
Sharp vision requires light to be focused precisely onto 

the photoreceptor layer of the retina by the combined action 

of the cornea and the crystalline lens. The cornea is the major 

refracting element, and its curvature must be carefully coordi-

nated with the dimensions of the other component parts of the 

growing eye during childhood. A failure in this coordination 

leads to the refractive errors myopia and hyperopia, while 

asymmetry of the cornea’s curvature in different orientations, 

corneal astigmatism, can similarly impair vision [1]. Refrac-

tive errors are widespread: For instance, they now affect 

more than 40% of the population in the United States [2] and 

the majority of children leaving high school in Hong Kong, 

Singapore, and Taiwan [3,4]. Excessive corneal steepness is 

a hallmark feature of keratoconus, and excessive flatness of 

cornea plana [5,6].

Apart from the overall size of the eye, known predictors 

of corneal curvature include height and sex. To date, however, 

little is known about the genetic regulation of eye size at the 

molecular level, despite ocular component dimensions being 

heritable [7-9]. Recent genome-wide association studies 

(GWASs) have begun to address this question, with loci asso-

ciated with corneal curvature [10], corneal astigmatism [11], 

refractive error [12,13], and high myopia [14-18] having been 

reported, mostly in subjects of Chinese ethnicity. As yet, few 
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Purpose: Corneal curvature is a key determinant of the refractive power of the eye. Variants in two genes, FKBP12-

rapamycin complex-associated protein 1 (FRAP1) on chromosome 1p36.2 and platelet-derived growth factor receptor 

alpha (PDGFRA) on chromosome 4q12, have shown genome-wide significant association with normal variation in 
corneal curvature in a study of subjects of Asian origin. Variants at the PDGFRA locus have also shown genome-wide 

significant association with corneal astigmatism. Whether these variants influence other ocular parameters such as axial 
length has yet to be reported. We performed a genome-wide association study for corneal curvature in white European 

subjects from a population-based birth cohort, with the aim of replicating and extending the above findings.
Methods: White European children participating in the Avon Longitudinal Study of Parents and Children (ALSPAC) 

birth cohort were examined at age about 15.5 years (95% confidence interval=15.45 to 15.48 years). Radius of corneal 
curvature and axial eye length were measured with an IOLmaster. DNA samples were genotyped with Illumina Human-

Hap550 arrays and untyped variants imputed using MACH, with CEU individuals from HapMap release 22, Phase II 

NCBI B36, Single Nucleotide Polymorphism database 126 as the reference panel. Association between corneal curvature 

and single nucleotide polymorphism (SNP) genotype was tested, genome-wide, using mach2qtl, with sex as a covariate 

(n=2023; 46.6% male).
Results: The variant exhibiting the strongest evidence for association with corneal curvature (rs6554163; p=2.8×10−6) 

was located in the same linkage disequilibrium block as the previously discovered PDGFRA variants. Meta-analysis 

of the current and prior findings enhanced the evidence for association (rs17084051, p=4.5×10−14). rs6554163 genotype 

predicted 1.0% of variation in corneal curvature. In addition, these PDGFRA variants were associated with axial eye 

length, predicting 0.6% of the normal trait variation (p=5.3×10−4). Each copy of the minor allele of variants at the locus 

also increased the risk of corneal astigmatism in this white European cohort (odds ratio [OR]=1.24, 95% confidence 
interval=1.07–1.45; p=0.006).
Conclusion: As in Asians, variants at the PDGFRA locus influence corneal curvature (and corneal astigmatism). How-

ever, rather than affecting corneal curvature in isolation, this locus influences the size of the eye while maintaining its 
scaling.
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of these GWAS findings have been replicated independently 

or have already failed to replicate in subjects of the same 

or different ethnicity when examined in more detail [19-22]. 

Our aim was to replicate, in a large collection of European 

children, associations detected in prior studies on corneal 

curvature and astigmatism in Asians, which implicated the 

involvement of the platelet-derived growth factor receptor 

alpha (PDGFRA) gene in the determination of both traits 

and the FKBP12-rapamycin complex-associated protein 1 

(FRAP1, also known as MTOR) gene in determining corneal 

curvature [10,11].

METHODS

Avon Longitudinal Study of Parents and Children: The Avon 

Longitudinal Study of Parents and Children (ALSPAC) 

recruited 14,541 pregnant women residing in Avon, UK, with 

expected dates of delivery from April 1, 1991, to December 

31, 1992. Of the initial 14,541 pregnancies, 13,988 children 

were alive at 1 year. Data have been collected through various 

methods including self-completion questionnaires sent to the 

mother, to her partner, and after age 5 to the child; direct 
assessments and interviews in a research clinic; and biologic 
samples and links to school and hospital records. The original 

cohort was largely representative of the UK 1991 Census: 

However, there was a trend for greater loss at follow-up for 

families of low socioeconomic status and of non-white ethnic 

origin [23]. Ethical approval for the study was obtained from 

the ALSPAC Law and Ethics committee and the three local 

research-ethics committees.

Biometry: Non-invasive measurements of axial eye length 

and corneal curvature were performed during a visit to a 

research clinic when participants were aged approximately 15 

years old (Zeiss IOLmaster instrument, Carl Zeiss Meditec, 

Welwyn Garden City, UK). Height was measured to the 

last complete mm using a Harpenden Stadiometer. Refrac-

tive error was assessed with non-cycloplegic autorefraction 

(Canon R50 instrument, Canon USA Inc., Lake Success, NY). 

For calculating corneal astigmatism, the difference in corneal 

refractive power in the steepest meridian was subtracted from 

that in the flattest, using the formula F=(n-1)/r, where F is 
corneal power in diopters (D), n is the refractive index of 

the cornea (1.332), and r is the corneal curvature in meters 

[24]. For corneal astigmatism, individuals were excluded 

if the level of corneal astigmatism in either eye was above 

an arbitrarily selected threshold of 4 D or the difference 

in corneal astigmatism between the two eyes was beyond 

4 standard deviations (SD) from the mean (23 out of 2,617 

individuals were excluded; 0.9%). For the other traits, outlier 
readings were identified separately for boys and girls, as 

measurements falling outside 4 SD from the mean (for either 

the measures themselves or the difference between measures 

in fellow eyes). For the traits height, axial length, and corneal 

curvature, 1 out of 2,710 (0.03%), 28 out of 2,729 (1.0%), and 

35 out of 2,617 (1.3%) individuals, respectively, were excluded 

as outliers. Non-cycloplegic autorefraction readings were 

filtered to exclude outliers as described [25], resulting in the 

exclusion of 78 out of 4,837 individuals (1.6%). Trait values 

for corneal curvature, axial length, corneal astigmatism, 

and refractive error were averaged between fellow eyes to 

maximize statistical power [26]. Corneal astigmat cases were 

defined as subjects with an average corneal cylinder power 

≥0.75 D, while corneal astigmat controls were defined those 
with average corneal power <0.75 D, as adopted by Fan et 

al. [11]. Subjects were classified as myopic if their spherical 

equivalent refractive error, averaged between the two eyes, 

was ≤–1.00 D [25].

Genotyping, transcriptomics, and statistical analyses: DNA 

samples were genotyped at two different sites, the Wellcome 

Trust Sanger Centre, Cambridge, UK (“Sanger”) and the 

Laboratory Corporation of America, Burlington, North Caro-

lina (“Labcorp”) using Illumina HumanHap 550 bead arrays. 

Quality control (QC) procedures were performed as described 

previously [27]. Briefly, individuals were excluded using the 

filtering thresholds: >3% missing genotypes, >10% identity-

by-descent (IBD), average heterozygosity (<0.320 or >0.345 

for Sanger data; <0.310 or >0.330 for LabCorp data), or sex 
discrepancy. Multidimensional scaling analysis was used to 

compare ALSPAC individuals with HapMap II, release 22, 

reference individuals of European, Han Chinese, Japanese, 

and Yoruba descent: Subjects with non-European ancestry 

were removed. Single nucleotide polymorphisms (SNPs) 

were excluded using the filter thresholds: <95% call rate, <1% 

minor allele frequency (MAF), Hardy–Weinberg equilibrium 
p value <5×10−7. After QC, genotypes for 464,311 autosomal 

SNPs were available for 8,365 individuals. Genotypes were 

imputed at 2,543,887 sites using MACH, with a reference 

panel of CEU subjects (HapMap release 22, Phase II NCBI 

B36, Single Nucleotide Polymorphism database 126). SNPs 

with a MAF >1% and an imputation quality Rsqr >0.3 were 

taken forward. Meta-analysis with Han et al.’s [10] previous 

results were carried out using the inverse variance weighting 

option of METAL [28].

Genome-wide gene expression in cultured Epstein-

Barr virus (EBV) transformed lymphoblastoid cell lines 

was assessed for 997 unrelated ALSPAC participants using 

Illumina HumanHT-12 v3 Expression BeadChip arrays, as 

described previously [29]. These arrays contain >47,000 

probes, two of which target PDGFRA (ILMN_1681949 and 
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ILMN_2086470). For the 875 children who had gene expres-

sion and genotype data available, the expression level of 

each probe was transformed by applying an inverse normal 

transformation [30] and analyzed as a quantitative trait using 

an additive, expression quantitative trait locus (eQTL) model 

in mach2qtl, with sex as a covariate.

There were 2,023 subjects with data available for corneal 

curvature and whose genotype data passed the QC filters. A 

GWAS was performed for corneal curvature (transformed to 

a normal score, i.e., a normally distributed variable with a 

mean of zero and a standard deviation of one), including sex 

as a covariate, using an additive model in mach2qtl. There 

was no indication of genomic inflation (λ=1.00). Subsequent 
analysis of the imputed SNP rs6554163 was conducted using 

multiple linear regression in SPSS 18 (SPSS Inc., Chicago, 

IL) for 1,968 individuals who had data available for corneal 

curvature, axial length, height, and SNP genotype. Models 

were constructed for the dependent variable corneal curva-

ture, with predictor variables sex, height, and rs6554163 

genotype dosage [31]. Analogous models were constructed 

with axial length as the dependent variable. In all models, 

the trait variables corneal curvature, axial length, and height 

were examined as normal scores to facilitate comparisons 

across models. Association between the presence/absence of 
corneal astigmatism (or myopia) and rs6554163 genotype was 

assessed with the chi-square test.

Electron microscopic immune-labeling: Human corneal 

tissue procurement and use were conducted in accordance 

with the Declaration of Helsinki and local regulations, and 

were approved by the Research Ethics Committee of King 

Saud University. Unless specified otherwise, reagents were 

obtained from TAAB Laboratories Equipment Ltd (Alder-

maston, UK). Pieces of tissue 1 mm2 were fixed in freshly 
prepared 4% paraformaldehyde in 0.1 M phosphate for 2 

h at 4 °C. Tissues were processed at low temperatures and 

were embedded in LR White resin at −20 °C for 48 h under 
ultraviolet light. Ultrathin sections were collected on 200 

mesh formvar-coated carbon nickel grids. A rabbit polyclonal 

antibody to amino acids 1035–1053 of PDGFRA (#LS-B6056, 
LS Bio, Seattle, WA) was used as the primary antibody, with 

10-nm gold particle conjugated goat antirabbit immuno-

globulin G (Biocell, Cardiff, UK) as the secondary antibody.

Sections were incubated at room temperature with phos-

phate buffer saline (PBS; 0.1 M sodium phosphate, 0.15 M 
NaCl, pH 7.4) containing 0.1% bovine serum albumin (PBS-

BSA) for 15 min, PBS-BSA containing 5% normal goat serum 

(PBS-NGS) for 30 min, and primary antibody (1:50 to 1:500) 

in PBS-NGS overnight. Sections were rinsed (three washes, 

5 min each) sequentially with 0.05 M Tris-buffered saline 

(TBS) pH 7.4, TBS containing 0.2% BSA, and TBS pH 8.4 

containing 1% BSA, and then incubated in secondary anti-

body-immunogold conjugate (1:25 in TBS pH 8.4 containing 

1% BSA) for 50 min. Unbound secondary antibody was 

removed by rinsing (three washes, 5 min each) in TBS-BSA, 

PBS, and finally distilled water. As a control, the primary 

antibody was omitted. Grids were stained with 2% aqueous 

uranyl acetate and lead citrate and examined in a Jeol 1400 

transmission electron microscope (Jeol Ltd, Tokyo, Japan).

RESULTS

Taken at an average age of 15.5 years, corneal curvature 

measurements in a sample of 2,023 white European children 

from a UK birth cohort had a Gaussian distribution and a 

mean value of 7.82 mm (95% confidence interval [CI]=7.81 
to 7.83) and, on average, were lower (steeper) in girls than 

boys (Table 1 and Figure 1). A GWAS for corneal curvature 

did not yield any SNP markers with a p value <5×10−8, a value 

widely accepted as indicating genome-wide significance 

[32]. However, the SNP with the lowest p value in our GWAS 

(rs6554163, p=2.8×10−6; Table 2) was located at the 3′ end 
of the PDGFRA gene on chromosome 4 (Figure 2), which 

was recently identified by Han et al. [10] as one of two genes 

harboring genome-wide significant variants influencing 

corneal curvature in four Asian samples. rs6554163 resides 

in a region of low recombination frequency on chromo-

some 4 spanning approximately 0.16 Mb and that includes 

only the PDGFRA gene (Figure 2). A meta-analysis of the 

results from the present white European sample and the four 

samples recruited from Singapore by Han et al. [10], which 

comprised Chinese adults (SP2), Malay adults (SiMES), 

Indian adults (SINDI), and Chinese children (SCORM), 

enhanced the evidence for association observed in the initial 

study (combined meta-analysis including ALSPAC and Asian 

samples, p=4.5×10−14 for SNP rs17084051; Appendix 1). The 

study by Han et al. [10] identified a second genome-wide 

significant locus associated with corneal curvature in Asians, 

centered on the FRAP1 gene at chromosome 1p36.2. However, 

there was no evidence of replication for this locus in our 

sample of white European children (all p>0.05; Appendix 1).

Han et al.’s [10] findings were consistent with a single 

causal variant being responsible for the association between 

SNP genotypes in the PDGFRA region and corneal curva-

ture. However, GWAS results alone cannot distinguish from 

among a set of associated SNPs which (if any) is the causal 

variant. Nevertheless, because of the high linkage disequi-

librium (LD) and similar allele frequencies of the associated 

SNPs, each of the SNPs in the associated PDGFRA region 

can be regarded as a surrogate for the (presumed single) 
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causal variant. In support of this reasoning, including the 

imputed genotype dosage of SNP rs6554163 as a covariate in 

the corneal curvature GWAS completely removed evidence 

of association with other variants in the region (Appendix 1). 

We used linear regression models to evaluate the extent the 

lead SNP rs6554163 in the PDGFRA gene influenced not just 

corneal curvature but also the potentially related traits, axial 

eye length and body height. Under an additive model of SNP 

effects, rs6554163 retained an association with corneal curva-

ture of equivalent magnitude before and after controlling for 

height (Table 3): Standardized beta coefficient before=–0.167 
(95% CI=−0.093 to −0.241) and after=–0.163 (95% CI=−0.091 
to −0.235). In both models, rs6554163 predicted 1.0% of the 

variation in corneal curvature. This SNP was also found to 

exert a comparable influence on axial length, which again 

was unaffected by statistically controlling for height (Table 4): 

Standardized beta coefficient before=–0.128 (95% CI=−0.056 
to −0.200) and after=–0.125 (95% CI=−0.054 to −0.195). In 
both cases, rs6554163 predicted 0.6% of the variation in axial 

length. There was little evidence of association between the 

Table 1. biomeTric daTa for alSPac SubjecTS. (n=1968 SubjecTS wiTh comPleTe informa-

Tion available: corneal curvaTure, axial lengTh, heighT and genoTyPeS).

Parameters
Boys (n=914) Girls (n=1054)

mean 95% CI mean 95% CI

Age (years) 15.44 15.42-15.46 15.47 15.45-15.49

Height (cm) 174.8 174.3-175.3 164.7 164.3-165.0

Axial length (mm) 23.7 23.64-23.75 23.16 23.11-23.21

Corneal curvature (mm) 7.886 7.869-7.903 7.766 7.751-7.781

Figure 1. Distributions of biometric 

data. (n=1968 subjects with 
complete phenotypic and genetic 

information).

Table 2. alSPac gwaS reSulTS for The Pdgfra region. (n=2023 SubjecTS 

wiTh corneal curvaTure and geneTic informaTion available).

Marker CHR POS A1 Freq Beta SE P value

rs6554163 4 54797316 A 0.22 −0.176 0.037 2.78×10–6

rs7678144 4 54797182 C 0.22 −0.175 0.037 2.81×10–6

rs4864862 4 54795246 A 0.22 −0.175 0.037 2.99×10–6

rs4864863 4 54795588 G 0.22 −0.175 0.037 2.99×10–6

rs6850748 4 54793921 G 0.22 −0.174 0.037 3.06×10–6

rs1800812 4 54789386 T 0.22 −0.174 0.037 3.06×10–6

rs6836215 4 54797498 C 0.21 −0.177 0.039 4.43×10–6

rs7673984 4 54783518 T 0.22 −0.168 0.037 6.04×10–6

rs11133315 4 54776915 A 0.22 −0.168 0.037 6.20×10–6

rs7682912 4 54780377 G 0.22 −0.168 0.037 6.20×10–6

CHR=Chromosome; POS=human genomic position in reference assembly genome build 36.3; A1=test allele; Freq=frequency of test 
allele; Beta=standardised regression coefficient per copy of test allele; SE=standard error of beta.
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Figure 2. Genomic region plot 

from the Avon Longitudinal Study 

of Parents and Children genome-

wide association study for corneal 

curvature. 

Table 3. linear regreSSion model for dePendenT variable corneal curvaTure wiTh PredicTorS Sex, 

genoTyPe aT rS6554163 under an addiTive model, wiTh and wiThouT heighT (n=1968). 

A – Including height in model

Parameter Beta SE P value Partial η2

sex 0.136 0.053 9.98×10–3 0.003

height (normal score) 0.265 0.026 1.96×10–23 0.049

rs6554163 −0.163 0.037 9.19×10–6 0.010

B – Omitting height from the model

Parameter Beta SE P value Partial η2

sex 0.447 0.044 8.30×10–24 0.050

rs6554163 −0.167 0.038 1.02×10–5 0.010

All variables were transformed to normal scores for analysis.

Table 4. linear regreSSion model for dePendenT variable axial lengTh wiTh PredicTorS Sex, geno-

TyPe aT rS6554163 under an addiTive model, wiTh and wiThouT heighT (n=1968). 

A – Including height in model

Parameter Beta SE P value Partial η2

sex 0.339 0.052 5.86×10–11 0.022

height (normal score) 0.243 0.026 8.66×10–21 0.044

rs6554163 −0.125 0.036 5.34×10–4 0.006

B – Omitting height from the model

Parameter Beta SE P value Partial η2

sex 0.624 0.043 7.61×10–46 0.098

rs6554163 −0.128 0.037 3.48×10–4 0.006

All variables were transformed to normal scores for analysis.
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rs6554163 genotype and height itself: Standardized beta 

coefficient=–0.012 (95% CI=−0.049 to 0.074; p=0.69). The 
average effect of the PDGFRA gene variant on corneal curva-

ture, axial length, and height is presented in Figure 3.

Separate from Han et al.’s [10] work, a GWAS performed 

by Fan et al. [11] demonstrated that variants in the same 

region of the PDGFRA gene that influenced corneal curva-

ture also influenced the risk of corneal astigmatism. Fan et 

al. [11] surveyed five Asian cohorts recruited from Singapore, 

namely, the four cohorts listed above in the relation to Han et 

al.’s [10] work, plus a sample of Chinese parent-infant trios 

(STARS). For the lead SNP in that study (rs7677751, MAF 

0.19 to 0.26), each copy of the minor allele was associated 

with an increased risk of individuals being classified as a 

corneal astigmat (OR=1.26, 95% CI=1.16 to 1.36, in the meta-
analysis of five studies). In our white European subjects, 

SNP rs6554163 located in the PDGFRA high LD region was 

associated with the risk of corneal astigmatism to a similar 

degree and in the same direction as that observed in the Asian 

subjects studied by Fan et al. [11]. Specifically, each copy of 

the minor allele of rs6554163 was associated with an increased 

risk (OR) of corneal astigmatism of 1.24 (95% CI=1.07 to 
1.45; p=0.006) in the ALSPAC subjects (Table 5). In contrast 
to these results for corneal astigmatism, the rs6554163 geno-

type did not predict an individual being classified as myopic 

versus non-myopic (Table 5): Each copy of the minor allele 

was associated with an OR for myopia of 0.98 (95% CI=0.79 
to 1.20; p=0.78). In these latter analyses, sex was associated 
with corneal astigmatism (being more frequent in girls than 

boys; OR=1.406, 95% CI=1.174 to 1.683; p<0.001) but was not 
associated with myopia (Table 5).

To investigate whether variants at the PDGFRA locus 

contribute in cis to inter-individual variation in PDGFRA 

gene expression, we performed eQTL (expression quan-

titative trait locus) GWAS analyses. Whole genome gene 

expression (transcriptome) array results for EBV-transformed 

lymphoblastoid cell lines and high-density genotype data 

were available for 875 of the children from the ALSPAC birth 

cohort. However, for each of the two probes used to monitor 

PDGFRA expression on the transcriptome array, there was no 

evidence of a major eQTL on chromosome 4 in the vicinity of 

the PDGFRA gene (Appendix 1). This suggests that (at least 

in these cell lines) variants at the PDGFRA locus do not act 

as cis regulatory factors that influence the gene’s expression 

level.

An antibody to PDGFRA was used to assess the protein’s 

ultrastructural distribution in the normal human cornea. 

Antibody labeling was strongest in the epithelium, all layers 

of which were stained, but especially the superficial layer of 

squamous cells (Figure 4A). Labeling was less abundant in 

the corneal stroma, but was present in the keratocyte cells and 

their surrounding extracellular matrix (Figure 4B–C). The 
endothelial layer and Descemet’s membrane exhibited weaker 

Figure 3. Associations between genotype at single nucleotide poly-

morphism rs6554163 and corneal curvature, axial length, and height 

in 15-year-old children (n=914 boys and 1054 girls) from the Avon 
Longitudinal Study of Parents and Children cohort. Error bars show 

95% confidence interval.
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Figure 4. Electron microscopy anti-

body-labeling of platelet-derived 

growth factor receptor alpha in 

a normal human cornea. Strong 

labeling was seen in all layers of the 

epithelium (A). Labeling was also 

evident in the stromal keratocytes, 

especially their cell membranes (B) 

and in the surrounding extracellular 

matrix (C). Descemet’s membrane 

(D) and the endothelial monolayer 

(E) exhibited weaker labeling. No 

labeling was observed in control 

sections in which the primary anti-

body was omitted (F). Abbrevia-

tions: DM=Descemet’s membrane, 
E=Epithelium, EN=Endothelium, 
KR=Keratocyte, S=Stroma.

Table 5. binary logiSTic regreSSion model for dePendenT variable corneal aSTigmaTiSm caSe verSuS conTrol STaTuS or 

myoPia caSe verSuS conTrol STaTuS, wiTh PredicTorS Sex and genoTyPe aT rS6554163 under an addiTive model (n=1968).

A - Corneal astigmatism case versus control status

Parameter B SE P value OR 95% CI

sex 0.341 0.092 2.06×10–4 1.406 (1.174 to 1.683)

rs6554163 0.210 0.078 0.007 1.234 (1.058 to 1.439)

B - Myopia case versus control status

Parameter B SE P value OR 95% CI

sex 0.204 0.124 0.101 1.226 (0.961 to 1.565)

rs6554163 −0.030 0.106 0.780 0.971 (0.789 to 1.195)

http://www.molvis.org/molvis/v19/243
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6554163
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=6554163
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labeling (Figure 4D–E). Negative control sections showed no 
background labeling (Figure 4F).

DISCUSSION

Our finding of a strong association between variants in 

the PDGFRA gene and corneal curvature, with an effect 

of equivalent size and direction to that observed by Han et 

al. [10], suggests that PDGFRA variants influence corneal 

curvature in both Asians and white Europeans. Likewise, 

our finding that these same variants were associated with 

corneal astigmatism in the ALSPAC subjects, and that the 

size and direction of effect matched those reported by Fan 

et al. [11], implies that these PDGFRA variants influence 

corneal astigmatism in Asians and white Europeans, as well. 

By contrast, the lack of replication for the FRAP1 gene locus 

in our sample of white European children suggests that the 

FRAP1 variants influencing corneal curvature in Asians 

[10] are not present in Europeans, or are not well tagged by 

common SNPs in Europeans. Notably, patterns of LD in this 

region are markedly different between European (CEU) and 

Asian (CHB+JPT) HapMap individuals (Appendix 1). While 

our article was under review, Mishra et al. [33] also reported 

that PDGFRA variants (but not FRAP1 variants) influenced 

corneal curvature in a sample of Australian subjects of 

European ancestry (1,788 twins and their families, plus 1,013 

members of a birth cohort). These authors did not examine 

the effects of PDGRFA variants on corneal astigmatism or 

axial length.

Previous phenotype-correlation analyses in mice [34] 

and chickens [35-37] support the existence of three types of 

genetic “effects” that act together to determine the size of the 

component parts of the vertebrate eye (or, more precisely, 

that proportion under genetic control). These are (i) genetic 

effects that allometrically scale the size of the eye and body, 

(ii) effects that purely govern eye size, and (iii) effects 

restricted to determining the dimensions of each individual 

ocular component. The PDGFRA variants studied here have 

the characteristics of genetic effects in the second group, 

since (as judged by the inheritance of copies of the minor 

A allele of SNPs such as rs6554163; Figure 3) they act to 

reduce corneal curvature (i.e., steepen it) and to reduce axial 

eye length. As visual function is exquisitely dependent on the 

careful scaling of the eye’s component parts, observing such 

pleiotropy is not surprising. In terms of identifying genetic 

variants that influence susceptibility to disorders such as 

refractive error, variants that affect the expression level or 

function of PDGFRA would not seem likely candidates given 

this pleiotropic scaling role. Indeed, subjects’ genotypes for 

SNP rs6554163 were not associated with the presence/absence 

of myopia in ALSPAC subjects. Thus, PDGFRA variants 

appear to exert a risk of corneal astigmatism but not spherical 

refractive error.

Corneal curvature tends to increase (flatten) markedly 

during the first few years of life and then remain relatively 

stable during the remainder of childhood and early adulthood 

[38-40]. Thus, the association between corneal curvature 

and PDGFRA variants identified in the 15-year-old children 

examined here is likely to persist as they age, consistent with 

the associations previously observed in child and adult Asian 

populations [10]. However, axial length follows a different 

pattern of post-natal growth to that of corneal curvature, 

generally continuing to increase throughout childhood and 

even into early adulthood [38-40]. This suggests that although 

these traits share common genetic determinants, there may be 

differences in the age and/or duration over which these vari-
ants exert their effects. It will be of interest to explore further 

how the association of PDGFRA and axial length alters over 

the lifecourse, in would-be emmetropes and myopes.

Situated on chromosome 4q12, PDGFRA encodes the 

alpha isoform of a transmembrane tyrosine kinase receptor 

for members of the PDGF family. The gene is very widely 

expressed and has important roles in development and cell 

proliferation. We observed PDGFRA antibody labeling in 

all of the major cell types of the normal human cornea, as 

reported previously [41]. Protein levels appeared highest in the 

epithelium, followed by stromal keratocytes, and lower still in 

the endothelium. Antibody labeling was not restricted to the 

cell membrane in any of the three cell types, consistent [42] 

with the presence of intracellular stores of PDGFRA, which 

would permit mobilization to the cell surface in response to 

external stimuli. Variants in PDGFRA have previously been 

associated with susceptibility to several cancer types, certain 

developmental anomalies (see Genetic Association), and 

several red blood cell quantitative traits [43]. Pertinent to the 

association with corneal curvature and axial length, members 

of the PDGF family are known to modulate multiple aspects 

of extracellular matrix biology [44-48]. However, the specific 

physiologic mechanism through which PDGFRA gene varia-

tion exerts an effect on eye size awaits elucidation.

APPENDIX 1.

Supporting Information. To access the data, click or select 

the words “Appendix 1.” This will initiate the download of a 

compressed (pdf) archive that contains the file.
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