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SUMMARY 

A central remaining question in the post-genomic era is how genes interact to form biological 1 

pathways. Measurements of gene dependency across hundreds of cell lines have been used to 2 

cluster genes into ‘co-essential’ pathways, but this approach has been limited by ubiquitous false 3 

positives. Here, we develop a statistical method that enables robust identification of gene co-4 

essentiality and yields a genome-wide set of functional modules. This almanac recapitulates 5 

diverse pathways and protein complexes and predicts the functions of 102 uncharacterized 6 

genes. Validating top predictions, we show that TMEM189 encodes plasmanylethanolamine 7 

desaturase, the long-sought key enzyme for plasmalogen synthesis. We also show that C15orf57 8 

binds the AP2 complex, localizes to clathrin-coated pits, and enables efficient transferrin uptake. 9 

Finally, we provide an interactive web tool for the community to explore the results 10 

(coessentiality.net). Our results establish co-essentiality profiling as a powerful resource for 11 

biological pathway identification and discovery of novel gene functions.    12 
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INTRODUCTION 13 

A fundamental and still largely unresolved question in biology is how finite numbers of genes 14 

generate the vast phenotypic complexity of cells and organisms (Barabási and Oltvai, 2004; 15 

Chuang et al., 2010). With the understanding that modules of interacting genes represent a key 16 

layer of biological organization, the complete identification of such functional modules and their 17 

constituent genes has emerged as a central goal of systems biology (Costanzo et al., 2016; 18 

Hartwell et al., 1999; Horlbeck et al., 2018; Stuart et al., 2003). However, efforts to map genetic 19 

interactions and biological modules at genome scale have been hindered by the enormous 20 

number of possible gene-gene interactions: assaying all pairs of genetic interactions among the 21 

approximately 20,000 human genes (Harrow et al., 2012) would require 200 million distinct 22 

readouts. Furthermore, despite substantial progress in elucidating the functions of individual 23 

genes in recent decades through both targeted studies and unbiased approaches (Alonso and 24 

Ecker, 2006; Carpenter and Sabatini, 2004; Mohr et al., 2014; Shalem et al., 2015), hundreds of 25 

human genes remain functionally uncharacterized.  26 

 27 

Pioneering work in yeast measured pairwise genetic interactions in high throughput by quantifying 28 

the fitness of double knockout strains (Tong, 2004; Tong et al., 2001); more recently, this work 29 

has been extended into a genome-wide map of yeast genetic interactions and modules (Costanzo 30 

et al., 2010, 2016). In human cells, which unlike yeast cannot be crossed to generate double-31 

knockout mutants, a key advance towards genetic interaction mapping has been the development 32 

of genome-scale CRISPR/Cas9 and RNAi screens (Mohr et al., 2014; Shalem et al., 2015) which 33 

have been repurposed to perform pairs of perturbations (Bassik et al., 2013; Boettcher et al., 34 

2018; Du et al., 2017; Han et al., 2017; Horlbeck et al., 2018; Rosenbluh et al., 2016; Shen et al., 35 

2017). Yet despite considerable successes, double-perturbation genetic interaction mapping is 36 

inherently limited by the combinatorial explosion of gene pairs, with the largest human genetic 37 

interaction map to date (Horlbeck et al., 2018) having only assayed 222,784 gene pairs, or ~0.1% 38 
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of all possible genetic interactions, thus far precluding the generation of a genome-wide map of 39 

functional modules in human cells. 40 

 41 

A complementary approach that circumvents this limitation is to measure the fitness of single-42 

gene perturbations across multiple conditions, and map putative functional interactions by 43 

correlating the resulting phenotypic profiles (Figure S1A), referred to as co-essentiality mapping. 44 

Both co-essentiality mapping and genetic interaction mapping measure gene essentiality across 45 

many different genetic backgrounds, but whereas the background for genetic interaction mapping 46 

is the knockout of a single partner gene, for co-essentiality mapping it is the mutational and 47 

transcriptional profile of a cell line. Co-essentiality mapping across diverse cancer cell lines has 48 

recently been used to group genes into pathways and in some cases has identified novel gene 49 

functions (Boyle et al., 2018; Kim et al., 2019; McDonald et al., 2017; Pan et al., 2018; Rauscher 50 

et al., 2018; Wang et al., 2017).   51 

 52 

Co-essentiality mapping, however, has its own fundamental limitation: unlike double-perturbation 53 

mapping, where each pair of gene knockouts is independent, measurements in two different cell 54 

lines may be strongly related, for instance because some pairs of cell lines are derived from the 55 

same tissue or lineage. Existing approaches fail to account for violations of independence, leading 56 

to inflated p-values, incorrect determinations of statistical significance, and an inability to identify 57 

gene co-essentiality relationships in a robust, systematic manner (Figure S1B). In this study, we 58 

address this critical limitation of co-essentiality mapping with a novel statistical method that 59 

explicitly accounts for the non-independence of cell lines. We apply the method to a dataset of 60 

genome-wide CRISPR screens in 485 diverse cancer cell lines (Tsherniak et al., 2017) and find 61 

significantly improved enrichment for known pathway interactions and protein complexes. 62 

 63 
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We find that these analytical advances greatly improve our ability to detect bona fide functional 64 

modules. We generate a genome-wide almanac of co-essential modules, which both recapitulate 65 

diverse known pathways and protein complexes and nominate putative functions for 102 poorly 66 

characterized genes. We experimentally validate two such genes: we identify TMEM189 as the 67 

gene encoding the plasmanylethanolamine desaturase (PEDS) orphan enzyme required for 68 

synthesis of plasmalogen lipids, one of the most abundant lipid classes in the human body; and 69 

we discover a role for C15orf57 in regulating clathrin-mediated endocytosis. Finally, to accelerate 70 

further biological discovery using this resource, we present an interactive web tool that enables 71 

visualization and analysis of co-essential gene pairs and modules.  72 
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RESULTS 73 

A genome-wide map of co-essential interactions 74 

To map co-essential interactions across compendia of genome-wide screens while accounting 75 

for non-independence of cell lines, we devised a novel approach based on generalized least 76 

squares (GLS), a classic statistical technique (Aitkin, 1935) (see Methods). We applied the 77 

approach (Figure 1A) to a dataset of CRISPR screens in 485 cell lines from the Achilles project 78 

(Tsherniak et al., 2017), with gene-level essentiality scores corrected for copy number and guide 79 

efficacy using the CERES algorithm (Meyers et al., 2017). We noted the remarkably effective 80 

statistical calibration of the method. Since the percentage of gene pairs expected to have 81 

detectable functional interactions is much less than 50% (Horlbeck et al., 2018), the median p-82 

value across gene pairs ought to be very close to 0.5 for a well-calibrated method.  Indeed, we 83 

found that the median GLS p-value was 0.48, indicating near-perfect calibration, while the median 84 

Pearson correlation p-value on the same dataset was 0.21, indicating substantial inflation and 85 

false-positive co-essential gene pairs (Figure 1B). We provide each gene’s significant co-86 

essential interactors at a false discovery rate of 10% (Table S1). 87 

 88 

Even while correcting for p-value inflation, GLS still has substantial power to detect co-essential 89 

interactions.  Around 80% of genes have at least one co-essential partner at 10% FDR (Figure 90 

S2), and 40% of genes have at least ten partners: in all, we detect 93,575 significant co-essential 91 

gene pairs. 99.4% of all partners are positively correlated, with the remaining 0.6% negatively 92 

correlated. We noted that in many cases, negative correlations occur when one gene negatively 93 

regulates the other: for instance, TP53 is negatively correlated with MDM2 (p = 1 × 10-12), which 94 

ubiquitinates p53 to mark it for degradation (Moll and Petrenko, 2003); HER2 is negatively 95 

correlated with PHLDA2 (p = 5 × 10-6), which was recently shown to inhibit HER2 signaling (Wang 96 

et al., 2018); and MAPK1 is negatively correlated with DUSP6 (p = 2 × 10-6), a phosphatase that 97 

inactivates several MAP kinases including MAPK1 (Furukawa et al., 2008). A second class of 98 
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negative correlation arises from genes with similar functions that are active in mutually exclusive 99 

cell types, such as MYC and MYCN (p = 3 × 10-11) (Rickman et al., 2018). 100 

 101 

Crucially, even though more essential genes tend to have more partners, 70% of the 10% least 102 

essential genes have at least one partner at 10% FDR, and nearly half of these least essential 103 

genes have at least one partner at 1% FDR (Figure S2). This suggests that, rather than being 104 

limited to detecting interactions among only strongly essential genes, the focus of previous co-105 

essentiality mapping efforts (Kim et al., 2019), co-essentiality is a genome-wide tool for pathway 106 

mapping. 107 

 108 

We developed a method to visualize genes in a genome-wide interaction map based on their co-109 

essentiality profiles by placing more strongly co-essential gene pairs closer together, inspired by 110 

similar visualizations based on yeast genetic interaction maps (Costanzo et al., 2010, 2016). We 111 

found that naive application of dimensionality reduction techniques such as Principal Component 112 

Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 113 

2018) failed to effectively expose functional relationships between genes due to difficulty modeling 114 

the multi-scale nature of the co-essentiality network; previous attempts at visualizing co-115 

essentiality networks (e.g. McDonald et al., 2017) also suffer from a similar lack of discernible 116 

structure. Instead, we first applied diffusion maps (Coifman and Lafon, 2006), a technique from 117 

spectral graph theory, to separate coarse- and fine-scale components before applying UMAP (see 118 

Methods). To further improve the layout, we incorporated module membership (defined below) 119 

into the diffusion map in addition to pairwise co-essentiality. To showcase the power of this 120 

approach, we manually annotated 39 ‘neighborhoods’ within the interaction map highly enriched 121 

for a particular pathway or complex (Figure 1C, D); collectively, these pathways and complexes 122 

encompass many of the major aspects of cell biology.   123 

 124 
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Co-essentiality complements co-expression in mapping biological pathways 125 

We next investigated whether the improved calibration of GLS translated into improved 126 

prioritization of co-functional gene pairs. To do this, we used an established benchmarking 127 

strategy (Pan et al., 2018) to measure how accurately GLS could recall the top 1 to 10 interaction 128 

partners of each gene when compared with Pearson correlation. The performance was measured 129 

using three databases of interactors previously benchmarked in Pan et al.: CORUM, a manually 130 

curated protein complex database (Ruepp et al., 2008); hu.MAP, a database of protein-protein 131 

interactions detected by mass spectrometry experiments (Drew et al., 2017); and STRING, a 132 

database of co-functional interactions integrating multiple sources of direct and indirect evidence 133 

(Szklarczyk et al., 2017). We found that GLS consistently prioritized genes more effectively than 134 

several other methods, including Pearson correlation bias-corrected with PCA using olfactory 135 

receptor genes as a gold-standard negative set (Boyle et al., 2018), across all three databases 136 

and across a wide variety of rank thresholds (Figure 2A). For instance, the top-ranked partners 137 

for each gene are approximately 160-fold enriched for CORUM interactions for GLS compared to 138 

120-fold for bias-corrected Pearson correlation; for hu.MAP, 130-fold versus 90-fold enriched; 139 

and for STRING, 7.5-fold versus 5.5-fold enriched. Remarkably, failing to perform PCA-based 140 

bias correction significantly degrades the performance of Pearson correlation but not GLS, 141 

suggesting that GLS is able to automatically perform bias correction without requiring a putatively 142 

non-essential gene set like olfactory receptors.  143 

 144 

We also compared co-essentiality to co-expression, a complementary approach to assessing co-145 

functionality, using the COXPRESdb database (Okamura et al., 2015). We observed that co-146 

essentiality substantially outperformed co-expression in recall of protein complexes and physical 147 

interactions recorded in the CORUM and hu.MAP databases, but performance was more 148 

equivocal for STRING (Figure 2A), with co-essentiality outperforming co-expression only for top-149 

ranked partner genes. Of note, STRING integrates seven sources of evidence (experimental 150 
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evidence, other pathway/complex databases, co-expression, literature text-mining, genomic co-151 

localization across species, co-occurrence across species, and existence of a gene-gene fusion 152 

in any species); to reduce the potential for circularity, we restricted to gene pairs supported by 153 

experimental evidence. Collectively, these results suggest that co-essentiality and co-expression 154 

may have complementary roles in biological pathway mapping, with co-essentiality being better-155 

suited for detecting protein complexes and direct physical interactions and co-expression being 156 

better-suited for detecting more indirect functional relationships such as regulatory relationships. 157 

 158 

Co-essentiality was particularly effective in detecting interactions for a number of key cancer 159 

drivers. For example, 8 of TP53’s 10 significant co-essential partners are known interactors 160 

(USP28, CDKN1A, TP53BP1, MDM2, CHEK2, ATM, PPM1D, UBE2K) compared with only 3 of 161 

the top 10 co-expressed partners in COXPRESdb (Table S2). For KRAS, 3 of 5 significant co-162 

essential partners are known interactors compared to none of the top 5 co-expressed partners; 163 

and for BRCA1, 3 of 6 co-essential partners are known interactors compared to 1 of 6 for co-164 

expression. 165 

 166 

Co-essential modules recapitulate known pathways and nominate novel members 167 

To group genes into modules based on their co-essentiality profiles from GLS, we used 168 

ClusterONE (Nepusz et al., 2012), a commonly-used algorithm originally developed for the de 169 

novo discovery of protein complexes from protein-protein interaction data (see Methods). 170 

Crucially, the modules generated by ClusterONE are allowed to be overlapping, enabling 171 

pleiotropic genes to be constituents of multiple modules. One major parameter that affects the 172 

quality of ClusterONE module detection is the module density d, which determines (on a 0-to-1 173 

scale) how strong the internal connections within a cluster must be relative to the connections on 174 

the edge of the cluster between members and non-members. It has previously been observed 175 

that inferring networks at multiple scales helps provide the most complete picture of biological 176 
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systems (Dutkowski et al., 2013; Kramer et al., 2014); accordingly, we found that lower values of 177 

d (e.g. d = 0.2) led to larger modules and better performance on STRING, while larger values 178 

(e.g. d = 0.9) led to smaller modules and better performance at recapitulating complexes and 179 

physical interactions from CORUM and hu.MAP, with intermediate values (e.g. d = 0.5) striking a 180 

balance between the two (Figure S3). Because modules generated with different values of d 181 

capture different types of biological pathways, we generated a combined list of modules using d 182 

= 0.2 (N = 168), d = 0.5 (N = 1892) and d = 0.9 (N = 3169) (Table S3).  183 

 184 

The 5,218 co-essential modules in this almanac, containing between 4 and 741 genes, 185 

correspond to a wide range of biological pathways (Table S3). To estimate the fraction of the 186 

genome our modules assign a putative function, we counted the number of genes included in a 187 

module that is highly (at least 100-fold) enriched for some GO term. By this metric, our set of co-188 

essential modules assign putative functions to 14,383 genes, a much larger fraction of the 189 

genome compared to previous approaches used to cluster genes based on co-essentiality profiles 190 

(Figure 2B).  191 

 192 

Among the 1,311 modules with greater than 100-fold enrichments are modules highly enriched 193 

for genes involved in growth regulation (Figures 3A, B), autophagy (Figure 3C), cell-cell signaling 194 

(Figure 3D), the DNA damage response (Figure 3E), innate immunity (Figure 3F), glycolysis 195 

(Figure 3G), transcriptional regulation (Figures 3H, I), the cell cycle (Figure 3J), and 196 

mitochondrial respiration (Figure 3K), among many others (Table S3).   197 

 198 

Several important features of the co-essential modules are highlighted by the examples shown in 199 

Figure 3. First, the ability of ClusterONE to include genes in multiple modules enabled 200 

identification of pleiotropic gene functions, as illustrated by the identification of two modules 201 

containing MTOR that closely correspond to the two mTOR-containing complexes, mTORC1 202 
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(Figure 3A) and mTORC2 (Figure 3B) (Saxton and Sabatini, 2017). Second, co-essential 203 

modules are not limited to physical complexes, as illustrated by the near-complete identification 204 

of the glycolysis pathway (Figure 3G), or even to cell-autonomous pathways, as illustrated by the 205 

identification of the Jagged-Notch intercellular signaling pathway (Figure 3D). Third, by examining 206 

modules identified at different values of d, we were able to detect multiple scales of biological 207 

organization, as illustrated by the set of modules we identified that correspond to mitochondrial 208 

respiration (Figure 3Ki-v). Module #256, a 163-member module identified at d  = 0.2, includes 209 

most nuclear-encoded subunits of the four respiratory chain complexes required for mitochondrial 210 

ATP synthesis, as well as numerous mitochondrial tRNA synthetases, elongation factors, and 211 

components of the mitoribosome required for synthesis of the mitochondrial subunits of the 212 

mitochondrial respiratory complexes (Figure 3K). Several modules identified with d set to 0.9, by 213 

contrast, correspond to smaller units of functional organization, such as module #4250, a 13-214 

member module that contains 12 subunits of the ATP synthase complex (Figure 3Kiv, Table S3), 215 

and module #2072, a 99-member module comprising 61 subunits of the mitochondrial ribosome 216 

and many of its associated factors (Figure 3Kv, Table S3). Fourth, we noted that whereas several 217 

modules are nearly “complete” representations of a biological pathway, such as module #520, 218 

which comprises most of the genes identified in recent targeted screens for autophagy regulators 219 

(Figure 3C, cf. Shoemaker et al., 2019), and no genes not previously implicated in autophagy, 220 

many modules highly enriched for a particular pathway also contain one or more uncharacterized 221 

genes (red boxes, Figure 3E, F, I, H, J, K).   222 

 223 

Using co-essential modules to systematically predict the functions of uncharacterized 224 

genes 225 

Hundreds of human genes have not been assigned any molecular function. Co-essentiality 226 

profiling has recently been used to assign uncharacterized genes to pathways, with predictions 227 

based on the functions of the genes that have the largest Pearson correlations with the 228 
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uncharacterized gene (Pan et al., 2018; Wang et al., 2017). However, it has remained unclear 229 

how broadly useful co-essentiality information is in predicting the functions of the hundreds of 230 

genes that remain uncharacterized, which likely span diverse biological processes.  231 

 232 

Co-essential modules are in many cases highly enriched for functionally related genes, and thus 233 

enable unbiased, genome-wide prediction of uncharacterized gene function. To generate a list of 234 

functional predictions for uncharacterized genes, we first mined the UniProt database to assemble 235 

a list of uncharacterized genes, which we defined as those genes with UniProt annotation score 236 

(a heuristic measure of protein annotation content) of 2 or lower. We then enumerated all the 237 

uncharacterized genes present in modules at least 100-fold enriched for one or more GO terms, 238 

excluding GO terms with < 5 genes. 239 

 240 

The 102 uncharacterized genes assigned putative functions by this method are included, on 241 

average, in ~2 co-essential modules, yielding a list of 220 functional predictions (Table S4). We 242 

excluded uncharacterized genes in syntenic modules (i.e. modules comprising genes all located 243 

on the same chromosome) from this count, since while many syntenic modules likely represent 244 

bona fide co-functional gene sets, others may be confounded by residual copy number artifacts 245 

or other factors (Methods). Notably, several of these predictions are consistent with recent 246 

experimental information that has not yet been incorporated into the Uniprot database, including 247 

C19orf52 in mitochondrial import (Kang et al., 2016), C16orf59 in centriole function (Breslow et 248 

al., 2018), TMEM261 in mitochondrial respiratory complex I (Stroud et al., 2016), and PTAR1 in 249 

Golgi function (Blomen et al., 2015), showcasing the power of this method in assigning gene 250 

functions. To prioritize a list of functional predictions for experimental validation, we ranked 251 

modules by their maximal enrichment for a given GO term, because these predictions yield the 252 

most readily testable predictions. The top uncharacterized gene predictions (ranked by GO term 253 
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enrichment) span a wide range of biological processes, including mitochondrial respiration, 254 

transcription, DNA repair, Golgi function, lipid synthesis, and endocytosis (Table S4).  255 

 256 

TMEM189 encodes the orphan enzyme plasmanylethanolamine desaturase required for 257 

plasmalogen synthesis 258 

We selected two genes, TMEM189 (ranked #1) and C15orf57 (ranked #18), for experimental 259 

validation. TMEM189, also known as KUA, encodes a 270 amino acid transmembrane protein 260 

whose function was largely unexplored prior to our work, with previous studies focused on the 261 

observation that it can be transcribed as both an independent ORF and as a fusion with the 262 

neighboring UBE2V1 gene. Both TMEM189 and TMEM189-UBE2V1 have been observed to 263 

localize to the endoplasmic reticulum (Thomson et al., 2000). 264 

  265 

The top-ranked co-essential module containing TMEM189, module 2213, is highly enriched for 266 

genes required for synthesis of ether lipids (Figure 4A), which comprise a broad class of structural 267 

and signaling lipids involved in regulation of membrane fluidity and sensitivity to oxidative stress, 268 

and which account for approximately 20% of the phospholipids in human cells (Nagan and Zoeller, 269 

2001). We noted that genes in this module appeared to be particularly essential in cell lines 270 

derived from haematological cancers (Figure 4B). Whereas several genes in this module, 271 

including AGPS, FAR1, and GNPAT, are specifically involved in ether lipid synthesis, some genes 272 

contained in this module, including PCYT2 and EPT1, are required for both ether lipid synthesis 273 

and the synthesis of other ethanolamine-containing phospholipids. Based on this prediction, we 274 

hypothesized that TMEM189 could play a role in lipid biosynthesis and have a specialized role in 275 

the synthesis of ether lipids. 276 

  277 

To interrogate the functional role of TMEM189 in lipid biosynthesis in an unbiased manner, we 278 

extended a targeted lipidomics method (Contrepois et al., 2018; Schüssler-Fiorenza Rose et al., 279 
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2019) to measure the absolute concentrations of several hundred lipid species in cell extracts. 280 

We compared concentrations of these lipids in cell extracts derived from HeLa-Cas9 cells that 281 

stably expressed single guide RNAs (sgRNAs) targeting either TMEM189 or a control genomic 282 

locus. Strikingly, though the vast majority of quantified lipid species were present in similar 283 

concentrations in both types of cell extracts, cell extracts expressing TMEM189-targeting sgRNAs 284 

contained dramatically lower concentrations of 37 lipid species belonging to the ether lipid 285 

subclass plasmenylethanolamines (Figure 4C, 4D, Table S5), also known as ethanolamine 286 

plasmalogens, and higher concentrations of 30 lipid species belonging to ether lipid subclass 287 

plasmanylethanolamines (Figure 4C, 4E). Plasmanylethanolamines differ from 288 

plasmenylethanolamines in the presence of a single double bond in the sn-1 acyl chain, which 289 

forms part of the plasmalogen-defining vinyl ether bond. Plasmanylethanolamines and 290 

plasmenylethanolamines form a known precursor-product relationship, with 291 

plasmanylethanolamines rapidly converted into plasmenylethanolamines in the endoplasmic 292 

reticulum by the orphan enzyme plasmanylethanolamine desaturase (PEDS), which was first 293 

reported in mammalian cell extracts over forty years ago (reviewed in (Snyder et al., 1985)). 294 

 295 

The accumulation of the precursors, and loss of the product, of the reaction catalyzed by PEDS 296 

in cells expressing TMEM189-targeting sgRNAs strongly implicates TMEM189 as the gene 297 

responsible for orphan PEDS activity. Two orthogonal lines of evidence strongly support this 298 

conclusion. First, we examined a cell line, RAW.12, that was evolved to lack plasmalogens and 299 

shown to exhibit a specific defect in PEDS activity (Zoeller et al., 1992), and determined whether 300 

this cell line exhibits deficient expression of TMEM189. By immunoblotting for TMEM189 in cell 301 

extracts prepared from RAW.12 cells or its parent, unmutated cell line, RAW264.7, we confirmed 302 

that TMEM189 levels were decreased in PEDS-deficient RAW.12 cell extracts (Figure 4F). 303 

Second, TMEM189 bears sequence features consistent with a function in lipid desaturation. 304 

TMEM189 contains a histidine-rich domain conserved in most lipid desaturase enzymes, and is 305 
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distantly related to the fatty acid desaturase FAD4 in Arabidopsis (Gao et al., 2009), which 306 

introduces an unusual double bond in the sn-2 fatty acid (Gao et al., 2009).  307 

 308 

We noted that TMEM189 is also present in a co-essential module, module #808, which is highly 309 

enriched for genes involved in the biosynthesis of sphingolipids, a distinct class of lipids that 310 

predominantly localizes to the plasma membrane and, similarly to ether lipids, contributes to both 311 

signaling and membrane structure and fluidity. In lipidomic analyses, cell extracts derived from 312 

cells expressing sgRNAs targeting SPTLC2, a subunit of serine palmitoyltransferase, the rate 313 

limiting enzyme in sphingolipid biosynthesis, were highly depleted of several sphingolipid species, 314 

whereas abundances of most sphingolipid species were largely unaltered in cell extracts from 315 

HeLa cells expressing TMEM189-targeting sgRNAs, ruling out a central role for TMEM189 in 316 

sphingolipid biosynthesis (Table S5). However, we observed that the relative abundances of 317 

several very long chain sphingomyelin species were altered in cells lacking TMEM189, with 318 

sphingomyelins with C26 fatty-acids decreased in abundance and C22 and C24 sphingomyelins 319 

increased in abundance (Figure S4A, Table S5). We additionally found that affinity-purified 320 

TMEM189-GFP complexes, isolated from HeLa cells, were highly enriched for SPTLC2 (Figure 321 

S4B, Table S6). Further work is required to determine whether this pair of observations – that 322 

TMEM189 and SPTLC2 appear to physically interact, and that the abundances of very long chain 323 

sphingomyelin species are subtly altered in TMEM189-knockout cells – reflects a direct role for 324 

TMEM189 in the regulation of fatty acid incorporation into ceramides. Alternatively, because 325 

sphingolipid composition is tightly regulated to maintain membrane fluidity (Breslow and 326 

Weissman, 2010), the altered sphingolipid profile observed in TMEM189-knockout cells may 327 

reflect a compensatory response to loss of plasmalogens and resulting disrupted membrane 328 

composition in TMEM189-knockout cells. Regardless of these possibilities, our results provide 329 

conclusive evidence for a primary role for TMEM189 as the orphan desaturase required for the 330 
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final step of plasmalogen biosynthesis and provide a striking example of the power of co-essential 331 

modules to predict gene function.  332 

 333 

C15orf57 is a novel regulator of clathrin-mediated endocytosis 334 

C15orf57 (also known as coiled-coil domain containing 32 (CCDC32) encodes a 185-residue 335 

protein with no annotated function. Recent reports described the existence of a chimeric transcript 336 

of unknown significance that contains C15orf57 and the gene CBX3 in certain tumor samples (Xu 337 

et al., 2014). C15orf57 is present in several overlapping co-essential modules (Table S3), 338 

including a module (#2067) that is highly enriched for genes required for clathrin-mediated 339 

endocytosis, in particular subunits of the adaptor protein 2 (AP2) complex (Figure 5A, B). One of 340 

the best-described functions of the AP2 complex is to mediate endocytosis of transferrin bound 341 

to the transferrin receptor (Motley et al., 2003), so we hypothesized that C15orf57 might be 342 

required for cellular uptake of transferrin. To test this, we monitored uptake of transferrin, labeled 343 

with a pH-sensitive fluorescent dye, pHrodo, by HeLa-Cas9 cells expressing sgRNAs targeting 344 

either C15orf57, the transferrin receptor (TFRC), or a control locus. Cells expressing sgRNAs 345 

targeting either C15orf57 or TRFC exhibited reduced uptake of transferrin compared to cells 346 

expressing control sgRNAs, consistent with a role for C15orf57 in transferrin uptake (Figure 5C). 347 

  348 

To gain further insight into the mechanism by which C15orf57 functions in clathrin-mediated 349 

endocytosis, we immunoprecipitated C15orf57-GFP complexes and analyzed them by mass 350 

spectrometry. C15orf57-GFP immunoprecipitates were strongly enriched for all five members of 351 

the AP2 clathrin adaptor complex: AP2S1, AP2A1, AP2A2, AP2M1, and AP2B1 (Figure 5D, 352 

Table S6). In reciprocal co-immunoprecipitation experiments, we confirmed that C15orf57-GFP 353 

physically interacts with AP2S1-mCherry (Figure 5E). We additionally confirmed through confocal 354 

microscopy that C15orf57-GFP colocalizes with AP2S1-mCherry in small puncta at the cell 355 

surface that likely correspond to clathrin-coated pits, the sites of clathrin-mediated endocytosis 356 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 3, 2019. ; https://doi.org/10.1101/827071doi: bioRxiv preprint 

https://doi.org/10.1101/827071


 

17 

(Figure 5F). The identification of the members of the AP2 complex as physical interactors of 357 

C15orf57, and their colocalization in cells, suggests that C15orf57 may regulate clathrin-mediated 358 

endocytosis of transferrin (and possibly other cargoes) by directly modulating AP2 function.  359 

 360 

Identification of cancer type-specific pathway dependencies 361 

A major motivation for high-throughput cancer cell line screening efforts, such as the Achilles 362 

project underlying this work, is the possibility of identifying cancer type-specific vulnerabilities that 363 

could be exploited as therapeutic targets (Tsherniak et al., 2017; Wang et al., 2017). These efforts 364 

have shown promise in identifying individual genes that are selectively essential in specific cancer 365 

types (Chan et al., 2019; Wang et al., 2017). Some cancers have also been observed to harbor 366 

selective dependencies on entire gene pathways (Hart et al., 2015, Campbell et al., 2016). We 367 

asked whether our list of co-essential modules, many of which are highly enriched for genes that 368 

function in the same pathway, could be used to identify cancer-type specific pathway 369 

dependencies.  370 

 371 

To systematically identify differentially-essential modules across tissue types, we obtained cancer 372 

type-specific pathway dependency p-values for each module-cancer type pair by first calculating 373 

p-values for each gene and then aggregating p-values across genes in each module. To obtain 374 

uninflated p-values, we again applied GLS (see Methods). Using this conservative approach, we 375 

identified 444 modules that are differentially essential in cancers derived from 16 distinct tissue 376 

types (Figure 6A, Table S7). 377 

 378 

Several of the modules that are most differentially essential in specific tissue types correspond to 379 

canonical tissue-specific cancer drivers, demonstrating the power of this approach to uncover 380 

bona fide selective pathway dependencies. As one example, the most significantly breast cancer-381 

specific module dependency contains ESR1, the estrogen receptor (ER), which is overexpressed 382 
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in over 70% of breast cancers and enables hormone-dependent growth (Ariazi et al., 2006). This 383 

module (as well as the neighborhood that corresponds most closely to this module in the two-384 

dimensional representation of the network, Figure 6B) also contains several genes that 385 

functionally interact with ESR1, including SPDEF, FOXA1, and GATA3, three master regulators 386 

of estrogen-receptor-dependent gene expression in breast cancer (Fletcher et al., 2013); retinoic 387 

acid receptor alpha (RARA), a target of ESR1-dependent transcriptional activity (Roman et al., 388 

1993); and TOB1, a gene required for estrogen-independent growth of ER-positive breast cancers 389 

(Zhang et al., 2016).  390 

 391 

As a second example, the most significantly differentially-essential module in skin cancer (and its 392 

corresponding neighborhood) (Figure 6C) includes several components of the BRAF-MAPK 393 

pathway, which is consistent with the fact that BRAF is mutated in ~50% of melanomas (Ascierto 394 

et al., 2012), as well as MITF, a melanoma-specific oncogene (Garraway et al., 2005) activated 395 

downstream of BRAF. Additional module members, including NFATC2, SOX9, and SOX10, have 396 

well-established roles in melanoma (Harris et al., 2010; Perotti et al., 2016). In both of these 397 

examples, the co-essential modules we identified as selectively required in certain cancer types 398 

contain sets of lineage-specific cancer drivers that are known to functionally interact, illustrating 399 

the power of our approach in identifying cancer pathway dependencies. The additional 442 400 

modules that we identify as selectively essential in 16 cancer types (Table S7) represent a 401 

resource for identifying novel pathway targets in specific cancer types.   402 

 403 

An interactive resource for biological discovery 404 

We created a web tool (coessentiality.net) (Figure S5; Video S1) to enable dynamic visualization 405 

and exploration of the genome-wide co-essentiality map shown in Figure 1C, for which we 406 

anticipate several distinct uses. First, this tool can be used as a starting point for gaining insight 407 

into the function of any gene: users can search for a gene of interest, for example, KRAS (Figure 408 
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S5, Video S1), which is then highlighted on the interactive 2D layout in the context of its 409 

neighborhood. To understand relationships between sets of genes in a given neighborhood, users 410 

can then directly select gene neighborhoods with the cursor (Video S1). Once a gene set is 411 

selected, two data panels are generated: a biclustered heatmap of the genes’ essentiality profiles 412 

across the 485 cell lines and a plot of the gene set’s enrichment for annotated pathways, 413 

complexes and gene ontology terms (Ashburner et al., 2000; The Gene Ontology Consortium, 414 

2017) (Figure S5, Video S1). Users can compare the essentiality profile of the selected gene set 415 

with the mutational status and expression level of other selected genes. For example, with the 416 

KRAS-containing neighborhood selected, users can plot the lines in which KRAS is mutated, 417 

which reveals that KRAS and several genes in its neighborhood are selectively essential in KRAS-418 

mutated lines (Figure S5, Video S1). Users can also gain insight into pathways that are 419 

particularly required for the growth of individual cancer lines or for cancers derived from a certain 420 

tissue by selecting cell lines (for example, U937 cells, Video S1) or tissue types (for example, 421 

kidney cancers, Figure S5, Video S1) from drop-down menus, causing the two-dimensional 422 

network to be colored according to each gene’s essentiality in the selected cell line or tissue. 423 

Finally, users can upload a specified set of genes – for example, the members of the endocytosis 424 

module containing C15orf57 (Figure 5A, Video S1) – to understand relationships between 425 

multiple genes of interest. We anticipate this tool will be a broadly useful starting point for the 426 

functional characterization of genes and gene sets as well as a powerful hypothesis-generating 427 

platform for users interested in identifying cancer-type specific pathway dependencies.  428 
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DISCUSSION 429 

Building a global map of biological pathways in human cells and assigning function to the 430 

thousands of poorly characterized genes remain key challenges in cell biology. In this work, we 431 

demonstrate that mapping co-essentiality across a diverse spectrum of cancer cell lines enables 432 

significant progress toward both objectives. 433 

 434 

The co-essential network developed here represents, to our knowledge, the most comprehensive 435 

and statistically robust genome-wide perturbational pathway map of human cells to date. Unlike 436 

double-perturbation approaches, our approach is scalable to all pairs of genes in the genome; 437 

and unlike prior approaches to co-essentiality mapping, it is statistically well-calibrated despite 438 

the lack of independence among the screens it was derived from. A recent comparison of modules 439 

derived from different biological networks suggested that modules created based on co-440 

expression data are better able to recall gene relationships than co-essentiality data, in a GWAS-441 

based benchmarking approach (Choobdar et al., 2019). By contrast, we find that co-essentiality-442 

derived networks outperform co-expression-derived networks in their ability to recall protein 443 

complexes. The gene-gene relationships evidenced by these different datasets may be 444 

complementary, with co-essentiality especially well-powered to detect protein complexes and co-445 

expression better able to detect certain indirect pathway relationships (Figure 2A). Our global 446 

interaction map and associated web tool showcase the high resolution and versatility of co-447 

essentiality as a method for de novo pathway mapping. 448 

 449 

Our validations of the role of TMEM189 in plasmalogen biosynthesis and C15orf57 in clathrin- 450 

mediated endocytosis highlight the utility of biological hypothesis generation from co-essential 451 

modules. Of note, during the preparation of this manuscript, an entirely orthogonal approach 452 

based on the study of the bacterial protein CarF, a homolog of TMEM189, revealed that this 453 

enzyme is responsible for PEDS activity in bacterial cells, and this activity was shown to be 454 
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conserved in human cells (Gallego-García et al., 2019). The complementary approaches and 455 

orthogonal validations of TMEM189 as the key enzyme for plasmalogen synthesis will potentiate 456 

dissection of the functions of this largely understudied class of lipids. The specific function of the 457 

plasmalogen-defining vinyl ether bond, which has been proposed to be critical for antioxidant and 458 

oxygen-sensing functions of plasmalogens, has remained difficult to assess experimentally. With 459 

the identity of plasmanylethanolamine desaturase now in hand, these and other basic questions 460 

about plasmalogen function can be addressed. Plasmalogens have been noted to be highly 461 

upregulated in a variety of malignancies, and inhibitors of this pathway have recently been 462 

explored as anti-cancer agents (Piano et al., 2015). With the discovery of TMEM189 as a novel 463 

enzyme required for plasmalogen synthesis, we uncover an additional therapeutically targetable 464 

node in this pathway.  465 

 466 

Our identification of C15orf57 as a regulator of clathrin-mediated endocytosis adds another key 467 

player to this pathway; further work is required to uncover its precise mechanistic function. 468 

Nonetheless, the role of C15orf57 in binding the AP2 complex and regulating endocytosis that we 469 

describe here may advance understanding of the significance of recurrent C15orf57-CBX3 gene 470 

fusions that have been proposed to contribute to hepatocellular carcinoma (Zhu et al., 2019). In 471 

addition to the two uncharacterized genes for which we experimentally validated their predicted 472 

functions, we note that several additional functional predictions generated by our method are 473 

supported by evidence from other unbiased, high-throughput approaches. For example, C7orf26, 474 

which we predict is involved in the function of the integrator complex that is required for 475 

transcription of small non-coding RNAs (Chen and Wagner, 2010) was observed to interact with 476 

several subunits of the integrator complex in high-throughput IP-MS experiments; its expression 477 

is also highly correlated with several integrator subunits (Okamura et al., 2015; Szklarczyk et al., 478 

2017). As a second example, the functionally uncharacterized gene TMEM242, for which we 479 

predict a function in mitochondrial respiration, was reported to interact with the gene product of 480 
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NDUFA3, a subunit of mitochondrial complex I, in a high-throughput study (Szklarczyk et al., 481 

2017). Overall, our experimental validation of two uncharacterized gene predictions, paired with 482 

our list of 100 additional uncharacterized genes for which we predict a function, provides an 483 

immediately useful resource for the broader cell biology community.  484 

 485 

Beyond nominating functions for entirely uncharacterized genes, the modules identified in this 486 

study have the potential to suggest novel roles for genes with existing functional annotations. 487 

Within the modules that were the focus of experimental validations in this study, we note that 488 

SEC14L1, previously characterized for its role in inhibiting the anti-viral RIG-1 pathway (Li et al., 489 

2013), is now the only gene in 8-gene module #2213 that has not been shown to be required for 490 

ether lipid synthesis. Notably, SEC14L1 contains a conserved lipid-binding domain, and is related 491 

to a yeast gene, SEC14, involved in non-vesicular lipid transport (Saito et al., 2007). 492 

Plasmalogens are known to traffic to the cell surface after being synthesized in the endoplasmic 493 

reticulum, but the factors that regulate plasmalogen trafficking, and the route plasmalogens take 494 

to the plasma membrane, remain undefined; the possibility that SEC14L1 regulates either 495 

plasmalogen synthesis or transport is thus a prime example of an experimentally testable 496 

hypothesis motivated by our findings. Indeed, preliminary support for this hypothesis is provided 497 

by in vitro studies of yeast Sec14, which revealed that purified Sec14 is sufficient to catalyze ether 498 

lipid transport between lipid membranes (Szolderits et al., 1991). Further study is required to 499 

confirm that human SEC14L1 can similarly drive ether lipid transport between membranes and to 500 

discern whether non-vesciular lipid transport by SEC14L1 could mediate ether lipid trafficking to 501 

the cell surface in living cells.  502 

 503 

An additional key feature of the co-essential modules we identify, by virtue of their overlapping 504 

nature, is their ability to recapitulate multiple levels of biological organization as well as 505 

relationships between distinct pathways and complexes, as exemplified by the set of modules 506 
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corresponding to distinct complexes of the mitochondrial respiratory chain (Figure 3K). The set 507 

of modules enriched for the 10-subunit endoplasmic reticulum (ER) membrane complex (EMC) 508 

provides an additional striking example. The EMC complex was recently shown to function as a 509 

transmembrane insertase required for the biogenesis of a subset of transmembrane proteins, 510 

particularly tail-anchored and polytopic proteins (Guna et al., 2018, Shurtleff et al., 2018) and is 511 

additionally noted for its role in cholesterol homeostasis (Volkmar et al., 2019). We identify several 512 

modules enriched for EMC subunits, including a 7-gene module (#5037) containing 6 EMC 513 

subunits and TMEM147, a gene recently shown to cooperate with EMC in transmembrane protein 514 

biogenesis (Talbot et al., 2019), and a 16-gene module (#2450) containing 8 EMC subunits and 515 

2 genes (MBTPS1 and SCAP) required for cholesterol homeostasis. In addition, we identify a 23-516 

gene module (#534) that contains 5 EMC subunits and 12 subunits of the lysosomal V-ATPase 517 

complex (8 of which are separately contained in 9-gene module 2450). Several of these V-518 

ATPase subunits were recently identified in an unbiased proteomic study as among the proteins 519 

most dependent on EMC function for their stability (Tian et al., 2019). Thus, the set of modules 520 

we identify that are enriched for EMC subunits correspond to known inter-pathway interactions, 521 

and demonstrate the power of co-essential modules to not only identify individual pathways but 522 

to point to possible inter-pathway relationships.  523 

 524 

Numerous additional modules (Figure 3B, D, E, F, J, K, Table S3) that are highly enriched for 525 

one GO term contain components of additional pathways not previously linked to the most-526 

enriched pathway. As one example, two essential components of the mitotic spindle checkpoint, 527 

BUB1B and MAD2L1, are present not only in a module (#1360) highly enriched for genes involved 528 

in kinetochore/spindle checkpoint function but also, unexpectedly, in a module (#739) highly 529 

enriched for interferon (IFN) response genes (Figure 3F). BUB1B and MAD2L1 have well-defined 530 

roles in the prevention of chromosome instability (CIN) (Ricke et al., 2008) but have not previously 531 

been linked to interferon gene function. One possible connection is suggested by the recent 532 
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observation that tumor cells with high levels of CIN generate cytosolic DNA that activates an IFN 533 

response and drives cancer progression (Bakhoum et al., 2018). BUB1B and MAD2L1 prevent a 534 

particular form of CIN - aneuploidy resulting from premature sister chromatid separation – but the 535 

relevance of this type of CIN in the pathogenic process described in that study was not addressed 536 

and may warrant further investigation.  537 

 538 

A key future direction in expanding the ability of this resource to detect functional genetic 539 

relationships is to measure additional phenotypes beyond cancer cell line growth under standard 540 

conditions. The 485 cell lines screened thus far are derived from a wide range of tissue types and 541 

exhibit a highly diverse set of mutational backgrounds, and the Achilles project plans to extend 542 

this screening to several thousand cell lines. Nonetheless, our approach has the potential to 543 

benefit greatly from screens performed in primary tissues; across individuals; under non-ambient 544 

conditions, such as in the presence of a drug or cellular stress; or with readouts other than cellular 545 

fitness, such as changes to cell morphology, gene expression, or cellular activity.  Such screens 546 

offer the potential to uncover an even broader spectrum of functional interactions, and could 547 

enable a dynamic map of pathway rewiring across conditions. Overall, our genome-wide mapping 548 

of the human co-essential network comprises a powerful resource for biological hypothesis 549 

generation and discovery.   550 
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Figure 1  
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Figure 1: Construction of a genome-wide co-essentiality network.  559 

(A) Overview of our approach.   560 

(B) Histograms of GLS and Pearson correlations across all pairs of genes.  561 

(C) Global structure of the co-essentiality network, with manually annotated ‘neighborhoods’ 562 

highly enriched for particular pathways and complexes. Bolded neighborhood labels are 563 

highlighted in (D).  564 

(D) Selected neighborhoods, with manually-defined known pathway members indicated in color 565 

and other genes in gray.  566 

See also Figure S1.  567 
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Figure 2 
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Figure 2: GLS improves recall of known functional interactions in co-essential gene pairs 568 

and modules. 569 

(A) Enrichment of interactions from GLS- and Pearson-based co-essentiality (with/without PCA-570 

based bias correction) using the DepMap dataset, as well as co-expression using the 571 

COXPRESdb dataset, in CORUM, hu.MAP and STRING, considering the top 1-10 partners per 572 

gene.  573 

(B) Number of genes in clusters/modules at least N-fold enriched for some GO term, excluding 574 

the gene itself from the enrichment calculation, for various N from 10 to 1000.  575 

See also Figures S2, S3, S6 and S7576 

  577 
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Figure 3 
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Figure 3: Co-essential modules recapitulate known pathways and nominate novel pathway 578 

members.   579 

(A-K) 10 examples of co-essential modules; all genes in each module are shown. Genes without 580 

previous evidence of pathway involvement are indicated as either “uncharacterized” (Uniprot 581 

annotation score <3) or “other”. Red inhibitory arrows between gene pairs indicate both negative 582 

regulation and negatively correlated essentiality profiles. In (A), (C), (G), (I), and (J), core pathway 583 

members not included in the module are shown in gray. In (K), subunit counts for mitochondrial 584 

respiration complexes were based on HGNC gene sets as of Oct 2019 (Povey et al., 2001). 585 

Abbreviations: (B, C) PI3P, phosphatide-inositol-3-phosphate; (C) LC3s, Microtubule-associated 586 

1A/1B-light chain (LC3) family members; (D) NICD, Notch intracellular domain; glyco, fucose and 587 

glucose modifications transferred to NOTCH1 by POFUT1 and POGLUT1; TGF-B1, transforming 588 

growth factor beta 1; (F) IFN, interferon; ISGs, interferon-stimulated genes; (G) 2-P-L, 2-phospho-589 

lactate (toxic byproduct of PKM) (Collard et al., 2016); (H) BAF, BRG- or HBRM-associated factors 590 

complex; PBAF, polybromo BAF complex; (K) Mod., module; CoQ, coenzyme Q.   591 
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Figure 4
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Figure 4: TMEM189 encodes the orphan enzyme plasmanylethanolamine desaturase 592 

required for synthesis of plasmalogen lipids. 593 

(A) Schematic of module #2213 with manual annotations of gene function. Uncharacterized gene 594 

selected for validation shown in red box. PEX7 is shown importing cytosolic AGPS across the 595 

peroxisomal membrane into the peroxisome matrix (Braverman et al., 1997). 596 

Plasmanylethanolamine desaturase (PEDS) orphan enzyme activity indicated in orange. P-eth, 597 

phosphoethanolamine; CDP-Eth, cytidine diphosphate ethanolamine.  598 

(B) Heatmap of bias-corrected essentiality scores of genes in module 2213 in 485 cancer cell 599 

lines.  600 

(C) Volcano plot of all lipid species detected in lipidomic experiment, with ratio of lipid abundance 601 

in extracts derived from sgSAFE-1-expressing cells relative to sgTMEM189-1-expressing cells 602 

plotted on x-axis.  603 

(D) Total abundance (relative to Safe-targeting sgRNA control #1) of 37 unambiguously identified 604 

plasmenylethanolamine species in cell extracts prepared from HeLa cells transduced with 605 

indicated sgRNAs. Error bars represent standard deviation (n = 4 technical replicates). 606 

(E) Total abundance (relative to Safe-targeting sgRNA control #1) of 30 unambiguously identified 607 

plasmanylethanolamine species in cell extracts prepared from HeLa cells transduced with 608 

indicated sgRNAs. Error bars represent standard deviation (n = 4 technical replicates). 609 

(F) Top, schematic of generation of RAW.12 derivative of RAW264.7 macrophage-like line with 610 

confirmed deficiency in plasmanylethanolamine desaturase (PEDS) activity, as reported in Zoeller 611 

et al., 1992. Bottom, immunoblotting (IB) with anti-TMEM189 antibodies in RAW264.7 parental 612 

line and RAW.12 PEDS-deficient line.  613 

See also Figure S4.  614 
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Figure 5 
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Figure 5: C15orf57 is required for efficient clathrin-mediated endocytosis of transferrin. 615 

(A) Schematic of module #2067. Uncharacterized gene selected for validation shown in red. AP2, 616 

adaptor protein 2. 617 

(B) Heatmap of bias-corrected essentiality scores of genes in module #2067 in 485 cancer cell 618 

lines.  619 

(C) Transferrin-pHrodo uptake assay for clathrin-mediated endocytosis (24h timepoint). Error bars 620 

represent standard deviation (n = 3 technical replicates, two-tailed Student’s t-test, **p<.01). Data 621 

shown are representative of three independent experiments.  622 

(D) Volcano plot of mass spectrometric (TMT) analysis of C15orf57-GFP immunoprecipitates 623 

(IPs). 624 

(E) Extracts prepared from indicated HeLa cell extracts were subjected to immunoprecipitation 625 

with anti-RFP magnetic resin. Extracts and IP samples were resolved by SDS-PAGE and followed 626 

by immunoblotting with indicated antibodies.  627 

(F) Microscopy of HeLa cells transduced with C15orf57-GFP and AP2S1-mCherry constructs. 628 

Scale bar, 20µm.   629 
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Figure 6  
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Figure 6: Identification of cancer type-specific module dependencies.   630 

(A) Differential essentiality of co-essential modules in cell lines derived from 20 tissue types. -631 

log10(p-values) for each module are plotted for each tissue (see Methods). Red bars indicate FDR 632 

thresholds for each tissue type. Auto., autonomic; CNS, central nervous system; Haem., 633 

haematological; lymph., lymphoma; aero., aerodigestive. 634 

(B) Average bias-corrected gene essentiality in breast cancer cell lines plotted on two-635 

dimensional co-essentiality network, with gene neighborhood containing ESR1 highlighted on the 636 

right. 637 

(C) Average bias-corrected gene essentiality in skin cancer cell lines plotted on two-dimensional 638 

co-essentiality network, with gene neighborhood containing BRAF and MITF highlighted on the 639 

right. 640 

See also Figure S5, Video S1.   641 
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SUPPLEMENTAL LEGENDS 642 

 643 

Figure S1: Co-essentiality profiling and the limitations of Pearson correlation 644 

(A) The concept of co-essentiality: (left) a pair of functionally related genes are both essential in 645 

some cell lines and both non-essential in other lines.  Essentiality can be quantified from CRISPR 646 

screens as the logarithm of the growth effect of the gene’s knockout (intuitively, the number of 647 

times fewer cells with the knockout doubled during the screen, compared to control cells).  (Right) 648 

a pair of unrelated genes have uncorrelated essentiality across cell lines. 649 

(B) Simulation of how biological relatedness between cell lines inflates Pearson correlation p-650 

values. Duplicating each point 10 times with slight noise (analogous to duplicating each screen in 651 

10 related lines) makes the previously non-significant (p = 0.6) blue correlation highly significant 652 

(p = 0.007) and the significant red correlation (p = 7 × 10-5) substantially more so (p = 2 × 10-103), 653 

despite similar correlation magnitudes. 654 

 655 

Figure S2: Number of co-essential partners per gene by average gene essentiality 656 

Number of co-essential partners at 1% and 10% FDR as a function of a gene’s average 657 

essentiality (pre-bias-correction CERES score) across lines. 658 

 659 

Figure S3: Benchmarking of cluster density d 660 

F1 score (harmonic mean of precision and recall) for various values of the module density 661 

parameter d on CORUM, hu.MAP and STRING.  F1 scores represent the performance of a binary 662 

network based on the modules (i.e. “are genes A and B in the same module?”) at predicting a 663 

binary network based on the benchmark dataset (i.e. “are genes A and B partners in the 664 

benchmark dataset?”).   665 

 666 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 3, 2019. ; https://doi.org/10.1101/827071doi: bioRxiv preprint 

https://doi.org/10.1101/827071


 

39 

Figure S4: Additional functional characterization of TMEM189 suggests a secondary role 667 

in sphingolipid biosynthesis 668 

(A) Abundances (relative to Safe-targeting sgRNA control #1) of very long chain sphingomyelin 669 

species (with acyl chain length indicated on x-axis) in cell extracts prepared from HeLa cells 670 

transduced with indicated sgRNAs. sgSafe data and sgTMEM189 data are from same data set 671 

represented in Figure 4C. 672 

(B) Volcano plot of mass spectrometric (TMT) analysis of TMEM189-GFP immunoprecipitates. 673 

Data are from same mass spectrometry analysis as data shown in Figure 4D.  674 

 675 

Figure S5: A web tool for interactive exploration of the co-essential network 676 

Example use case for the interactive web tool (coessentiality.net). A gene, KRAS, was selected 677 

using the dropdown menu at top left and is marked with a red arrow in the scatterplot below. 678 

Genes selected for analysis – KRAS and its gene neighborhood – are designated with red points 679 

in the main panel (left). The heatmap panel (top right) shows that KRAS-mutant lines (selected 680 

for display using the search bar above the heat map and indicated as black marks in the “Mutation” 681 

bar above the heatmap) are enriched in a cluster (far right) that is marked by increased essentiality 682 

of KRAS. The pathway enrichment panel (bottom right) shows strong enrichments for Ras 683 

signaling and related pathways. The points in the main panel have also been selected in the tissue 684 

search bar (top middle) to be colored according to the average essentialities of each gene in 685 

kidney-derived cell lines. Gene sets can also be either saved or uploaded as csv files using the 686 

respective buttons in the top center (under “Gene set download/upload”). Some web colors and 687 

font sizes were optimized for display in this figure.  688 

 689 

 690 

 691 

 692 
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Figure S6: Benchmarking of syntenic versus non-syntenic modules 693 

Enrichment of syntenic (both genes on same chromosome) and non-syntenic co-essential pairs 694 

for annotated interactions CORUM, hu.MAP and STRING databases, using the same 695 

benchmarking strategy as in Figure 2. 696 

 697 

Figure S7: Number of genes assigned putative functions by various co-essentiality module 698 

detection methods, after excluding syntenic modules. 699 

Number of genes in non-syntenic clusters/modules at least N-fold enriched for some GO term, 700 

excluding the gene itself from the enrichment calculation, for various N from 10 to 1000. 701 

 702 

Table S1: Spreadsheet of significant co-essential interactions at 10% per-gene FDR. 703 

List of all co-essential gene pairs identified in this study, with the number of Pubmed citations (as 704 

of Oct 2019) and chromosome location for each gene, and the direction of the gene correlation 705 

(positive (+) or negative (-)).  706 

 707 

Table S2: Co-essential and co-expressed partners of TP53, KRAS and BRCA1. 708 

Significant GLS co-essential versus top co-expressed partners of TP53, KRAS and BRCA1.  709 

Genes in bold have strong evidence of being part of the same pathway. 710 

 711 

Table S3: Spreadsheet of co-essential modules. 712 

List of all 5,228 co-essential modules and their constituent genes, with top 3 most-enriched gene 713 

ontology terms and their associated enrichments and p-values, the value of d used to define the 714 

module, and a link to the heatmap of batch-corrected essentiality data across 485 cell lines.  715 

 716 

 717 

 718 
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Table S4: Uncharacterized gene functional predictions. 719 

List of uncharacterized genes that are present in co-essential modules >100-fold enriched for a 720 

gene ontology term, the Uniprot annotation score and number of Pubmed citations for each gene 721 

(as of Oct 2019), and the set of genes in each cluster that is and is not annotated with the most-722 

enriched gene ontology term. 723 

 724 

Table S5: Lipidomics data.  725 

Lipid species concentrations for indicated lipids measured using Lipidyzer platform in indicated 726 

cell lines. QC1, QC2, and QC3 indicate quality controls (see Methods).  727 

 728 

Table S6: Mass spectrometry data for proteomic analysis of C15orf57 and TMEM189 729 

interactomes. 730 

Proteomic data, including complete list of proteins and enrichment p-values,  for C15orf57 and 731 

TMEM189 interactome analyses in Figures 4 and 5.  732 

 733 

Table S7: Cancer type-specific module dependencies. 734 

List of 444 differentially essential modules across 16 tissue types, ranked by p-value.  735 

 736 

Video S1: Example use cases of co-essential browser. 737 

Guide to use of co-essential browser showing how to navigate web tool in the context of multiple 738 

use cases, including gene lookup, gene set selection, and gene list upload.  739 
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METHODS 740 

Code availability 741 

Code to generate co-essential gene pairs, co-essential modules, modules with cancer type-742 

specific dependencies, and the two-dimensional layout will be made available at 743 

https://github.com/kundajelab/coessentiality. 744 

 745 

Dataset 746 

The dataset used to determine co-essential interactions consists of the 485 genome-wide 747 

CRISPR screens from the Achilles project 18Q3 release (Tsherniak et al., 2017).  Specifically, 748 

17,634 genes were screened in 485 cell lines from 27 distinct lineages using the Avana CRISPR 749 

library (Doench et al., 2016), and gene-level effects were quantified using the CERES algorithm 750 

to account for variability in guide effectiveness and copy number across lines (Meyers et al., 751 

2017), resulting in a 17,634 x 485 matrix of normalized gene-level effects.  Intuitively, gene-level 752 

effects represent the number of times fewer cells with the knockout doubled during the screen, 753 

compared to control cells.  This dataset is publicly available at 754 

https://ndownloader.figshare.com/files/12704099, or at https://depmap.org/portal/download/all/ 755 

under release “DepMap Public 18Q3” and file “gene_effect.csv”.   756 

 757 

Bias correction 758 

Bias correction was applied as described in Boyle et al., 2018.  Specifically, the first 4 principal 759 

components of the gene-by-cell-line essentiality matrix across all olfactory receptor genes, 760 

defined here as those with the “olfactory receptor activity” gene ontology (GO) term (Ashburner 761 

et al., 2000; The Gene Ontology Consortium, 2017), were subtracted from the original CERES 762 

score matrix, resulting in a new bias-corrected matrix.  To avoid multicollinearity and allow 763 

inversion of the covariance matrix for generalized least squares (see below), subtraction of the 764 
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first 4 principal components was followed by removal of 4 cell lines (arbitrarily chosen to be the 765 

last 4), resulting in a 17,634-by-481 matrix of bias-corrected CERES scores. 766 

 767 

Quantifying co-essential gene pairs 768 

The co-essentiality between each pair of genes was quantified using generalized least squares 769 

(Aitkin, 1935).  In a departure from previous approaches to co-essentiality profiling, GLS 770 

automatically and flexibly accounts for the non-independence of cell lines by incorporating 771 

information about the covariation between every pair of screens.  When all screens are 772 

independent and have the same variance in effect sizes across genes, the GLS effect size 773 

becomes exactly equivalent to the Pearson correlation coefficient.  GLS is closely related to the 774 

linear mixed models (LMMs) used for population structure correction in genome-wide association 775 

studies (Yu et al., 2006), an analogous problem to ours.   776 

 777 

Specifically, GLS estimates the vector of parameters β of the linear regression model Y = Xβ + ε, 778 

where Y is a vector of observations, X is a matrix of features corresponding to those observations, 779 

and ε are the errors or residuals, under the assumption that the mean of the errors is 0 and their 780 

variance is Σ, where Σ is a covariance matrix specified by the practitioner. The only difference from 781 

ordinary least squares (OLS) is the value of Σ; OLS assumes that it is the identity matrix, while 782 

GLS allows it to be any user-specified value. Here, we set Σ to be the covariance matrix of the 783 

data itself, i.e. Vi,j is the covariance of cell lines i and j across all genes in the CRISPR screen. 784 

 785 

In practice, GLS is solved by a) inverting Σ, in our implementation 786 

(statsmodels.regression.linear_model.GLS from the statsmodels Python package) by using the 787 

Moore-Penrose pseudoinverse instead of the true inverse as a computational optimization, b) 788 

taking the Cholesky decomposition of this inverse covariance matrix chol(Σ-1), c) transforming both 789 
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Y and X by chol(Σ-1) to obtain the transformed observations Y’ = chol(Σ-1) Y and transformed features 790 

X’ = chol(Σ-1) X, and d) running OLS on Y’ and X’. (When Σ is the identity matrix, chol(Σ-1) is as well, 791 

so Y’ = Y and X’ = X and GLS reduces to OLS.) 792 

 793 

GLS was run separately on each gene pair, resulting in a 17,634-by-17,634 matrix of GLS p-794 

values.  Specifically, the endog argument of statsmodels.regression.linear_model.GLS (the 795 

output) was set to the length-481 vector of bias-corrected CERES scores for one of the two genes, 796 

the exog argument (input) set to a 481-by-2 matrix where the first column is the other gene’s bias-797 

corrected CERES scores and the second column is a constant vector of all ones (i.e. the 798 

intercept), and the sigma argument set to the 481-by-481 covariance matrix of the bias-corrected 799 

CERES scores.  Given these three pieces of data, the GLS outputs a p-value indicating the 800 

statistical significance of the degree of co-essentiality between the pair of genes.  Note that while 801 

the GLS p-value is consistent regardless of which of the two genes is chosen as endog and which 802 

as exog, the GLS effect size is not consistent with respect to this choice, and as a result is not 803 

reported.  For benchmarking, GLS was also run on the non-bias-corrected data using the exact 804 

same procedure, but using the full 485 cell lines. 805 

 806 

As a computational optimization, the rate-limiting step of the GLS calculation (inverting the 807 

covariance matrix and then taking the Cholesky decomposition) was cached and reused for each 808 

pair of genes, since all gene pairs use the same covariance matrix.  With this optimization, the 809 

amortized time complexity of GLS is equivalent to Pearson correlation.  The same GLS 810 

implementation was used to calculate the Pearson correlation (with and without bias correction) 811 

between each pair of genes, by setting the covariance matrix to the identity matrix. 812 

 813 

 814 
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Pearson correlation simulations 815 

For the simulations in Figures S1A and B, the x coordinates of the 8 red data points were sampled 816 

to be uniformly distributed between -4 and 0.  The y coordinates were then sampled from 0.9 x + 817 

Normal(0, (1 - 0.92)1/2) to have a Pearson correlation of approximately 0.9.  To be visually pleasing, 818 

points were repeatedly re-simulated until two constraints were satisfied: the most extreme x and 819 

y coordinates had to be between 0.15 and 0.4 from the edge of the interval [-4, 0], and the 820 

minimum x and y differences between each pair of points had to be at least 0.2. 821 

 822 

A second set of blue points were added alongside the red points.  The blue points and red points 823 

share the same x coordinates, but the blue points’ y coordinates were sampled to be uniformly 824 

distributed between -1 and 0 to avoid having any significant correlation with the x coordinates.  To 825 

enforce this lack of correlation, the y coordinates were repeatedly sampled until both the Pearson 826 

and Spearman correlation p-values were greater than 0.5.   827 

 828 

In the right half of Figure S1B, the same red and blue points were plotted, in addition to 20 829 

duplicates of each of these points, shifted by a small amount of noise sampled from Normal(0, 830 

0.1). 831 

 832 

Benchmarking on CORUM, hu.MAP and STRING 833 

For the benchmarking in Figure 3, we compared five methods: co-essentiality with GLS or 834 

Pearson and with or without bias correction, and co-expression with COXPRESdb.  We used the 835 

same versions of COXPRESdb benchmarked in Pan et al., downloaded from the supplemental 836 

data to that paper at https://ndownloader.figshare.com/files/10975364 and remapped from Entrez 837 

IDs to gene names using the mapping at https://ndownloader.figshare.com/files/9120082.  When 838 

benchmarking, we considered only the N = 15,552 genes present in both the Avana library and 839 

COXPRESdb. 840 
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 841 

For STRING, we used all the gene pairs in version 10.5 restricted to Homo sapiens 842 

(https://stringdb-843 

static.org/download/protein.links.detailed.v10.5/9606.protein.links.detailed.v10.5.txt.gz).  To 844 

avoid circularity, we removed gene pairs supported only by co-expression, i.e. for which the only 845 

non-zero score was for co-expression.   846 

 847 

Following the strategy of Pan et al., we compared methods by considering their rankings on a 848 

per-gene basis.  Specifically, we considered only the top N partners for each gene for N from 1 to 849 

10, and looked at how enrichment varied as a function of N.  We used the same versions of 850 

CORUM and hu.MAP benchmarked in Pan et al.  851 

 852 

Enrichments were calculated as the percent of the top N gene pairs in the pathway or complex 853 

database, divided by the percent of gene pairs found in the database.  For instance, to calculate 854 

the enrichment of COXPRESdb in CORUM for N = 2, we found the top 2 co-expressed partners 855 

per gene according to COXPRESdb (N = 2 * 15,552 gene pairs), computed the percent of these 856 

pairs that were part of the same CORUM complex, and divided by the percent of the 15,552 * 857 

15,552 gene pairs that were part of the same CORUM complex.   858 

 859 

Note that Boyle et al. perform an additional transformation of p-values after PCA correction based 860 

on the empirical null distribution of p-values for olfactory genes, but since this transformation is 861 

monotonic it does not affect the rankings of partner genes used in our benchmarking. 862 

 863 

Co-essential modules 864 

Co-essential modules were ascertained with the ClusterONE algorithm (Nepusz et al., 2012).  865 

Briefly, ClusterONE generates modules by greedily adding nodes (genes) starting from a 866 
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randomly selected seed node, so long as the sum of the edge weights within the module is 867 

sufficiently high relative to the sum of the boundary edge weights between genes in the module 868 

and their neighbors.  It then merges sufficiently overlapping modules as a post-processing step, 869 

while allowing genes to be members of multiple modules (protein complexes or pathways). 870 

 871 

ClusterONE was run on the 17,634-by-17,634 matrix of GLS p-values after row-wise false 872 

discovery rate correction, with edge weights set to one minus the false discovery rate q-value 873 

(Storey and Tibshirani, 2003).  Default settings were used for ClusterONE, except for changing 874 

the module density parameter -d (also known as --min-density) from its default of 0.3, as 875 

discussed in the main text. For the list of modules in Table S3, all modules generated with values 876 

of d set to 0.2, 0.5, and 0.9 were merged into a single list. 11 modules that were identical at 877 

different values of d were retained in this list but were excluded from the reported count of total 878 

modules.  879 

 880 

We noted that the resulting list of co-essential modules contained many modules that are highly 881 

enriched for genes that localize close to one another in the genome. In several cases, these 882 

modules correspond to clusters of functionally related genes that are known to colocalize in the 883 

genome, such as histone- and protocadherin-encoding genes, though in the majority of cases it 884 

remains unclear whether the presence of colocalized genes in a module reflects their shared 885 

function in a biological pathway or if it relates to vulnerabilities of CRISPR screening to copy-886 

number artifacts that are difficult to account for perfectly (Meyers et al., 2017). Supporting the idea 887 

that co-essentiality for colocalized genes may represent a mix of true- and false-positive signals, 888 

we find substantial enrichment of syntenic gene pairs (both genes on the same chromosome) in 889 

CORUM, hu.MAP and STRING, but less enrichment than for non-syntenic gene pairs (Figure 890 

S6). We note that even after excluding syntenic modules (i.e. those that contain genes which are 891 

all located on the same chromosome), our set of co-essential modules still assigns putative 892 
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functions to approximately 10,000 genes using the metric described earlier in relation to Figure 893 

2B (i.e.the number of genes included in a module that is at least 100-fold enriched for some GO 894 

term), approximately twice as many as the next-best method (Figure S7). To enable full utilization 895 

of the dataset as well as easy discernment of syntenic and non-syntenic gene pairs and modules, 896 

we report all co-essential gene pairs and modules in Tables S1 (co-essential pairs), S3 (co-897 

essential modules) and S4 (uncharacterized gene predictions) and annotate each as syntenic or 898 

non-syntenic. 899 

 900 

Identification of cancer type-specific pathway dependencies 901 

Cancer type-specific pathway dependency p-values for each module and cancer type (Table S7) 902 

were obtained by 1) computing p-values for each gene and cancer type, then 2) aggregating p-903 

values across genes in each module. In step 1), GLS was run separately for each gene with the 904 

same covariance matrix and output/endog argument (bias-corrected essentiality for a particular 905 

gene) as before (see “Quantifying co-essential gene pairs”). However, unlike before, the exog 906 

argument (input) was set to a 481-by-21 matrix of binary indicator variables for the 20 cancer 907 

types listed in Figure 6A (1 if a cell line is from that cancer type, 0 otherwise) plus an all-ones 908 

intercept column. The two other cancer types with CRISPR screen data from DepMap, cervical 909 

and biliary, were excluded due to only having a single cell line each. This multiple regression 910 

yielded 20 p-values for the gene, one per cancer type. We note that this approach is equivalent 911 

to an ANOVA, except using GLS instead of OLS. 912 

 913 

In Step 2), p-value aggregation was performed separately for each module and cancer type using 914 

the Cauchy Combination Test/Aggregated Cauchy Association Test (Liu and Xie, 2019; Liu et al., 915 

2019) with equal weights on all genes. In Python, this step can be expressed straight-forwardly 916 

as “module_p = cauchy.sf(np.tan((0.5 - gene_ps) * np.pi).mean())”, where gene_ps is a (number 917 

of module genes)-length vector of gene p-values for a particular cancer type, and module_p is 918 
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the combined p-value for the module. Crucially, given that our gene-level p-values are highly 919 

correlated among genes in a module, the test is able to accommodate p-values from correlated 920 

tests (unlike the more commonly used Fisher’s combined p test, which uses a chi-squared instead 921 

of a Cauchy distribution to perform p-value aggregation), and we verified that the combined p-922 

values were not inflated (median p-value = 0.56). 923 

 924 

Global structure of the co-essential network 925 

The two-dimensional interaction map visualization was constructed to have two properties: (a) 926 

genes in many of the same ClusterONE modules are close together; (b) gene pairs with high GLS 927 

co-essentiality are close together. This was done by forming a graph GCO from the ClusterONE 928 

modules (as above) and another GGLS from the co-essentiality data, mixing the two with proportion 929 

α to form the mixed graph:  930 

 931 

G = αGCO + (1-α)GGLS 932 

 933 

(We set α=0.99 to rely on the relatively specific and dense ClusterONE modules where possible, 934 

while falling back on pairwise GLS analysis to link genes not in any module to the rest of the 935 

network.) 936 

 937 

The graph GGLS was constructed by computing, for each pair of genes, -log(p) given by GLS 938 

between the two genes. This was denoised and compressed by keeping each gene’s edges to its 939 

10 nearest neighbors and zeroing the other edges, resulting in each gene having a minimum of 940 

10 neighbors in the graph. (We found our analyses fairly stable to varying the number of nearest 941 

neighbors between 4 and 100.) The graph GCO was constructed using the same procedure, but 942 

with each pairwise similarity computed using the Jaccard similarity between the sets of 943 
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ClusterONE modules the respective genes belonged to (for sets A and B, this is J(A,B) = 944 

|A∩B|/|A∪B|). 945 

 946 

To visualize the network G efficiently on a global scale, we relied on the framework of diffusion 947 

maps (Coifman and Lafon, 2006), which basically decompose the variation in essentiality profiles 948 

over the network into short- and long-range pathway components, resulting in an embedded 949 

space for genes in the network. The genes’ positions here are relatively accurate for genes in 950 

well-separated pathways, and less so for finer distinctions – this embedded space (the “diffusion 951 

map”) is a smoothed version of the network, with each gene being represented in low dimension 952 

d = 40. The embedded space was constructed from G as follows. 953 

 954 

G was first normalized to remove the disproportionate influence of high-degree “hub” genes in the 955 

layout, resulting in a matrix G2. With this gene-wise degree expanded as a matrix DG = diag(∑j Gij), 956 

the normalization operation is: 957 

 958 

G2 = DG
-1 GDG

-1  959 

 960 

This density normalization further corrects for biased sampling of the network by the data 961 

(Coifman and Lafon, 2006; Haghverdi et al., 2015), as analyses on G2 consider the gene network 962 

corrected for the variable density of characterized genes.  963 

 964 

The diffusion map embeds G2, and takes the properties of random walks on it to reveal multi-965 

scale pathway structure. The transition probabilities of such a random walk on G2 are the row-966 

sum-normalized T = D2
-1 G2, where D2 = diag(∑j [G2]ij).  967 

 968 
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This transition matrix T describes the evolution of any random walk, and its right eigenvectors 969 

e1,..., en give a diffusion map embedding when appropriately scaled. The embedding requires a 970 

parameter t, which controls the overall scale of the pathways modeled by the embedding. If the 971 

corresponding eigenvalues are λ1 ≥ λ2 ≥…, then for any t > 0, the embedded coordinates of the 972 

genes [Фt]1, [Фt]2, …,[Фt]40 are: 973 

 974 

[Фt]i = λi
tei 975 

 976 

A crucial choice is that of the scale parameter t. As the current co-essentiality data are some- 977 

what noisy for inferring fine-grained gene-gene relationships, we found it necessary to smooth 978 

them by increasing the value of t in constructing the embedding. We increased t to the minimum 979 

such that d = 40 dimensions captured 90% of the variance in the embedded space Фt, and 980 

computed the resulting diffusion map Ф. This simultaneous optimization of t and Фt made the 981 

procedure adapt to and preserve large-scale global structure in a fully data-driven way, without 982 

substantive parameter tuning and using only a few matrix multiplications and one SVD. 983 

 984 

We applied UMAP (McInnes et al., 2018) to this diffusion map embedding as in scanpy for the 985 

final global layout. Our diffusion maps implementation is in Python using the numpy and scipy 986 

packages, and includes other choices of normalization as well. The entire process ran in less than 987 

4 minutes on the GLS- and ClusterONE-derived matrices on an Intel i7 Core CPU. 988 

 989 

Browser heatmap 990 

The 481-cell-line bias-corrected CERES essentiality scores are plotted alongside the global co-991 

essentiality network in the browser (Figure S5), and update interactively when a subset of genes 992 
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is selected. The heatmap’s rows and columns are ordered by co-clustering them to find latent 993 

components, using the sklearn.cluster.bicluster.SpectralCoclustering implementation of the SVD-994 

based algorithm of (Dhillon, 2001). 995 

 996 

GO enrichment 997 

Below the essentiality score heatmap in the browser is the enrichment analysis panel, which 998 

displays hypergeometric p-values for the selected gene set against various database annotation 999 

terms, as computed by gProfiler (Raudvere et al., 2019). 1000 

 1001 

Module heatmaps 1002 

To create heatmaps for each module (Table S3), the bias-corrected CERES scores for genes in 1003 

the module were hierarchically biclustered with Ward linkage using the 1004 

scipy.cluster.hierarchy.linkage function from the scipy Python package, with the method argument 1005 

set to ‘ward’ and the optimal_ordering argument set to True.  This biclustering was then visualized 1006 

with the seaborn.clustermap function from the seaborn Python package.   1007 

 1008 

Module GO term enrichments 1009 

In Table S3, GO term enrichment p-values were calculated via a hypergeometric test 1010 

implemented using the scipy.stats.hypergeom.sf function from the scipy Python package.  When 1011 

calculating enrichments and p-values, genes not found in any module were excluded.  GO term 1012 

enrichments and p-values were calculated for all GO terms from the GO consortium (Ashburner 1013 

et al., 2000; The Gene Ontology Consortium, 2017), except for GO terms with fewer than 20 total 1014 

genes across all modules and three overly broad GO terms (biological process:biological process, 1015 

cellular component:cellular component and molecular function:molecular function), which were 1016 

excluded.  The top 3 most-enriched GO terms for each module were listed with their 1017 
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hypergeometric p-values, provided the p-value was significant at a per-module Bonferroni 1018 

threshold of 0.05, corrected across all GO terms. 1019 

 1020 

Generation of HeLa cell lines expressing individual sgRNAs and tagged genes 1021 

HeLa cells were maintained on tissue culture plastic and cultured in DMEM supplemented with 1022 

100 units/mL penicillin, 100 µg/mL streptomycin, and 10% fetal calf serum. Cells were passaged 1023 

by incubation with Accutase, pelleting with centrifugation at 300 g for 5 min at room temperature, 1024 

and replating in fresh growth medium. To transduce cells with individual constructs, HeLa cells 1025 

stably expressing Cas9-BFP were lentivirally infected with constructs expressing either individual 1026 

sgRNAs or GFP- or mCherry-tagged genes and a puromycin resistance (PuroR) or blasticidin 1027 

resistance (BlastR) gene. At 3 d after infection, cells were selected with 2 µg/mL puromycin or 1028 

10µg/mL blasticidin for 3d, and cultured for at least 3 d without selection agent before use in 1029 

experiments.  1030 

 1031 

Immunoblotting 1032 

Cleared cell extracts prepared in lysis buffer (50 mM Tris-Hcl pH 7.5, 150 mM NaCl, 1mM EDTA, 1033 

1% Triton X-100, 1 x cOmplete protease inhibitor cocktail (Roche) were heated in SDS loading 1034 

buffer and subjected to SDS-PAGE, transferred to nitrocellulose, blotted and imaged using an 1035 

Odyssey CLx (LI-COR Biosciences) or Supersignal West Femto Maximum Sensitivity Substrate 1036 

with a Chemidoc System (Bio-Rad). The following antibodies were used: Rabbit polyclonal anti-1037 

TMEM189 (HPA059549, Sigma, 1:250), mouse monoclonal anti-GAPDH (AM4300, Fisher), 1038 

rabbit polyclonal anti-mCherry (ab167453, Abcam), mouse monoclonal anti-GFP (A-11120, 1039 

Thermo Fisher) and rabbit polyclonal anti-beta actin (ab8227, Abcam). In Figure 4F, the species 1040 

shown is the predominant species detected using this antibody in RAW264.7 cells and HeLa cells, 1041 

and corresponds to the predicted molecular weight of the TMEM189-UBE2V1 fusion. Cell extracts 1042 

from HeLa-Cas9 cells expressing sgRNAs targeting either control loci or the TMEM189 locus 1043 
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(with >70% knockout efficiency verified using ICE analysis (Synthego)) were used to validate the 1044 

specificity of the anti-TMEM189 antibody (data not shown).  1045 

  1046 

Time-lapse microscopy for transferrin endocytosis 1047 

HeLa cells that had been transduced with sgRNAs, co-expressed with GFP and PuroR, and 1048 

selected with puromycin as described above were lifted, centrifuged, and re-plated in 24-well 1049 

tissue culture plates in quadruplicate at a density of 50,000 cells per well. After 1 d, cells were 1050 

washed once in dPBS, incubated in dPBS for 30 minutes, and incubated in dPBS containing 1051 

25µg/mL transferrin-pHrodo (Thermo Fisher). Plates were transferred to an incubator and imaged 1052 

every 20 minutes using an Incucyte (Essen). Total red intensity for each well, averaged over 16 1053 

images per well, was calculated after applying a threshold of 1 RCU using top-hat background 1054 

subtraction. Reported values represent the mean total red fluorescence intensity, normalized to 1055 

the total green fluorescence signal to account for small variations in plating density, of triplicate 1056 

wells. Similar results were obtained in three independent experiments using two sets of 1057 

independently-generated cell lines.   1058 

 1059 

Confocal microscopy 1060 

HeLa cells were transduced with a lentiviral construct coexpressing C15orf57-GFP and PuroR, 1061 

and then transduced with a lentiviral construct expressing AP2S1-mCherry and BlastR. Cells 1062 

cultured in glass-bottom 24-well plates and imaged in a single plane near the glass surface using 1063 

an inverted Nikon Eclipse Ti-E spinning disk confocal microscope and an Andor Ixon3 EMCCD 1064 

camera using an oil-immersion 100x objective (NA=1.45). Images were assembled and adjusted 1065 

for brightness and contrast in Photoshop (Adobe).  1066 

  1067 

 1068 

 1069 
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Immunoprecipitation and mass spectrometry 1070 

For immunoprecipitations, HeLa cells that had been transduced with tagged constructs as 1071 

described above were cultured in either T-150 flasks or 15 cm plates and harvested near 1072 

confluency. Cell lysates for each cell line were prepared by detaching cells with trypsin, washing 1073 

in PBS, resuspending in 1 mL IP buffer (50 mM HEPES, pH 6.8, 150 mM NaCl, 2mM EDTA, 1% 1074 

Triton X-100, 1x cOmplete protease inhibitor cocktail (Roche)) and incubating for 30 min on ice. 1075 

Cell lysates were cleared by centrifugation at 5,000 g for 5 min before incubation with 50 µl pre-1076 

washed GFP-TRAP MA beads (Chromotek) for 1 h at 4 degrees Centigrade, with end-over-end 1077 

rotation. Beads were washed 4 times for 5 min with 1mL IP buffer prior to elution with 30 µl SDS 1078 

sample buffer at 70 degrees Centigrade. In Figure 5E, a similar procedure was followed, except 1079 

RFP-TRAP MA beads (Chromotek) were used.  1080 

 1081 

For analysis by mass spectrometry, elutions were loaded on 4-12% Bis-Tris NuPage SDS-PAGE 1082 

gels (Thermo Fisher) and run at 100V for 30 minutes. Gels were stained with SimplyBlue 1083 

SafeStain (Thermo Fisher) and equivalent gel fragments for each lane were extracted, sliced into 1084 

small fragments, and stored in 1% acetic acid. Samples were processed as described previously 1085 

(Haney et al., 2018), with the following modifications. Briefly, gel slices were first resuspended in 1086 

100 μL 50 mM ammonium bicarbonate supplemented with 10 μl 50 mM dithiothreitol and 1087 

incubated for 30 min at 55˚C, and subsequently alkylated with 10 μl 100 mM acrylamide for 30 1088 

min at room temperature. Solution phase was discarded, and gel pieces were washed 3 times 1089 

with 100 μl 50 mM ammonium bicarbonate/50% acetonitrile for 10 min at room temperature. 100 1090 

µL of 50 mM ammonium bicarbonate and 1 μg trypsin was added to digest bound proteins during 1091 

an overnight incubation at 37˚C. The overnight digests were spun down and the solution was 1092 

collected. Peptides were extracted more two additional times with 50 µl of 70% acetonitrile/29% 1093 

water/1% formic acid and incubated for 10 min at 37˚C and centrifuged at 10,000 x g for 2 minutes, 1094 

and all three extractions were combined. The combined extracts were dried using a Speedvac 1095 
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and reconstituted in 100 mM triethylammonium bicarbonate for TMT10plex labelling (Thermo 1096 

Fisher) following the manufacturer’s instructions, and samples were mixed to generate the final 1097 

peptide mixture. 1098 

 1099 

Protein digests were loaded on a Waters Liquid Chromatography column coupled to an Orbitrap 1100 

Fusion mass spectrometer (Thermo Fisher). Peptides were separated using a 25 cm long and 1101 

100 µm inner diameter capillary column packed with Sepax 1.8 µm C18 resin. Peptides were 1102 

eluted off in a 60 min gradient at a flow rate of 600 nl/min from 5% to 35% acetonitrile in 0.1% 1103 

formic acid. Mass spectrometry data was acquired by one full MS scan at 120k resolution followed 1104 

with MS2 using HCD at 30k resolution. The instrument was set to run in top speed mode with 3 s 1105 

cycle. 1106 

 1107 

Raw data was processed using Thermo Proteome Discoverer software version 2.2. MS data were 1108 

searched against a human proteome database with 1% FDR at peptide level. Protein 1109 

quantification was based on the precursor ion peak intensity using the label free quantitation 1110 

workflow. For Figures 5D and S4B, keratins and proteins identified with only one peptide were 1111 

excluded from analysis. P-values were generated from Student’s t-tests between duplicate 1112 

samples of indicated tagged genes and all 6 other samples analyzed in the same run (including 1113 

duplicate samples derived from cells expressing GFP-tagged JTB (an unrelated gene), and from 1114 

cells expressing GFP alone). 1115 

 1116 

Lipidomics 1117 

HeLa cells expressing sgRNAs targeting either safe loci or the TMEM189 or SPTLC2 loci were 1118 

cultured in quadruplicate and harvested by centrifugation after washing with PBS. Lipids were 1119 

extracted from 60 mg cell pellets using a biphasic separation with cold methyl tert-butyl ether 1120 

(MTBE) , methanol and water, as described previously (Schüssler-Fiorenza Rose et al., 2019). 1121 
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The solvent mixture contained labeled standard lipids stock (SCIEX, cat#: 5040156) to control for 1122 

extraction efficiency and facilitate quantification relative to the known concentrations.  1123 

 1124 

Lipid extracts were analyzed by mass spectrometry using the Lipidyzer platform (Contrepois et 1125 

al., 2018), comprising a 5500 QTRAP mass spectrometer equipped with a differential mobility 1126 

scan (DMS) interface (SCIEX) and high-flow LC-30AD delivery unit (Shimadzu), as described 1127 

previously (Schüssler-Fiorenza Rose et al., 2019). Briefly, flow injection analysis was performed 1128 

at 8 μl/min in 10mM ammonium acetate in 50:50 dichloromethane:methanol running solution, with 1129 

1-propanol included in curtain gas. DMS parameter settings were set as follows: 1130 

Temperature = Low, Separation Voltage = 3.5 kV and DMS resolution = Low. PC, PE, LPC, LPE 1131 

were quantified with DMS on in negative ionization mode; SM was quantified with DMS on and in 1132 

positive ionization mode; FFA were quantified with DMS off and in negative ionization mode; TAG, 1133 

DAG, CE, and CER were quantified with DMS off and in positive ionization mode. DMS 1134 

compensation voltages were tuned using a set of lipid standards (SCIEX, cat#: 5040141), and a 1135 

quick system suitability test (QSST) (SCIEX, cat#: 50407) was performed to ensure acceptable 1136 

limit of detection for each lipid class. Lipid molecular species were quantified with the Lipidyzer 1137 

Workflow Manager using 54 deuterated IS developed with Avanti Polar Lipids covering 10 lipid 1138 

classes (SCIEX, cat#: 5040156). 17 plasmenylethanolamine species with fully saturated, 18-1139 

carbon acyl chains at the sn-1 position were excluded from analyses, as they cannot be reliably 1140 

differentiated from plasmanylethanolamine species with unsaturated 18-carbon acyl chains at the 1141 

sn-1 position (which are scarce in wild-type cells but are expected to accumulate in TMEM189-1142 

knockout cells) with the Lipidyzer platform (M. Pearson, SCIEX, personal communication).  1143 

 1144 

 1145 

  1146 
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SUPPLEMENTAL INFORMATION 

Figure S1, related to Figure 1 
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Figure S1: Co-essentiality profiling and the limitations of Pearson correlation 

(A) The concept of co-essentiality: (left) a pair of functionally related genes are both essential in 

some cell lines and both non-essential in other lines.  Essentiality can be quantified from CRISPR 

screens as the logarithm of the growth effect of the gene’s knockout (intuitively, the number of 

times fewer cells with the knockout doubled during the screen, compared to control cells).  (Right) 

a pair of unrelated genes have uncorrelated essentiality across cell lines. 

(B) Simulation of how biological relatedness between cell lines inflates Pearson correlation p-

values. Duplicating each point 10 times with slight noise (analogous to duplicating each screen in 

10 related lines) makes the previously non-significant (p = 0.6) blue correlation highly significant 

(p = 0.007) and the significant red correlation (p = 7 × 10-5) substantially more so (p = 2 × 10-103), 

despite similar correlation magnitudes. 
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Figure S2, Related to Figure 2 
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Figure S2: Number of co-essential partners per gene by average gene essentiality 

Number of co-essential partners at 1% and 10% FDR as a function of a gene’s average 

essentiality (pre-bias-correction CERES score) across lines. 
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Figure S3, Related to Figure 2 
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Figure S3: Benchmarking of cluster density d 

F1 score (harmonic mean of precision and recall) for various values of the module density 

parameter d on CORUM, hu.MAP and STRING.  F1 scores represent the performance of a binary 

network based on the modules (i.e. “are genes A and B in the same module?”) at predicting a 

binary network based on the benchmark dataset (i.e. “are genes A and B partners in the 

benchmark dataset?”).   
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Figure S4, Related to Figure 4 
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Figure S4: Additional functional characterization of TMEM189 suggests a secondary role 

in sphingolipid biosynthesis 

(A) Abundances (relative to Safe-targeting sgRNA control #1) of very long chain sphingomyelin 

species (with acyl chain length indicated on x-axis) in cell extracts prepared from HeLa cells 

transduced with indicated sgRNAs. sgSafe data and sgTMEM189 data are from same data set 

represented in Figure 4C. Error bars represent standard deviation (n = 4 technical replicates, two-

tailed Student’s t-test, *, p<.05; **p<.01).  

(B) Volcano plot of mass spectrometric (TMT) analysis of TMEM189-GFP immunoprecipitates. 

Data are from same mass spectrometry analysis as data shown in Figure 4D.  
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Figure S5, Related to Figure 6 
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Figure S5: A web tool for interactive exploration of the co-essential network 

Example use case for the interactive web tool (coessentiality.net). A gene, KRAS, was selected 

using the dropdown menu at top left and is marked with a red arrow in the scatterplot below. 

Genes selected for analysis – KRAS and its gene neighborhood – are designated with red points 

in the main panel (left). The heatmap panel (top right) shows that KRAS-mutant lines (selected 

for display using the search bar above the heat map and indicated as black marks in the “Mutation” 

bar above the heatmap) are enriched in a cluster (far right) that is marked by increased essentiality 

of KRAS. The pathway enrichment panel (bottom right) shows strong enrichments for Ras 

signaling and related pathways. The points in the main panel have also been selected in the tissue 

search bar (top middle) to be colored according to the average essentialities of each gene in 

kidney-derived cell lines. Gene sets can also be either saved or uploaded as csv files using the 

respective buttons in the top center (under “Gene set download/upload”). Some web colors and 

font sizes were optimized for display in this figure.  
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Figure S6, Related to Figure 2 
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Figure S6: Benchmarking of syntenic versus non-syntenic modules 

Enrichment of syntenic (both genes on same chromosome) and non-syntenic co-essential pairs 

for annotated interactions CORUM, hu.MAP and STRING databases, using the same 

benchmarking strategy as in Figure 2.  
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Figure S7, Related to Figure 2 
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Figure S7: Number of genes assigned putative functions by various co-essentiality module 

detection methods, after excluding syntenic modules. 

Number of genes in non-syntenic clusters/modules at least N-fold enriched for some GO term, 

excluding the gene itself from the enrichment calculation, for various N from 10 to 1000. 
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Table S1: Spreadsheet of significant co-essential interactions at 10% per-gene FDR. 

List of all co-essential gene pairs identified in this study, with the number of Pubmed citations (as 

of Oct 2019) and chromosome location for each gene, and the direction of the gene correlation 

(positive (+) or negative (-)).  

 

Table S2: Co-essential and co-expressed partners of TP53, KRAS and BRCA1. 

Gene 
Significant co-essential 
partners (p-value, direction) 

Top co-expressed partners 
(correlation) 

TP53 USP28 3 × 10-28 + CPEB4 -0.32 

 CDKN1A 1 × 10-24 + SYNJ1 -0.32 

 TP53BP1 5 × 10-23 + PFN1 0.32 

 MDM2 4 × 10-18 - RNPEP 0.31 

 CHEK2 2 × 10-16 + RCC2 0.31 

 ATM 1 × 10-14 + CNN2 0.30 

 PPM1D 2 × 10-9 - SERINC1 -0.30 

 XPO7 6 × 10-8 + FAM126B -0.30 

 UBE2K 9 × 10-6 + FOXM1 0.30 

 CNOT2 1 × 10-5 - CHST14 0.30 

KRAS RAF1 1 × 10-12 + ZDHHC20 0.55 

 DOCK5 4 × 10-7 + PTAR1 0.49 

 SHOC2 2 × 10-6 + MATR3 0.49 

 ERGIC2 4 × 10-6 + SPCS3 0.47 

 TM7SF3 8 × 10-6 + SUZ12 0.47 

BRCA1 BARD1 1 × 10-25 + KIF14 0.67 

 PALB2 2 × 10-8 + MCM10 0.65 

 RPL21 1 × 10-6 - KIF11 0.63 

 BRCA2 2 × 10-5 + FANCD2 0.63 

 HIST2H2AA3 4 × 10-5 - NCAPH 0.62 

 HEY1 6 × 10-5 + ARHGAP11A 0.62 

 

Significant GLS co-essential versus top co-expressed partners of TP53, KRAS and BRCA1.  

Genes in bold have strong evidence of being part of the same pathway. 
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Table S3: Spreadsheet of co-essential modules. 

List of all 5,228 co-essential modules and their constituent genes, with top 3 most-enriched gene 

ontology terms and their associated enrichments and p-values, the value of d used to define the 

module, and a link to the heatmap of batch-corrected essentiality data across 485 cell lines.  

 

Table S4: Uncharacterized gene functional predictions. 

List of uncharacterized genes that are present in co-essential modules >100-fold enriched for a 

gene ontology term, the Uniprot annotation score and number of Pubmed citations for each gene 

(as of Oct 2019), and the set of genes in each cluster that is and is not annotated with the most-

enriched gene ontology term. 

 

Table S5: Lipidomics data.  

Lipid species concentrations for indicated lipids measured using Lipidyzer platform in indicated 

cell lines. QC1, QC2, and QC3 indicate quality controls (see Methods).  

 

Table S6: Mass spectrometry data for proteomic analysis of C15orf57 and TMEM189 

interactomes. 

Proteomic data, including complete list of proteins and enrichment p-values, for C15orf57 and 

TMEM189 interactome analyses in Figures 4 and 5.  

 

Table S7: Cancer type-specific module dependencies. 

List of 444 differentially essential modules across 16 tissue types, ranked by p-value.  
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Video S1: Example use cases of co-essential browser. 

Guide to use of co-essential browser showing how to navigate web tool in the context of multiple 

use cases, including gene lookup, gene set selection, and gene list upload. 
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