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Abstract

Clinical mastitis (CM) is one of the health disorders with large impacts on dairy farming prof-

itability and animal welfare. The objective of this study was to perform a genome-wide asso-

ciation study (GWAS) for CM in first-lactation Holstein. Producer-recorded mastitis event

information for 103,585 first-lactation cows were used, together with genotype information

on 1,361 bulls from the Illumina BovineSNP50 BeadChip. Single-step genomic-BLUP meth-

odology was used to incorporate genomic data into a threshold-liability model. Association

analysis confirmed that CM follows a highly polygenic mode of inheritance. However, 10-ad-

jacent-SNP windows showed that regions on chromosomes 2, 14 and 20 have impacts on

genetic variation for CM. Some of the genes located on chromosome 14 (LY6K, LY6D,

LYNX1, LYPD2, SLURP1, PSCA) are part of the lymphocyte-antigen-6 complex (LY6)

known for its neutrophil regulation function linked to the major histocompatibility complex.

Other genes on chromosome 2 were also involved in regulating immune response (IFIH1,

LY75, and DPP4), or are themselves regulated in the presence of specific pathogens

(ITGB6, NR4A2). Other genes annotated on chromosome 20 are involved in mammary

gland metabolism (GHR,OXCT1), antibody production and phagocytosis of bacterial cells

(C6, C7, C9, C1QTNF3), tumor suppression (DAB2), involution of mammary epithelium

(OSMR) and cytokine regulation (PRLR). DAVID enrichment analysis revealed 5 KEGG

pathways. The JAK-STAT signaling pathway (cell proliferation and apoptosis) and the

‘Cytokine-cytokine receptor interaction’ (cytokine and interleukines response to infectious

agents) are co-regulated and linked to the ‘ABC transporters’ pathway also found here.

Gene network analysis performed using GeneMania revealed a co-expression network

where 665 interactions existed among 145 of the genes reported above. Clinical mastitis is

a complex trait and the different genes regulating immune response are known to be
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pathogen-specific. Despite the lack of information in this study, candidate QTL for CM were

identified in the US Holstein population.

Introduction

Clinical mastitis (CM) is a common infectious disease in dairy cows. It is usually defined as an

inflammation of the mammary gland resulting from the introduction and multiplication of

pathogenic microorganisms, and has been shown to affect farm profitability and animal wel-

fare. Furthermore mastitis brings strong concern about the high risk of culling for diseased ani-

mals [1] as well as the delivery of antibiotic residues in milk and the environment due to high

frequency of veterinary treatments [2]. A variety of factors impact the susceptibility to mastitis

in dairy cows, but selection can be used to limit the frequency of this disease [3]. Examples of

direct selection against clinical mastitis through selection indeces can be found in Scandinavian

countries, where genetic progress over the last 20 years has shown a positive trend [4,5]. Be-

sides, selection for correlated traits, such as somatic cell score, has been proven to be a valid al-

ternative [6].

The discovery of genomic regions with quantitative impacts on a trait is of essential impor-

tance to understand its genetic architecture, and can be used in the design of breeding schemes

to increase the frequency of favorable alleles in the population. This is of particular importance

when traits have low heritability and there are difficulties in the routine recording of pheno-

types, such as resistance to diseases.

The genomic dissection of clinical mastitis is not trivial: etiology depends on a variety of mi-

croorganisms (bacteria, fungi, yeasts, and algae can induce mastitis), udder infection can follow

different patterns across time (mastitis can be subclinical with a duration of weeks or months,

but can be also peracute and lead the cow to death in few days), and pathology can show differ-

ent levels of intensity according to the individual’s ability to react to pathogens (see Rinaldi

et al. [7] for an extensive review). Moreover, resistance to mastitis can be considered as a com-

plex trait, which is likely controlled by many genes with small effects, rather than by few genes

with large effect [8].

Health event data voluntarily collected by farmers provide a wealth of information suitable

for large-scale breeding value estimation [9]. Unfortunately, these data do not provide any in-

formation about the level and duration of exposure to pathogens for every single cow [10], and

subclinical infections are often difficult to detect and commonly go unrecorded [3].

These peculiarities in the phenotypic and genetic dissection of CM did not prevent the dis-

covery of associations of this trait with regions of relevant impact across the genome. Several

QTL have been found to affect resistance to CM in dairy cattle populations [11–14], although

to our knowledge no study has been conducted in the US Holstein population. Detilleux [15]

reviewed several studies on potential candidate genes for clinical mastitis, and indicated that

genes that are part of the major histocompatibility complex and those linked with neutrophil

regulation play major roles in susceptibility to the disease.

Information about regions of the genome involved in resistance to CM currently is lacking

in US Holstein, one of the largest dairy cattle populations in the world. The objective of this

study was to perform a genome-wide association study for clinical mastitis using producer-re-

corded health data collected on US dairy cows to identify regions of the genome associated

with occurrence of clinical mastitis.

Genome-Wide Association Study for Clinical Mastitis
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Materials and Methods

No animal care approval was required for the present manuscript because all records came

from field data. The health events for mastitis on first parity cows were extracted from volun-

tary producer-recorded health event data from Dairy Records Management Systems (Raleigh,

NC) as described by [Parker-Gaddis] et al. [16]. Lactation incidence rate was available for

103,585 first-lactation daughters of 10,934 sires, reared in 752 herds. Genotypes were obtained

using the Illumina BovineSNP50 BeadChip (Illumina, Inc., San Diego, CA, USA) and included

information for 1,361 Holstein bulls. Only genotypes of bulls with at least 5 daughters with

phenotype were included in the analysis. Genotypes were edited to eliminate individual mark-

ers and individuals with call rate (CR) below 99% and monomorphic markers or markers with

minor allele frequency (MAF) below 0.05. Only autosomal markers were used in the analyses.

After editing, 39,004 markers were available for analysis. A summary of the data is shown in

Table 1.

The association study was performed using the single-step genomic-BLUP approach

(ssGBLUP [17–19]). This method was already employed for GWAS by Dikmen et al. [20] and

Wang et al. [21]. The model considers additive genetic relationships between the individuals,

combining pedigree and genomic information into theHmatrix [17,22], the inverse of which

is constructed by blending the inverse of the SNP-derived genomic matrix (G) and the pedigree

numerator relationship matrix (A) following:

H�1 ¼ A�1 þ

"

0 0

0 G�1 � A�1

22

#

where A-1
22 is the inverse of the numerator relationship matrix for the genotyped individuals.

In the present study, the Gmatrix was constructed weighting each marker contribution by its

expected variance [23]

G ¼ ZDZ0

whereD is a diagonal matrix with elements containing the inverse of the expected marker

Table 1. Data summary and variance components and heritability estimates using single-step
genomic-BLUP methodology.

Number of records 103,585

Number of sires with phenotyped daughters 10,934

Number of sires with genotype 1,361

Number of year-season classes 58

Number of herd-years 3,198

Incidence of disease (%) 10.91

Number of SNPs after editing 39,004

Chromosomes 1–29

Sire additive genetic variancea 0.037 0.024 (0.026 to 0.047)

Herd-year variancea 0.496 0.006 (0.448 to 0.543)

Residual varianceb 1

Heritabilitya 0.095 0.014 (0.068 to 0.122)

aPosterior mean, posterior standard deviation and 95% Highest Probability Density Intervals are reported.
bResidual variance was fixed to 1 in the threshold-liability model.

doi:10.1371/journal.pone.0114919.t001
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variance Dii ¼
1

m½2pið1�piÞ�
, Z is the marker incidence matrix containing genotypes (-1, 0 or 1) cor-

rected by allele frequency [23].

TheH-1 matrix was substituted into the mixed model equation, and a threshold-liability

model was used to accommodate the binary nature of the trait. The model used for analyzing

CM outcomes (0/1) and obtaining solutions for the sire breeding values was the same as in

[Parker-Gaddis] et al. [9]

l ¼ Xbþ Zhhþ Zssþ e

where λ represents a vector of unobserved liabilities to clinical mastitis, β is a vector of fixed ef-

fects including the overall mean and year-season, X is the corresponding incidence matrix for

the fixed effects, h represents the random herd-year effect assuming h~N(0,Iσ2h), s represents

the random sire effect where s~N(0,Hσ
2
s), withH representing the additive relationship matrix

that combines pedigree and genomic information, Zh and Zs represent the corresponding inci-

dence matrices for the herd and sire additive genetic random effects, respectively, and e repre-

sents the random residual, modeled following N(0,Iσ2e). Variance components and heritability

were estimated using the softwares PREGSF90-POSTGSF90-THRGIBBS1F90 version 2.104

[24–25]. A total of 120,000 iterations were run with the first 20,000 discarded as burn-in, thin-

ning every 10 samples. Post-Gibbs analyses were completed using POSTGIBBSF90 version

3.04 [26] and the ‘coda’ package in R [27]. Trace plots were also inspected visually to ensure

convergence had been reached. Posterior standard deviations and 95% highest probability den-

sity intervals were calculated for each estimate. re

Marker effects (u) were obtained using an iterative process similar to the one described by

Wang et al. [28]. Briefly, after solution of the ssGBLUP model genomic breeding values of gen-

otyped individuals (ag) were back-solved to obtain marker effects accounting for their shared

genomic variance, as described in the formula

var

�

ag

u

�

¼

"

ZDZ0 ZD0

DZ0 D

#

s2

u

Individual marker effects were obtained by solving:

u ¼ DZ0G�1ag

In the first round of the iterative process the variance absorbed by each marker was obtained

as 2pið1� piÞu
2, where p is the frequency of one of the 2 alleles, Z was the marker incidence

matrix containing genotypes (-1, 0 or 1) corrected by allele frequency and G was the genomic

relationship matrix. In successive iterations, in order to highlight regions of higher impact on

the genetic variation of the trait, a weighted Gmatrix was created, where expected marker con-

tributions were replaced with realized variances, so that elements ofD were Dii ¼
2pið1�piÞu

2

m
,

with u being the marker effect estimated in the previous iteration. New marker effects were ob-

tained considering the weighted Gmatrix in the formula reported above. For detailed descrip-

tion of the iterative re-weighting procedure please see the ‘Scenario 1’ procedure in Wang et al.

[28]. The process was repeated 4 times to ensure stability of estimates.

The variance absorbed by 10-SNPs moving windows was successively calculated across the

whole genome. We selected the 10 windows explaining the largest amount of genomic variance

for gene annotation, gene network and pathway analyses. Based on the starting and ending co-

ordinates of the windows, gene annotations were obtained using the Biomart platform on En-

semble [29] through the ‘Biomart’ R package (http://www.bioconductor.org). A list of genes

located in proximity to the windows was used for performing a gene network analysis using the

Genome-Wide Association Study for Clinical Mastitis
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online resource GeneMania [30], and a pathway-enrichment analysis was performed using the

Kyoto Encyclopedia of Genes and Genomes (KEGG [31]) and the Database for Annotation,

Visualization and Integrated Discovery (DAVID [32,33]). A Manhattan plot was created using

the R package ‘ggplot2’[34].

Results and Discussion

Summary statistics, variance components, and heritability estimates are reported in Table 1.

Phenotypic data used here were similar to those reported by [Parker-Gaddis] et al. [9] for first

lactation cows, while genotyped sires and available markers were different. Here, only markers

with known positions on autosomes (chromosomes 1 through 29) were used, and 1,361 sires

with genotype were included in the analysis. The model used here differs from the previous

study because it is a single-trait rather than multi-trait model. Heritabilities and variance com-

ponents were in agreement in both studies. While no other studies were available to compare

genomic estimates of h2, our estimates were also in agreement with traditional pedigree-BLUP

estimates as reported by other authors in the Holstein as well as in other breeds [3,4,35]. Heri-

tabilities for CM appear to be essentially low, in most of the studies being below 0.10, although

genetic variability for immune system capabilities appears to be appreciable. As reported by

Detilleux et al. [36], some immune-system parameters measured in cows near calving showed

heritabilities larger than 0.10. The reason for this increased uncertainty when modeling the ge-

netic background of any disease resistance trait, such as CM, was suggested by Bishop and

Wooliams [10], who remarked that there is low information content when categorizing diag-

noses into 2 possible outcomes (healthy/diseased). The absence of knowledge of the level of

exposure of animals to the disease, and the lack of information about exposure to specific

pathogens, further increases uncertainty. The etiology of mastitis results in a wide range of pos-

sibilities for the intensity of inflammation, as found by Lavon et al. [37]: while Escherichia coli

infections lead to acute responses which make the disease easily identifiable, Staphylococcus

aureus is more likely to cause subclinical infections, which are probably not reported when

phenotyping depends on treatment events and this might have repercussion on the association

analyses. In fact, there is a lack of understanding of the genetic variation of the trait when

using binary variables for resistance to CM, and some causative mutations may not be

identified.

The present study allowed us to associate clinical mastitis susceptibility to SNP polymor-

phisms across the genome. The Manhattan plot of marker additive genetic variance explained

by 10-SNP moving windows is reported in Fig. 1, and a summary of the 10 windows that ex-

plained the largest proportion of variance is provided in Table 2. Clinical mastitis appears to

be a moderately polygenic trait, with many regions across the genome contributing to genetic

variation. However, there were some regions that appeared to contribute significantly to varia-

tion. The re-weighting procedure of the genomic matrix used here shrunk several windows to

have adsorbed variance value close to 0. The first 10 windows explained 6.4% of total genomic

variance.

In the present study, regions of higher impact on the trait were located in chromosomes 14

(from 2,574,909 to 3,137,184 bp), 11 (from 19,125,116 to 19,644,044 bp), 8 (from 61,042,106 to

61,507,067 bp), 24 (from 46,763,152 to 47,343,727 bp), 2 (from 30,262,141 to 41,089,812 bp),

20 (from 32,174,117 to 61,609,342 bp), 19 (from 15,568,242 to 15,997,977 bp and from

61,806,709 to 68,513,565 bp), 29 (from 34,091,321 to 34,723,917 bp), 16 (from 68,069,139 to

68,513,565 bp). In Danish Holstein, Lund et al. [12] found QTLs on chromosomes 5 (57.8 and

23.8 cM), 6 (116.9 cM), 9 (75.6 and 10.1 cM), 15 (13.7 cM) and 26 (53.4 cM) while Sorensen

et al. [38] found QTL on chromosomes 5 (97.5 cM), 9 (4.4, 13.6 and 15.3 cM) and 15 (103.8

Genome-Wide Association Study for Clinical Mastitis
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and 112.0 cM). In US Holstein, no GWAS has been reported, but Youngerman et al. [39] and

Galvao et al. [40] found association between CM and interleukin-8 receptors both located on

chromosome 2 at around 90 cM. Sodeland et al. [11], working on Norwegian Red cattle, found

several regions affecting occurrence of CM. Some of these were located on chromosomes 2

(from 68 to 112 Mbp), 14 (from 17 to 47 Mbp), 20 (from 31 and 51 Mbp) and 29 (46 Mbp).

The authors found that genes encoding for interleukin-8 and the interleukin-8 receptors locat-

ed on chromosomes 2. In other studies on Scandinavian cattle from different breeds, Holmberg

et al. [41] found QTL affecting clinical mastitis on chromosomes 9 (between 130 and 150 cM)

and 11 (between 20 and 30 cM); Schulman et al. [13] found SNPs to selectively affect CM on

chromosomes 14 at 25 cM and Klungland et al. [11] also identified QTL affecting clinical mas-

titis on chromosome 14 around 90 cM. Regions affecting CM on chromosome 14 were found

in most of the breeds, which is in agreement with the present study.

The markers contained in the 10 most informative windows are reported in S1 Table, while

the genes located in correspondence of the 10 windows with the highest variance are reported

in Table 2. In window 2295 (chromosome 14, from 2,754,909 to 3,137,184 bp) there were six

genes annotated (LY6K, LY6D, LYNX1, LYPD2, SLURP1, and PSCA) that are part of the lym-

phocyte-antigen-6 complex (LY6), which is known for neutrophil regulation function in

human and mice, as part of the class III region of the major histocompatibility complex

[42,43]. Among those genes LY6D is known to be involved in the first stage of B-cell Leukocyte

development in mice [44]. Bahremberg et al. [45] suggested that PSCA (prostate stem cell anti-

gen) gene is expressed during hematopoiesis from multipotential stem cells differentiating into

leukocyte subpopulations in the peripheral lymphoid tissues, while Adermann et al. [46] re-

ported that SLURP-1 codes for an amino acid sequence that is similar to the cytotoxins. More-

over, Thuong et al. [47] found LY6K to be overexpressed in macrophages extracted from

human patients affected byMycobacterium tubercolosis, which is considered an agent of bovine

Fig 1. Manhattan plot for the proportion of genetic variance explained by the 10-SNPmoving
windows. Values on the y-axis sum up to ‘1’.

doi:10.1371/journal.pone.0114919.g001
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mastitis. On the other hand, BAI1 seems to be involved in apoptotic cell degradation [48],

where it regulates the engulfment of dead cells that are removed prior to infection.

No genes annotated in windows 1897 (chromosome 11, from 19,125,116 to 19,644,044 bp),

1457 (chromosome 8, from 61,042,106 to 61,507,067 bp) and 3486 (chromosome 24, from

46,763,152 to 47,343,727 bp) were found to be related to CM.

Window 306 (chromosome 2, from 30,262,141 to 41,089,812 bp) had five genes know to be

related to CM. Kandasamy and Kerr [49] found that IFIH1 (interferon induced with helicase

C, domain 1) was overexpressed in dermal fibroblasts challenged with lipopolysaccharide treat-

ment, concluding that the gene regulates innate immune response. Pimentel et al. [50] found

that a SNP located within IFIH1 increased milk yield and decreased interval from first to last

insemination in German Holstein, but reported no association with udder health. DPP4 was

not found to be directly associated with udder health, but is known to interact with cytokines

and inter-leukines [51], while integrin beta-6 (ITGB6) was found to be differentially expressed

in resistant and susceptible lines of sheep challenged with Staphylococcus spp. [52]. Lympho-

cyte antigen 75 (LY75) is involved in immune response and inflammation processes [53].

NR4A2 is not known to regulate udder health, but Moreilhon et al. [54] found that human air-

way cells infected with Staphylococcus aureus induced transcriptional responses of this gene

suggesting that it may have a generic function in resistance to bacteria.

Window 3109 located on chromosome 20 and spanning from 32,174,117 to 61,609,342 bp

harbored ten genes know to be related to CM. Growth hormone receptor (GHR) is known to

regulate production traits [55] and other mammary gland phenotypes, as summarized by

Table 2. Summary of the 10 windows that explained the most of genetic variance for clinical mastitis in US Holstein dairy cows, with a list of
annotated genes in the proximity of each window.

Window Var,
%a

Chr Start, bp Stop, bp Genesb

2295 0.780 14 2754909 3137184 LY6K, ENSBTAG00000037824, LY6D, LYNX1, LYPD2, SLURP1, THEM6, PSCA, BAI1, TSNARE1,
ARC

1897 0.671 11 19125116 19644044 VIT, STRN, HEATR5B, GPATCH11, EIF2AK2, SULT6B1

1457 0.671 8 61042106 61507067 MELK, PAX5

3486 0.661 24 46763152 47343727 LOXHD1, ST8SIA5, PIAS2, KATNAL2, HDHD2, IER3IP1

306 0.640 2 30262141 41089812 SCN1A, TTX21B, GALNT3, CSRNP3, SCN2A, SCN3A, SLC38A11, COBLL1,
ENSBTAG00000047880, GRB14, KCNH7, GCA, IFIH1, FAP, GCG, DPP4, SLC4A10, TBR1,
PSMD14, TANK, RBMS1, ITGB6, PLA2R1, LY75, CD302, MARCH7, BAZ2B, WDSUB1, TANC1,
DAPL1, PKP4, CCDC148, UPP2, ACVR1C, CYTIP, ERMN, GALNT5, ACVR1,
ENSBTAG00000032405, GPD2, NR4A2, FIGN

3109 0.637 20 32174117 61609342 GHR, FBXO4, C5orf51, OXCT1, PLCXD3, C6, C7, C9, MROH2B, CARD6, RPL37, PRKAA1, TTC33,
PTGER4, DAB2, FYB, RICTOR, OSMR, LIFR, EGFLAM, GDNF, WDR70, NUP155, C5orf42, NIPBL,
ENSBTAG00000047208, SLC1A3, RANBP3L, NADK2, SKP2, LMBRD2, UGT3A1, CAPSL, IL7R,
SPEF2, PRLR, AGXT2, DNAJC21, BRIX1, RAD1, TTC23L, RAI14, C1QTNF3, AMACR, SLC45A2,
ADAMTS12, TARS, NPR3, SUB1, ZFR, MTMR12, GOLPH3, PDZD2, ENSBTAG00000038985,
C20H5ORF22, DROSHA, CDH6, CDH9, ENSBTAG00000048105, ENSBTAG00000045813, CDH10,
CDH12, CDH18, MYO10, FAM134B, ZNF622, MARCH11, FBXL7, ANKH, FAM105B, MGC143209,
TRIO, DNAH5, RXFP3, ENSBTAG00000012971, ENSBTAG00000005491

2930 0.628 19 15568242 15997977 TMEM132E

3871 0.584 29 34091321 34723917 OPCML

2657 0.580 16 68069139 68513565 HMCN1, SMIM20

3012 0.553 19 61806709 62390766 MAP2K6, ABAC5, ABAC10, ABAC6, ABAC9, MGC134105, FAM20A, PRKAR1A, ARSG

aSingle-step genomic-BLUP was used to obtain marker effects.
bGenes linked to clinical mastitis are in bold face. Any genes with start and stop positions within or across the window were considered.

doi:10.1371/journal.pone.0114919.t002
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Ogorevc et al. [56]. Zarrin et al. [57] simulated mastitis in dairy cows with lipopolysaccharide

injections and found Succinyl-CoA:3-ketoacid-coenzyme A transferase 1 (OXCT1) overex-

pressed, showing that this gene might regulate mammary gland metabolism and milk synthesis

during mastitis infection. Complement components C6, C7, and C9 are part of the membrane

attack complex [58] and play an important role in immune function, antibody production, in-

flammation and phagocytosis of bacterial cells. These were found to be associated with CM in

the periparturient period [14], and C7 was also associated with breeding values for somatic cell

score [59]. Another complement, C1q and tumor necrosis factor related protein 3 (C1QTNF3),

was found among the genes overlapping this window and associated with SCS [60]. Likewise,

caspase recruitment domain family, member 6 (CARD6) is known to be upregulated in cases of

Staphylococcus aureus infection [61]. DAB2 is known to be a putative tumor suppressor, and

was found to be differentially expressed in mammary glands of cows milked with different pat-

terns [62]. Oncostatin M is a cytokine that is produced post-lactation by the mammary epithe-

lium and is involved in cell death. When its receptor (OSMR) was knocked-out in mice the

mammary epithelium presented delayed involution [63]. In the case of CM, variants of the

OSMR gene might be involved in mammary epithelium regeneration after infection and cell

apoptosis. Prolactin receptor (PRLR) is known to be associated with production traits and so-

matic cell score [55], and was found to be downregulated in bovine mammary epithelial cells

infected with Staphylococcus aureus [64], as well as in bovine hepatic tissue following intra-

mammary injection of Escherichia coli lipopolysaccaride to simulate mastitis infection [65].

Prolactin was found to be significantly increased in udder quarters with high somatic cell count

and chronic mastitis [66], and positively correlated with the number of neutrophils in milk,

suggesting that prolactin may up-regulate cytokine expression.

The opioid-binding protein/cell adhesion molecule (OPCML) found in window 3871

(chromosome 29 from 34,091,321 to 34,723,917 bp). It is a candidate for the suppression of

ovarian and broad tumors [67,68].

Gene network analysis performed using GeneMania revealed the dense co-expression

network reported in Fig. 2. The network included 145 genes with 665 interactions among

them. The number of interactions for each gene in the network is reported in S2 Table. Several

genes (OSMR, LY75, OXCT1, C7, GHR, C6, ITGB6, CARD6, DAB2, DPP4, LY6D, and PRLR)

presented at least 10 connections, their potential role in determining the resistance to udder

infection was discussed above. S1 to S5 Figs. report five functional gene networks highlighted

within the general network, respectively ‘Regulation of acute inflammatory response’, ‘Positive

regulation of secretion’, ‘Regulation of protein activation cascade’, ‘Regulation of protein

activation’, ‘Serine/threonine protein kinase complex’. As expected from a trait with low herita-

bility and highly polygenic architecture, there are a large number of genes involved in the

network, with several connections.

Table 3 reports the 5 KEGG pathways identified using genes annotated in the 10 windows

with the highest explained variance. The pathways were the ‘Complement and coagulation cas-

cades’, ‘Prion diseases’, ‘ABC transporters’, ‘JAK-STAT signaling pathway’, ‘Cytokine-cytokine

receptor interaction’.

The JAK-STAT signaling pathway is known for its regulatory role in cell proliferation and

apoptosis, responding to the presence of cytokines [69,70]. JAK2 is considered among the high-

est-ranking genes for a role in resistance to bovine mastitis [71]. The system works such that

the signal is transmitted to the intra-cellular environment through the Janus Kinase (JAK) and

signal transducer and activator of transcription (STAT) proteins. This pathway is important in

regulating udder response to infection because it controls the persistent accumulation of neu-

trophils in the bovine mammary gland [72], while in turn JAK also works as a signaling ele-

ment also for hormones and interleukin receptors [73]. The JAK-STAT pathway is activated
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during cow lactation [74] and when cattle tissues are challenged with a wide range of pathogen

agents, from bacteria such as Streptococcus uberis [70], Escherichia coli [75], and Chlamydia

trachomatis [76], to tick-borne protozoan parasites like Theileria annulata [77]. The PI3K/Akt

pathway can be found within the JAK-STAT signaling pathway: it is overexpressed in lactating

cows [78] and in the udder of cows inoculated with Streptococcus uberis [72].

The ‘Cytokine-cytokine receptor interaction’ pathway contains the prolactine (PRLR),

growth hormone (GHR) and Inter-leukine 7 (IL7R) receptors. The role of cytokines and inter-

leukines in immune response to infectious agents is well known [76,79,80], nonetheless it is

Fig 2. Gene network produced using GeneMANIA. The network consists of 145 genes (circles) connected
by 665 interactions (edges).

doi:10.1371/journal.pone.0114919.g002
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recognized that expression of neutrophil chemokines or pro-inflammatory cytokines depends

on the kind of pathogen [81–83]. Since our data did not allow differentiation of infections ac-

cording to the causative pathogen, it is not possible to infer more about genes regulating cyto-

kine expression. The 2 pathways (‘JAK-STAT signaling pathway’ and ‘Cytokine-cytokine

receptor interaction’ pathway) are closely linked. Sigl et al. [84] suggested that some JAK-

STAT related proteins, as activated by PRLR, can regulate balance between growth hormone

and milk protein yield. Buitenhuis et al. [75] found both those pathways as being altered in ex-

pression in udder tissue of cows challenged with Escherichia coli.

The ‘Complement and coagulation cascades pathway’ contained the complement compo-

nents C6, C7, and C9, as well as the bradikinin receptor (BDKR) and serin peptidase inibitors A

(SERPINA1 and SERPINA5). Bradikinin is a vasodilator, and high levels of bradikinin may be

associated with mastitis infection caused by Staphylococcus aureus [85]. Beecher et al. [86]

found some variants of SERPINA1 to be associated with protein yield and fat percentage in

Irish Holstein, while Swanson et al. [87] found SERPINB4 to be slightly upregulated in the

mammary gland of cows infected with Streptococcus uberis.

Other pathways involving annotated genes were the ‘ABC transporters’ and the ‘Prion dis-

eases’. The former was already found by Naeem et al. [70] to be activated together with the

JAK-STAT pathway, and Bionaz et al. [74] found it to be impacted in lactating cows, probably

because of its involvement in steroid synthesis and cholesterol regulation.

Conclusions

The present study demonstrates the complexity of resistance to mastitis pathogens in dairy cat-

tle. Single-step Genomic-BLUP allowed for optimal and simple extraction of genomic informa-

tion from a population with small fraction of genotyped animals and phenotypes expressed as

a categorical variable.

Clinical mastitis was confirmed to be a highly polygenic trait and genetic variance associated

with trait was distributed across several regions of the genome. Regions on chromosomes 2, 14,

20, and 29 were found to affect genetic variation for clinical mastitis as well as contain genes

with known roles in immune response that are putative QTL. Regions on chromosomes 8, 11,

16, 19, and 24 contained no annotated genes that could be linked to clinical mastitis.

Pathway analysis revealed 5 pathways, 3 of which were know to be involved in immune sys-

tem regulation, some of them specifically with mastitis resistance in dairy cattle. Pathways and

genes found here appear to be differentially expressed in a pathogen-specific manner. Other

pathways are known as linked to specific pathogens, but our data did not permit dissection of

etiology. The genomic regions identified in this study can be used as predictors of genetic merit

for resistance to clinical mastitis in US Holstein dairy cattle.

Table 3. Pathways identified by the Database for Annotation, Visualization and Integrated Discovery
(DAVID version 6.7) in the Kyoto Encyclopedia of Genes and Genomes (KEGG).

KEGG entry Term Genes count P-value

Map 04610 Complement and coagulation cascades 7 0.0019

Map 05020 Prior diseases 3 0.0220

Map 02010 ABC transporters 3 0.0320

Map 04630 JAK-STAT signaling pathway 6 0.0321

Map 04060 Cytokine-cytokine receptor interaction 6 0.0120

doi:10.1371/journal.pone.0114919.t003
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Supporting Information

S1 Fig. Functional gene network ‘Regulation of acute inflammatory response’ highlighted

within the general network.

(TIF)

S2 Fig. Functional gene network ‘Positive regulation of secretion’ highlighted within the

general network.

(TIF)

S3 Fig. Functional gene network ‘Regulation of protein activation cascade’ highlighted

within the general network.

(TIF)

S4 Fig. Functional gene network ‘Regulation of complement activation’ highlighted within

the general network.

(TIF)

S5 Fig. Functional gene network ‘Serine/threonine protein kinase complex’ highlighted

within the general network.

(TIF)

S1 Table. List of SNPs located in the 10 windows that explained the greatest proportion of

marker variance explained. The table reports position (in base pairs), rs (SNP ID from the

National Center for Biotechnology Information), SNP name, and the proportion of overall

genetic variance explained.

(TIF)

S2 Table. List of genes involved in the co-expression network created using GeneMANIA

with the respective number of connections for each gene.Names in bold were linked to clini-

cal mastitis based on results of a literature search.

(TIF)
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