alternative isoenzyme could be utilised, to zero. pFBA was then re-run to

simulate the growth of the knockout mutant. We then calculated the ‘importance’ of a gene by

dividing the growth rate predicted for the knockout mutant by the growth rate predicted for

the wild type under the same conditions. We considered a gene as essential for biomass pro-

duction if its deactivation in the model results in a growth rate of less than 0.05 h-1.

Integration of transcriptomics data

Gene expression data was integrated with the GSM using the method iMAT [45]. To run

iMAT, the reactions in the model are first categorised into three divisions: high, moderate and

low expression for each condition of interest. Reaction expression was determined by taking

the total reads per kilobase per million (RPKM) of the gene(s) that encodes the enzyme for cat-

alysing that reaction. The following rules were applied for reactions with a complex gene-reac-

tion relationship:

1. Reactions with ‘OR’ GR-relationships (i.e., isoenzymes): the reaction expression was deter-

mined by summing the RPKM value of all isoenzymes.

2. Reactions with ‘AND’ GR-relationships (i.e., multi-subunit enzyme): the reaction expres-

sion was determined using the minimum RPKM value of all genes in the complex.

3. Reactions with ‘AND’ and ‘OR’ GR-relationships: the reaction expression was calculated by

combining the rules from (1) and (2).

The reaction expression was integrated into the GSM using iMAT for the f16 condition.

For the f26 condition, we considered both the absolute reaction expression and the fold change

by multiplying the two together. By doing so, we give a high weighting to reactions that have a

high absolute expression and/or high fold change between conditions. Reactions that were
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associated to genes with an RPKM greater than the 95th percentile were associated with high

activity, similar to the approach carried out in [46]. To determine the low expression cut-off,

we identified the minimal expression value (excluding outliers) for the reactions that are essen-

tial in the model, which guarantees that all essential reactions remain active in the new solu-

tion. iMAT was then used, which applies a mixed-integer linear program (MILP), to maximise

the number of active reactions in the high category, whilst simultaneously minimising the

number of active reactions in the low category. This approach was applied to produce condi-

tion-specific models for growth during the growth phase (f16) and nitrogen depleted phase

(f26). Note that the maximum growth rate specific for each phase (f16 and f26) was used to

constrain the model before generating the two condition-specific models. These growth rates

were calculated by fitting a logistic growth model and straight line to the biomass curves corre-

sponding to the growth phase and nitrogen-depleted phase, respectively, which are provided

in [42] (see Table A in S5 Data).

Identifying differentially altered reactions

Flux sampling was used to identify reactions whose flux was significantly altered between the

two conditions. Flux sampling was carried out on each condition-specific iMAT model using

the optGpSampler sampling method [44], which is available in the cobrapy toolbox. A thin-

ning factor of 1000 was applied and 10,000 sample points for each model were returned from

the solution space. Flux sampling was run twice for each model to ensure that the 10,000 sam-

ples were a good representation of the solution space. The two-sample Kolmogorov-Smirnov

(KS Test) was used to test whether the distribution was the same for each reaction across both

sampling runs. Any reaction whose flux distribution was significantly different (p< 0.05) was

removed from any further analysis. The approach used in [47] was then applied to filter the

reactions that had significantly increased/decreased flux between the two conditions. Here, the

two-sample KS Test is again used with a significance level of 0.05 for determining whether the

flux distributions for each reaction are different. The p-values were adjusted to account for

multiple testing using the Benjamini-Hochberg FDR correction using a significance level of

0.05 [47]. The mean flux of the 10,000 samples for each reaction is then calculated for each

condition. The normalised flux change (FC) is calculated as the following, as proposed in [47]:

Flux change FCð Þ ¼
�Sf 26 �

�Sf 16

�Sf 26 þ
�Sf 16

where �S represents the mean of the distribution for each reaction for the corresponding condi-

tion. A FC greater than 0.33 (corresponding to a fold change of 2) was used as the threshold

for filtering out significantly altered reactions. Bootstrapping was used to estimate the 95%

confidence interval for reactions that were present in only one model, which was also applied

in [47]. A reaction is then considered differentially altered if zero is outside the 95th confidence

interval.

Bacterial strains and growth conditions

All the bacterial strains and plasmids used in this study are listed in Table A in S6 Data. Plas-

mid vectors, together with their nucleotide sequences, may be sourced from www.

plasmidvectors.com. Standard lysogeny broth (LB) was used for general maintenance of C.

necator and E. coli strains. Low-salt-LB (LSLB)-MOPS medium [67] was used when growing

C. necatorH16 as recipient in conjugative procedures and Hanahan’s Broth (SOB Medium—

H8032, Sigma-Aldrich) for the preparation of C. necatorH16 competent cells and for the
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TraDIS experiment. Chemically defined minimal medium (MM) [68] was supplemented with

4 g/l of either D-fructose (FMM), when used to grow the C. necatorH16 transposon mutant

library for TraDIS, or sodium D-gluconate (SGMM), when used to select C. necatorH16 trans-

conjugants. When needed, antibiotics were added to the medium at the following concentra-

tions: 10 μg/mL gentamycin, 50 μg/mL chloramphenicol or 15 μg/mL tetracycline. All the

antibiotics and chemicals used in this study were purchased from Sigma-Aldrich. Unless stated

otherwise, E. coli and C. necator strains were grown aerobically in a shaking incubator

(Thermo Scientifc MaxQ 8000 Incubated Stackable Shaker) at 37 and 30˚C, respectively, with

shaking at 200 rpm.

Construction of a C. necator H16 transposon mutant library

To generate a transposon mutant library in C. necatorH16, a suicide vector (pMTL70115) car-

rying a miniTn5 transposon-delivery system was designed and constructed. The tnpA gene,

encoding a hyperactive transposase and a miniTn5 transposon, carrying a tetracycline-resis-

tance gene, were obtained as synthetic DNA constructs (GeneArt–Invitrogen). The DNA

sequences of tnpA and the transposon mosaic ends (MEs) were derived from the pBAM vector

series [69,70], while the sequence of the tetA tetracycline-resistance gene was obtained from

plasmid pBBR1MCS-3 [71]. The DNA parts carrying the tnpA transposase-encoding gene and

the miniTn5::tetA transposon were digested using the restriction endonucleases (REs)

PstI-HF/SpeI and SpeI/FseI, respectively. These constructs were then cloned together into the

backbone of a modular vector belonging to the pMTL70000 series [72], harbouring the catP
chloramphenicol-resistance gene and the ColE1 origin of replication from plasmid pMTL20

[73], which was previously digested with the REs PstI-HF/FseI. All the REs used in this study

were purchased from New England Biolabs (NEB). The resulting plasmid (pMTL70115) was

propagated and purified from E. coli strain C2925 (NEB), which is defective for both Dam and

Dcm DNA methylation, prior to being transformed into C. necatorH16. This was done to

increase transformation and transposition efficiencies, since C. necatorH16 encodes a Type IV

restriction-modification (R-M) system capable of degrading invading methylated DNA that

was shown to negatively affect plasmid DNA transformation efficiencies in this species [74].

Competent cell preparation and electroporation of C. necatorH16 were performed as

described previously [75]. Briefly, electroporation was carried out using 500 ng of pMTL70115

transposon delivery vector. Following 4 h of recovery in 1 ml of SOB Medium at 30˚C with

shaking, the transformation mixtures were plated on LB agar supplemented with 15 μg/ml tet-

racycline and 5 mM MgSO4. This process was repeated several times to select a total of approx-

imately 1,032,000 C. necatorH16 transposon mutants. In addition, a total of 500 colonies were

randomly picked from independent transformations and replica-plated on LB agar supple-

mented with 15 μg/ml tetracycline, in the presence or absence of 50 μg/ml chloramphenicol to

confirm curing of plasmid pMTL70115. Integration of the miniTn5::tetA transposon in the

genome of the tetracycline-resistant, chloramphenicol-sensitive mutants was confirmed by

PCR with primers MCSTn5_FOR and Tn5_NCOseq3_REV (see Table B in S6 Data, using

Green GoTaq DNA polymerase 2x Master Mix (Promega). The C. necatorH16 transposon

mutants were scraped off the selection plates with plastic loops, resuspended in a sterile solu-

tion of 20% (v/v) glycerol in PBS and aliquoted in seventy-seven 2 ml sub-pools, each contain-

ing approximately 15,000 colonies, before being stored at -80˚C.

TraDIS experiments set up

To set up TraDIS, 20 μl aliquots were taken from each of the seventy-seven sub-pools of C.

necatorH16 transposon mutants, combined and inoculated (380 μl of transposon mutant
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library per culture) in 100 ml Erlenmeyer flasks filled with 20 ml of either SOB medium or

FMM. Two independent cultures were set up for each condition and flasks were incubated at

30˚C, with shaking. FMM cultures were cultivated for five growth passages, by re-inoculating

1 ml of culture in 19 ml of fresh FMM every 24 h, while SOB cultures were stopped after 24 h

of incubation. Three 6 ml samples were collected from each culture and genomic DNA was

purified, using the GenElute Bacterial Genomic DNA kit (Sigma-Aldrich).

Preparation of DNA samples for sequencing

Genomic DNA was fragmented using Covaris sonication to an average length of approximately

300 bp. The fragments were then end-repaired and prepared for adapter ligation with the NEB

ultra II kit library preparation kit. TruSeq adapters were ligated onto the ends of fragments to

allow an amplicon library to be created using a P5 primer which binds to the transposon and a

P7 primer which binds the adapter. PCR products were run on a low-melt agarose gel and then

gel extracted. These gel-purified products were analysed on an Agilent DNA Bioanalyzer chip

and a qPCR was performed to determine appropriate quantities of DNA to apply to the Illu-

mina flowcell. Two libraries were generated for each sample (one for each end of the transposon

insertion cassette) and then all samples were multiplexed. Illumina MiSeq runs were performed

using a 15% PhiX spike to provide sufficient diversity for the first 10 reads, to prevent run fail-

ure. Confirmed TraDIS reads were identified and separated by the presence of the 11 bp

sequence (ATAAGAGACAG) that flanks either one of the two MEs of the transposon cassette,

at the 5’ end of the reads. These sequences were trimmed from the reads using the python pack-

age cutadapt (https://pypi.python.org/pypi/cutadapt), allowing for 20% mismatch. The remain-

ing non-specific reads without adapter that were generated as a by-product of the library prep

were discarded. TraDIS reads were further trimmed for sequencing adapters also using cuta-

dapt. Trimmed reads were mapped to the C. necatorH16 genome using BWA MEM [76].

Mapping homologues in Cupriavidus necator H16 to Burkholderia
cenocepacia H111

We downloaded the Genbank files for the replicons of C. necatorH16 (Chromosome 1:

AM260479.1, Chromosome 2 AM260480.1 and Megaplasmid pHG1 AY305378.1; annotation

date 07/03/2015 and 25/07/2016 for the megaplasmid, respectively) from the Genbank website

and B. cenocepaciaH111 (Chromosome 1: NZ_HG938370.1, Chromosome 2:

NZ_HG938371.1 and Chromosome 3: NZ_HG938372.1; annotation date 13/12/2020) from

the NCBI RefSeq website. Then, we extracted the coding sequences for the proteins for both

organisms. Note that we have included sequences of pseudogenes because functional homo-

logues may exist in the other species. The set of coding sequences were then used to create sep-

arate Blast databases representing the whole genome of each organism. Finally, each coding

sequence was blasted against the other organism database in an automated procedure identify-

ing the best matching protein. The BLAST+ 2.11.0 software package was used for these two

steps. The resulting mappings are listed in files Map_Bcen_2_Cnec_H16.xlsx and Map_C-

nec_H16_2_Bcen.xlsx (available via https://github.com/SBRCNottingham/CnecatorGSM/

upload/main), including the proposed function of the homologues and statistical information

about the hit, i.e., e-value, identity, and coverage.

Experimental determination of essential genes using TraDIS

The number of insertions per kilobase per million (IPKM) was calculated for each CDS, as pre-

viously described [40], for both chemically defined (FMM) and complex (SOB) media condi-

tions. These values were then curated by discarding the transposon insertions that mapped
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within the first 5% (5’-end) and the last 20% (3’-end) of each CDS, as previously reported in

[77], to obtain the IPKM_curated (IPKMc) values. A set of genes that was recently experimen-

tally validated as essential in the closely related bacterial species Burkholderia cenocepacia
H111, for growth in LB medium [77], were used for determining an IPKMc threshold for clas-

sifying the C. necatorH16 genes as essential or non-essential. The genes in C. necatorH16

were mapped to these essential genes from B. cenocepaciaH111 (see previous section) and

those that showed a high degree of homology (p< e-50) were subsequently used for determin-

ing the threshold. Note that only the homologous genes involved in DNA replication, tran-

scription and translation, protein modification, protein transport and cell cycle, which have

been identified as common essential processes across bacterial species [29,77–79], were con-

sidered to minimise bias from any differences in the metabolisms of the two bacterial species.

The 65th percentile of the log-distribution of the SOB-specific IPKM values (log2(IPKMc+1))

was then selected as the threshold to classify the C. necatorH16 genes as essential (log2(IPKMc

+1)� lower threshold), whereas the 75th percentile was used to classify genes as non-essential

(log2(IPKMc+1) > upper threshold). A gene that had a log2(IPKMc+1) index within the 65th

and 75th percentiles was not classified as essential or non-essential in our analysis. The follow-

ing three performance metrics were calculated to test the accuracy of the GSM predictions

compared to the TraDIS results, such that P and N indicate essential and non-essential cases

respectively, T indicates true (correct) and F false (wrong) predictions:

• Recall (TPR—true positive rate) = TP/(TP + FN)

• Precision (PPV—positive predictive value) = TP/(TP + FP)

• Accuracy (ACC) = (TP + TN)/(P + N)

Software

The model construction and theoretical validation was all ran using ScrumPy2.0 (http://

mudshark.brookes.ac.uk/ScrumPy) [26]. Model consistency checks were ran using MEMOTE

v0.13.0 [66]. Model analysis was carried out using the COBRApy toolbox [80]. Condition-spe-

cific models were constructed using the COBRA toolbox [81] in Matlab R2018a. All simula-

tions were ran using the GNU Linear Programming Kit (GLPK) solver.
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