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Abstract
Aims/hypothesis This study sought to identify genes and
regions in the human genome that are associated with the
acute insulin response to glucose (AIRg), an important
predictor of type 2 diabetes, in Hispanic-American partic-
ipants from the Insulin Resistance Atherosclerosis Family
Study (IRAS FS).
Methods A two-stage genome-wide association scan
(GWAS) was performed in IRAS FS Hispanic-American
samples. In the first stage, 317K single nucleotide poly-
morphisms (SNPs) were assessed in 229 Hispanic-
American DNA samples from 34 families from San

Antonio, TX, USA. SNPs with the most significant
associations with AIRg were genotyped in the entire set
of IRAS FS Hispanic-American samples (n=1,190). In
chromosomal regions with evidence of association, addi-
tional SNPs were genotyped to capture variation in genes.
Results No individual SNP achieved genome-wide levels of
significance (p<5×10−7); however, two regions (chromo-
somes 6p21 and 20p11) had multiple highly ranked SNPs
that were associated with AIRg. Additional genotyping in
these regions supported the initial evidence of variants
contributing to variation in AIRg. One region resides in a
gene desert between PXT1 and KCTD20 on 6p21, while the
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region on 20p11 has several viable candidate genes
(ENTPD6, PYGB, GINS1 and RP4-691N24.1).
Conclusions/interpretation A GWAS in Hispanic-American
samples identified several candidate genes and loci that may
be associated with AIRg. These associations explain a small
component of variation in AIRg. The genes identified are
involved in phosphorylation and ion transport, and provide
preliminary evidence that these processes are important in
beta cell response.
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Abbreviations
AIM Ancestry-informative marker
AIRg Acute insulin response to glucose
CEPH Centre d’Etude du Polymorphisme Humain
DI Disposition index
EBV Epstein–Barr virus
FSIGT Frequently sampled intravenous glucose

tolerance test
GWAS Genome-wide association scan
IRAS FS Insulin Resistance Atherosclerosis

Family Study
LD Linkage disequilibrium
MAF Minor allele frequency
PC Principal components
SG Glucose effectiveness
SI Insulin sensitivity
SNP Single nucleotide polymorphism

Introduction

An individual’s risk of developing insulin resistance and
type 2 diabetes is determined in part by genetic factors [1].
The transition from normal glucose homeostasis to type 2
diabetes is thought to be due primarily to increasingly
dysfunctional beta cells [2–6]. While estimates of gene
contribution to beta cell response vary, there is little
argument that discovery of genes accounting for variation
in the way beta cells respond to glucose could identify
important pathways for type 2 diabetes risk prediction,
intervention and treatment.

Candidate gene evaluations and genome-wide linkage
scans have been used to search for genes with modest to
large effect that contribute to variation in beta cell response;
however, these methods have not been highly successful.
The genome-wide association scan (GWAS) has become a
popular approach for detecting genes with small to modest
effect. GWAS studies in type 2 diabetes have been
especially productive and had an extraordinary impact on

current understanding of genetic susceptibility to type 2
diabetes [7–13].

The vast majority of GWAS studies for type 2 diabetes
have used cases and controls from European or European-
derived populations. Although over a dozen genes/regions
have been identified with robust statistical significance, it is
unclear whether these genes/regions will also be found in
populations of non-European origin [14, 15]. Currently, the
genes identified for type 2 diabetes from populations of
European origin have suggested that most, if not all, of the
type 2 diabetes genes mediate their influence through the
beta cell and not through insulin resistance pathways.

In the current report, we evaluate a quantitative, directly
assessed measure of beta cell response in a non-European
population. Herein, we present results of a two-stage
GWAS in Hispanic-Americans from the Insulin Resistance
Atherosclerosis Family Study (IRAS FS). Through a high-
density single nucleotide polymorphism (SNP) scan and
follow-up genotyping, a series of genes and regions may
have been identified that contribute to variation in the acute
insulin response of the beta cell to a glucose challenge.

Methods

IRAS FS participants The description of the study design,
recruitment and phenotyping for IRAS FS have been
presented previously [16]. Briefly, the IRAS FS is a
multi-centre study designed to identify the genetic determi-
nants of quantitative measures of glucose homeostasis in
African-American and Hispanic-American populations in
the USA. Members of large families of self-reported
Hispanic ancestry (n=1268 individuals in 92 pedigrees;
San Antonio, TX; San Luis Valley, CO, USA) were
recruited and used in this report. The Institutional Review
Board of each participating clinical and analysis site
approved the study protocol and all participants provided
their written informed consent.

A clinical examination was performed that included an
in-depth medical history interview, a frequently sampled
intravenous glucose tolerance test (FSIGT), anthropometric
measurements and collection of samples for blood chemis-
try and biomarker analysis. Measures of glucose homeo-
stasis were derived using mathematical models [17] from
glucose and insulin values obtained during the FSIGT [18–
20]. These estimates of glucose homeostasis include insulin
sensitivity (SI), glucose effectiveness (SG), disposition
index (DI; with DI ¼ AIR� SI) and the acute insulin
response to glucose (AIRg). This report focuses on the
AIRg phenotype of glucose homeostasis.

A collection of IRAS FS DNA samples from Hispanic-
American participants (229 individuals from 34 families)
was chosen from the San Antonio study group for the first
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stage of the GWAS. These samples were from participants
without type 2 diabetes who had complete data for glucose
homeostasis and obesity phenotypes, but with an age, BMI
and sex distribution consistent with that of the entire IRAS
FS collection. The participants appear to be representative
of a relatively homogeneous population based upon
Structure (http://pritch.bsd.uchicago.edu/structure.html,
accessed October 2008) analysis [21] using microsatellite
polymorphisms from an earlier genome-wide linkage scan
[22, 23]. DNA used in the high-throughput genotyping
(317K SNPs) was obtained from Epstein–Barr virus (EBV)-
transformed lymphoblastoid cell lines.

Genome-wide association scan Genotyping was performed
at Cedars–Sinai Medical Center using 1.5 μg of genomic
DNA (15 μl of 100 ng/μl stock) and Illumina technology
(Illumina Infinium II HumanHap 300 BeadChips; Illumina,
San Diego, CA, USA) and assay protocol [24]. Genotypes
were determined based on clustering of the raw intensity
data for the two dyes using Illumina Bead Studio software.
Consistency of genotyping was checked using 18 repeat
samples; the concordance rate was 100%. Repeat genotyp-
ing of DNA samples was performed once if the overall call
rate was less than 98%; the sample was rejected if there was
no improvement in call rate. The average sample call rate
was 99.76%. SNPs with Hardy–Weinberg disequilibrium
(p<0.001), minor allele frequency (MAF) less than 0.05 or
more than 5% missing genotypes were excluded from
subsequent analysis. Genotypes with GenCall (Illumina)
scores less than 0.15 were set to missing (0.25%). For
highly associated SNPs, clustering was repeated to exclude
spurious significance. All genotypes were oriented to the
forward strand. Risk of strand ambiguities is minimal, as no
C/G or A/T polymorphisms are included on the Illumina
300K HumanHap panel.

Validation genotyping in the entire IRAS FS Hispanic
sample SNPs with evidence of association in the GWAS
were validated in the entire Hispanic cohort (excluding
participants with type 2 diabetes). A total of 1,536 SNPs
were chosen for genotyping on all Hispanic samples for
which glucose homeostasis data were available (n=1190).
Genotyping was performed at Cedars–Sinai Medical
Center using the Illumina Golden Gate Assay. SNPs with
low call frequencies (<98%) were manually re-clustered
(~15% of all SNPs). Of the 1,536 SNPs, 3.5% were
excluded due to call frequency less than 0.7 and/or cluster
separation less than 0.3. The average SNP call frequency
was 99.48%. Duplicate genotyping of 12 samples yielded
a 100% concordance rate. The minimum acceptable sample
call rate was 95%; the average sample call rate was 99.5%.
SNP selection for this second stage was based upon:
(1) identification of the most strongly associated 50 to 100

SNPs for each glucose homeostasis and related phenotype
(SI, SG, AIRg, DI) from the initial GWAS; (2) tag SNPs in
genes with high evidence of association across more than
one phenotype (tags for SNPs with MAF >0.1 using
Haploview version 4 [25]); and (3) ancestry-informative
markers (AIMs) for Hispanic populations [26, 27].

Follow-up locus-specific genotyping Individual genes/
regions with confirmed evidence of association from the
GWAS and the validation genotyping were targeted for
additional genotyping using tag SNPs. This genotyping was
performed using iPLEX Gold SBE assays on a MassAR-
RAY genotyping system (Sequenom, San Diego, CA,
USA). Locus-specific primers were designed using the
system’s software (MassARRAYAssay Design 3.0; Seque-
nom). Mass spectrograms were analysed using MassAR-
RAY Typer software (Sequenom). The minimum
acceptable call frequency was 98%; no SNP failed this
criterion as average call frequencies were >99.14%. We
included 51 blind duplicate samples to evaluate genotyping
accuracy; the concordance rate was 99.94%. SNPs were
selected to capture common variation within linkage
disequilibrium (LD) haplotype blocks as defined by the
Centre d’Etude du Polymorphisme Humain (CEPH) (Utah
residents with northern and western European ancestry)
(CEU) population of the International HapMap project [28].
Specifically, genotype data from the genomic interval
containing the candidate gene ±5 kb were exported from
the HapMap database and imported into Haploview. For
genes with few LD blocks (e.g. ETV7), SNPs were selected
to tag the entire genic region with a mean r2=0.80 with
forced inclusion of previously genotyped SNPs. For larger
genes (e.g. STK38), SNP selection focused on the LD block
containing the SNP associated in the validation genotyping;
additional SNPs were selected to tag the block with a mean
r2=0.80 with forced inclusion of previously genotyped SNPs.

Statistical methods For quality control, each SNP was
examined for Mendelian inconsistencies using PedCheck
[29]. There were 1657 SNPs exhibiting inconsistencies and
these genotypes were converted to ‘missing’. Maximum
likelihood estimates of allele frequencies were computed
using the largest set of unrelated Hispanic-American
individuals (n=34); SNP genotypes were tested for depar-
tures from Hardy–Weinberg equilibrium proportions.
SNPs with no evidence of a difference in AIRg values
between individuals with and without missing genotype
data (p>0.05), and with no evidence of departure from
Hardy–Weinberg equilibrium (p>0.001) were included in
subsequent analyses.

To test for association between individual SNPs and
AIRg, variance component measured genotype analyses
were performed as implemented in SOLAR (Sequential
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Oligogenic Linkage Analysis Routines) software [30].
X-Chromosome SNPs (used for ancestry adjustment) were
not used in the primary analyses. For statistical testing,
AIRg was transformed using the signed-square root to best
approximate the distributional assumptions of the test and
minimise heterogeneity of the variance. SNPs were ranked
using p values from the additive genetic model. The
primary statistical inference was the additive genetic model.
All tests and levels of significance were computed after
adjustment for age, sex and BMI.

Analyses for validation and locus-specific genotyping
data used the same modelling framework as employed for
analysis of the GWAS data, except that covariate adjust-
ment included a term for the site of recruitment (San
Antonio, San Luis Valley) and admixture. For incorporation
of admixture into the combined analyses of GWAS and
validation data, a collection of AIMs was used. These
AIMs were selected from the literature on studies performed
in Hispanics [26, 27]. The GWAS had 80 SNPs (including
14 on the X chromosome) and the validation genotyping
had 149 SNPs (including 23 on the X chromosome). The
149 AIMs were available on 1,279 participants; these data
were merged with HapMap data for CEPH (n=90) and
Yoruba (n=90) populations.

A principal components (PC) analysis was performed on
the 149 AIMs as well as the 80 AIMs common to the
GWAS (317K SNP panel) and the validation (1,536 SNP
panel) experiments. The total proportion of variance
explained by the first three PCs with the 80 AIMs (PC1,
10.2%; PC2, 5.1%; PC3, 2.7%) differed little from the
proportion of variance explained by the 149 AIMS (PC1,
10.3%; PC2, 4.8%; PC3, 1.9%). However, there were
differences overall between the Hispanic-American sites
with respect to PC2 p ¼ 2:35� 10�53ð Þ. Hispanic-
Americans from the two sites differed in two measures of
glucose homeostasis (SG, p ¼ 2:65� 10�17; DI,
p ¼ 6:22� 10�10) and two measures of adiposity (BMI,
p ¼ 1:46� 10�12; visceral fat, p ¼ 7:37� 10�5), but not
in AIRg (Spearman correlation 0.09, p=0.09). For AIRg,
the proportion of variance explained by the centre of
ascertainment was 2.56%; thus, all results are presented
with adjustment for admixture in addition to age, sex, BMI
and centre of ascertainment.

Results

Characteristics of the study participants This pilot GWAS
studied 229 Hispanic-American participants who did not
have type 2 diabetes, but had complete data for glucose
homeostasis, critical covariates and DNA obtained from
EBV-transformed cell lines from the San Antonio popula-
tion. A sample of 961 participants with DNA and baseline
data was used for replication. The total study sample of
1,190 Hispanic-American participants included the follow-
ing characteristics: 58.6% women, average age 42.8 years,
mean AIRg (excluding type 2 diabetic participants)
767 pmol/l and BMI 29.0 kg/m2 (Table 1). There were no
significant differences between the groups in these pheno-
types.

Genome-wide association scan for AIRg A total of 309,200
SNPs met all quality control criteria and were evaluated for
association with AIRg. SNPs were ranked using p values
from the additive genetic model. The quantile–quantile
plot for the stage 1 GWAS indicated that the majority of
SNPs exhibited a –log10(p value) of less than 2; the
observed distribution of p values matched the expectation
for the majority of the observed data (Electronic supple-
mentary material [ESM] Fig. 1). There was some
departure from the null distribution at p<10−3, so this
value was used as a rough cut-point for selection of SNPs
for follow-up. The highest-ranking SNPs associated with
AIRg were chosen for genotyping on all non-diabetic
Hispanic-American participants in the IRAS FS (n=1190).
We included 672 SNPs with evidence of association with
AIRg and other glucose homeostasis phenotypes (SI, SG,
DI) or SNPs that tag genes associated with multiple
phenotypes in a 1,536 custom chip (another 461 SNPs
were tested on the basis of association with adiposity and
related phenotypes). For AIRg, 157 SNPs were chosen
based on AIRg alone (125 SNPs) or AIRg plus other traits
(32 SNPs). Of these 157 SNPs, 149 passed clustering-
related quality control.

Candidate genes/regions for AIRg Results from the AIRg
analyses (full admixture-adjusted analyses, initial GWAS
and the independent replication analysis), representing the

Variable GWAS (n=229) Replication (n=961) Total sample (n=1,190)

Male sex, n (%) 83 (36.2) 410 (42.7) 493 (41.4)

Age (years) 41.3±13.9 (40.3) 43.2±14.7* (41.6) 42.8±14.5 (41.3)

AIRg (pmol/l) 722.9±598.1 (548.7) 780.2±678.2 (596.2) 766.9±660.5 (587.3)

Fasting glucose (mmol/l) 5.22±0.55 (5.13) 5.18±0.52 (5.11) 5.19±0.53 (5.11)

Fasting insulin (pmol/l) 112±77 (90) 103±78 (83) 104±78 (83)

BMI (kg/m2) 29.4±5.9 (28.5) 28.9±6.3 (28.1) 29.0±6.2 (28.1)

Table 1 Characteristics of the
non-diabetic Hispanic-American
sample in the IRAS FS GWAS

Unless otherwise indicated, val-
ues are mean±SD (median)

*p<0.05 compared with GWAS

Diabetologia (2009) 52:1326–1333 1329



most highly associated SNPs that reside in genes, are
shown in Table 2. SNP locations within and in proximity to
genes were determined by dbSNP (www.ncbi.nlm.nih.gov/
projects/SNP/, dbSNP build 129, genome build 36.3;
accessed 9 February 2009). The SNP most highly associated
with AIRg was rs1566458 p ¼ 5:5� 10�4ð Þ in ZDHHC7
on chromosome 16q24.1. A second gene, RGS6 (rs2238256,
p ¼ 8:6� 10�4) on 14q24.3, encodes proteins that nega-
tively regulate heterotrimeric G protein signalling and
modulate neuronal, cardiovascular and lymphocytic activity.
Three of the most associated genic SNPs for AIRg
(rs1061632, rs2300064 and rs12190911) are located in the
KCTD20/STK38 region on 6p21.3, within the human
MHC and near the SNP in the NCR2 locus, which was
also associated with AIRg. Only two associated SNPs were
in exons (rs1061632 in KCTD20 and rs3748400 in
ZCCHC14).

The region on 6p21 (ESM Fig. 2) contains five blocks
that span approximately 200 kb, based upon the MEX
HapMap (genotyping of 71 Mexican Americans from Los
Angeles, CA, USA). This region is covered by a five-SNP
haplotype (rs12190911/rs1061632/rs2300064/rs612399/
rs7772334). A smaller LD block is tagged by rs12190911
(admixture adjusted p ¼ 1:4� 10�3) and contains two
genes, ETV7 (also known as TEL2), a member of the E26
transformation-specific family of transcription factors, and
PXT1. A larger LD block is tagged by rs1061632
p ¼ 9:0� 10�4ð Þ, rs2300064 p ¼ 9:1� 10�4ð Þ, rs612399

p ¼ 6:2� 10�3ð Þ and rs7772334 p ¼ 7:8� 10�4ð Þ, and
contains the genes KCTD20, STK38 and SFRS3. For the
entire region, 22 SNPs were chosen to capture common
variation (r2=0.98) for follow-up analyses of these candidate
genes in the entire IRAS FS Hispanic sample. The AIRg
effect in the 6p21 region appears to be composed of three
sets of two adjacent SNPs spanning a 105 kb region bounded
by SNPs rs12190911 (p=0.001 between PXT1 and KCTD20)
and rs614028 (p=0.04 within STK38). Locations and
genotypic means for these SNPs can be found in ESM
Table 1.

A second region of associated SNPs that appear
clustered is on chromosome 20p11.2-p11.1, including the
genes ENTPD6, PYGB, ABHD12, GINS1 and RP4-
691N24.1 (also known as KIAA0980) (ESM Fig. 3). In this
case, however, only ABHD12 did not have at least one SNP
that was significantly associated with AIRg. ENTPD6
(rs2179638, p=0.001), PYGB (rs6138553, p=0.026),
GINS1 (rs6076347, p=0.0037; rs2500406, p=0.003) and
RP4-691N24.1 (rs16987806, p=0.001; rs6083877, p=0.035)
all had associations with variation in AIRg. Similar results
are shown for SNPs that do not have recognised genes
within 10 kb of the associated SNP (Table 3). The second
most highly associated SNP in the entire data (rs7772334,
p ¼ 7:8� 10�4) was 13.6 kb from NCR2 on 6p21.1, which
is involved in natural killer cell activity. Locations and
genotypic means for these SNPs can be found in ESM
Table 2.

Table 2 SNPs significantly associated with AIRg in the IRAS FS in genic regions ordered by p values obtained from combined first-stage
(GWAS) and replication samples (admixture-adjusted)

SNP and gene variables p values (additive model)

SNP Chr Position Gene Admixture adjusted
(n=1190)

GWAS
(n=233) a

Replication
(n=957) b

rs1566458 16 83576432 ZDHHC7 5.5×10−4 1.2×10−4 6.7×10−2

rs2238256 14 71669976 RGS6 8.6×10−4 5.2×10−4 3.2×10−2

rs1061632 6 36565462 KCTD20 9.0×10−4 9.4×10−4 3.7×10−2

rs2300064 6 36582119 STK38 9.1×10−4 7.8×10−4 4.0×10−2

rs214038 2 56377838 CCDC85A 1.4×10−3 3.2×10−2 1.5×10−2

rs3748400 16 86003340 ZCCHC14 1.6×10−3 4.0×10−5 1.3×10−1

rs10460887 3 180538829 ZNF639/MFN1 c 2.3×10−3 2.0×10−5 ND

rs1340503 9 77761324 PCSK5 2.8×10−3 1.0×10−5 1.0×10−1

rs6076347 20 25346790 GINS1 3.7×10−3 3.8×10−4 5.5×10−2

rs10793057 11 72646308 P2RY2/P2RY6 4.5×10−3 1.0×10−5 2.2×10−1

Genic region was defined by ±10 kb from associated SNP
aGWAS was adjusted for age, sex and BMI (not admixture)
b Replication was adjusted for age, sex, centre, BMI and admixture
c ZNF639 (also known as ZASC1)

Chr, chromosome; ND, not done
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Discussion

Minimal model analysis measurement of beta cell response
and SI derived from the FSIGT is highly correlated with
corresponding measures obtained from euglycaemic– and
hyperglycaemic–hyperinsulinaemic clamp studies [31, 32].
The hyperglycaemic clamp, unlike the euglycaemic clamp,
provides direct estimates of beta cell function. Variation in
these measures of glucose homeostasis, including AIRg,
appears to be controlled more extensively by genetic factors
than by other surrogate measures of SI, such as fasting
insulin or HOMA [33]. These variables of glucose
homeostasis may represent important phenotypes for
prediction of the overall and genetic risk of type 2 diabetes
through the mechanism of beta cell action.

To our knowledge, this is the first report of GWAS
analysis of a direct measure of beta cell response, namely
AIRg. In this analysis, multiple regions of the human
genome were identified as likely to harbour genes that
contribute to variation in AIRg. Two regions, 6p21 and
20p11, were notable in having associations at more than
one SNP. In each case, the region is complex, with multiple
genes and extensive LD structure. The region on 6p21
contains KCTD20 (proposed to participate in potassium ion
transport) and STK38 (involved in protein serine/threonine
kinase activity, including ATP binding, magnesium ion
binding and protein binding) [34, 35]. The KCTD20 gene is
of particular interest given the key role of potassium ion
transport in glucose-stimulated insulin secretion [36].
However, the strongest region of significance on 6p21 is

centred on a 1.8 kb region without any known genes. It
remains to be determined whether the observed SNP
associations are due to a single or multiple causal variants.
Preliminary analyses, in which each associated SNP was
used as a covariate, suggest that at least two areas may
contain independent variants, one associated with the
PXT1/KCTD20/STK38 region and one associated with the
TREM1/NCR2 region (ESM Table 3).

In contrast, the region associated with AIRg on
chromosome 20p11 contains several interesting candidate
genes. Similarly to the preliminary analyses in the
candidate region on chromosome 6, conditioning on SNP
rs1555286 led to little change in the significance of the
GINS1 SNP rs6076347, suggesting that at least two
independent variants may exist (ESM Table 4). The
ENTPD6 gene encodes E-type NTPases (such as CD39)
that participate in purine and pyrimidine metabolism,
calcium ion binding, hydrolase activity, magnesium ion
binding and nucleoside-diphosphatase activity [37]. The
protein encoded by PYGB is a glycogen phosphorylase that
catalyses the rate-determining step in glycogen degradation
[38]. In addition, the rs6076347 SNP in GINS1 is a
missense mutation in exon 5 (Ile → Val). Exposure to
genistein, which is known to modulate hepatic glucose- and
lipid-regulating enzyme activities in C57BL/KsJ-db/db
mice [39], results in increased GINS1 mRNA expression.
However, it is not immediately apparent how the functions
of these genes may relate to beta cell response.

Recent meta-analysis of GWAS in type 2 diabetes has
uncovered at least 18 genes/regions that appear to be

Table 3 SNPs associated with AIRg not in genic regions ordered by p values from combined first-stage (GWAS) and replication samples
(admixture-adjusted)

SNP and gene variables p values

SNP Chr Position Flanking genes (distance) Admixture adjusted
(n=1190)

GWAS
(n=233)a

Replication
(n=957)b

rs7772334 6 41397828 TREM1 (35 kb), NCR2 (14 kb) 7.8×10−4 8.4×10−4 1.7×10−2

rs1555286 20 24066582 GGTLA4 (150 kb), AK090900 (62 kb) 9.8×10−4 8.2×10−3 2.0×10−2

rs12190911 6 36486465 PXT1 (10 kb), KCTD20 (32 kb) 1.4×10−3 1.3×10−3 9.8×10−2

rs2797634 9 104680472 None within 500 kb 1.5×10−3 2.0×10−5 ND

rs517871 21 39831576 SH3BGR (22 kb), B3GALT5 (19 kb) 3.2×10−3 9.9×10−2 ND

rs2828099 21 23675029 None within 500 kb 3.3×10−3 5.0×10−5 4.2×10−2

rs16913885 10 61058374 FAM13C1 (266 kb), SLC16A9 (22 kb) 5.2×10−3 0.4×10−5 2.7×10−1

rs716540 3 55179174 CACNA2D3 (96 kb), WNT5A (296 kb) 5.8×10−3 4.2×10−2 3.4×10−2

rs612399 6 41395781 None within 500 kb 6.2×10−3 3.6×10−4 9.9×10−2

rs2893102 1 89544547 GBP5 (33 kb), GBP6 (58 kb) 7.8×10−3 8.8×10−1 3.1×10−2

Non-genic region was defined by ±10 kb from associated SNP
aGWAS was adjusted for age, sex and BMI (not admixture)
b Replication was adjusted for age, sex, centre, BMI and admixture

Chr, chromosome; ND, not done
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common in the general population (MAFs of the variant
associated with type 2 diabetes greater than 1%), but with
relatively small effect [40]. A number of the associated
SNPs have identified genes (HHEX, CDKN2A/2B,
CDKAL1) that may be implicated in beta cell development
and function. In this study, the most highly associated SNPs
in the initial GWAS for several glucose homeostasis and
obesity traits underwent an additional 1,536 SNP analysis
in an expanded population sample of Hispanic-American
ethnicity from San Antonio and San Luis Valley. Of these
SNPs, four SNPs in two genes (at the p<0.01 level for an
additive model) were among the 18 type 2 diabetes-
associated genes evaluated by GWAS in the IRAS FS
sample. These two genes are THADA (rs7595299) and
CAMK1D (rs2768367, rs2399866, rs1004247), and appear
to have a common pathway involved in regulating the
number of insulin-producing cells in the pancreas. The
remaining 16 type 2 diabetes-associated genes evaluated by
GWAS were not associated with AIRg in the current study.

While the GWAS results in the IRAS FS Hispanic-
American sample have provided interesting candidates,
there are limitations to the interpretation of study results.
First, as there are very few comparable studies with
similarly defined phenotypes of beta cell response, the
ability to replicate these findings is limited. Second, while
the associations are ranked on the basis of rigorous
statistical criteria, the admixture-adjusted p values obtained
do not meet genome-wide levels of significance (e.g.
p<5� 10�7). Third, the effect sizes reflected in the
genotypic means for each associated SNP average 25% of
a standard deviation. In the full Hispanic-American sample
of 1,269 individuals for SNPs with MAF=0.15, the power
for this study to detect that effect size with a type 1 error
(P) of 10−3 and 10−4 is 89% and 71%, respectively. The
power to detect a similar effect at a genome-wide level of
significance is only 32%. Further examination of popula-
tions and correlated phenotypes for replication are needed.

In summary, a multistage GWAS for AIRg as a measure
of beta cell response was performed in a Hispanic-
American sample from the IRAS FS. Based upon these
results, we identified numerous SNPs and regions of the
genome that may contain variants capable of accounting for
common variation in AIRg. Two regions were examined
with increased genotyping, with support being observed for
a gene desert in chromosome 6p21 (containing PXT1,
KCTD20 and STK38) and for several genes in chromosome
20p11 (ENTPD6, PYGB, GINS1 and RP4-691N24.1). The
latter series of genes suggests a mechanism of action that
could be involved in phosphorylation and ion transport.
However, the power of the study is limited, the proportion
of the observed heritability of AIRg explained by these
genes is not substantial and there is need for replication. In
conclusion, several candidate genes have been identified as

possibly contributing to variation in AIRg, a predictor of
type 2 diabetes.
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