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Abstract
We conducted a genome-wide association study (GWAS) of pancreatic cancer in 3,851 cases and
3,934 controls drawn from twelve prospective cohort studies and eight case-control studies. Based
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on a logistic regression model for genotype trend effect that was adjusted for study, age, sex, self-
described ancestry and five principal components, we identified eight SNPs that map to three loci
on chromosomes 13q22.1, 1q32.1 and 5p15.33. Two correlated SNPs, rs9543325 (P=3.27×10−11;
per allele odds ratio, OR 1.26, 95% CI=1.18-1.35) and rs9564966 (P=5.86×10−8; per allele OR 1.21,
95% CI=1.13-1.30) map to a non-genic region on chromosome 13q22.1. Five SNPs on 1q32.1 map
to NR5A2; the strongest signal was rs3790844 (P=2.45×10−10; per allele OR 0.77, 95%
CI=0.71-0.84). A single SNP, rs401681 (P=3.66×10−7; per allele OR 1.19, 95% CI=1.11-1.27) maps
to the CLPTM1L-TERT locus on 5p15.33, associated with multiple cancers. Our study has identified
common susceptibility loci for pancreatic cancer that warrant follow-up studies.

Pancreatic cancer is one of the most lethal cancers with mortality rates approaching incidence
rates1. Established risk factors for pancreatic cancer include diabetes, an elevated body-mass
index, current or recent smoking, and family history2. However, only a small fraction of
familial aggregation can be explained by highly penetrant mutations previously identified in
BRCA2, p16/CDKN2A, STK11/LKB, APC, BRCA1, PRSS1, and SPINK2,3. Truncating
mutations and deletions in PALB2 have recently been shown to be involved in familial
pancreatic cancer4,5.

We recently reported common risk variants for pancreatic cancer that map to the first intron
of the ABO gene on chromosome 9q34.2 based on a genome-wide association study of 1,896
individuals diagnosed with pancreatic cancer and 1,939 controls6. Individuals were drawn from
12 prospective cohort studies (the Pancreatic Cancer Cohort Consortium) and one hospital-
based case-control study, the Mayo Clinic Molecular Epidemiology of Pancreatic Cancer Study
(see Online Methods)6. In the first scan, we genotyped approximately 550,000 SNPs and
followed up the most significant SNPs that had been found in eight case-control studies (see
Online Methods)6.

To identify additional loci, we conducted a second GWAS in which we genotyped
approximately 620,000 single nucleotide polymorphisms (SNPs) in an additional 1,955 cases
and 1,995 controls drawn from the same eight case-control studies used to replicate the initial
GWAS finding on chromosome 9q34.2. After quality control analysis of genotypes, we
combined the data sets, resulting in 551,766 SNPs available for analysis (Illumina
HumanHap550 and Human 610-Quad chips) in 3,851 pancreatic cancer cases and 3,934
controls (Online Methods). A logistic regression model was fit for genotype trend effects (1
d.f.) adjusted for study, age, sex, self-described ancestry and five principal components of
population stratification. The quantile-quantile (Q-Q) plot showed little evidence for inflation
of the test statistics as compared to the expected distribution (lambda=1.013), that excludes
the likelihood of substantial hidden population substructure or differential genotype calling
between cases and controls (Supplemental Figure 1). A Manhattan plot displays the results of
the combined GWAS (Supplemental Figure 2A) and the results from the case-control studies
including the full Mayo data set (Supplemental Figure 2B). Our combined analysis identified
three novel genomic regions on chromosomes 13q22.1, 1q32.1 and 5p15.33 associated with
pancreatic cancer risk that were below the threshold for genome-wide significance
(P<5×10−7) shown in Table 1 and Figure 17. Two different haplotype analyses were conducted
for each of the three regions, a regularized regression approach8 and a sequential haplotype
scan method9, both of which employ different test statistics (see Online Methods). Haplotype
analysis across each of the three regions did not identify new or independent markers, thus
indicating that the current tag SNPs probably point to single loci in each region (Supplemental
Figure 3).

For the locus on 13q22.1, we observed two highly significant SNPs that ranked number 1 and
6 in the combined analysis: rs9543325 (P=3.27×10−11; per allele OR 1.26, 95% CI=1.18-1.35;
unconstrained ORHet 1.23, 95% CI=1.11-1.36 and ORHom 1.61, 95% CI=1.40-1.86) and
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rs9564966 (P=5.86×10−8; per allele OR 1.21, 95% CI=1.13-1.30; unconstrained ORHet 1.21,
95% CI=1.09-1.34 and ORHom=1.48, 95% CI=1.27-1.72). These SNPs, 20 kb apart, are highly
correlated (r2=0.82 in 3,650 study controls of European ancestry and r2=0.85 in HapMap CEU).
SNP rs9564966 was no longer nominally significant after adjusting for rs9543325 (P=0.47),
suggesting the two SNPs mark a single signal in the non-genic region of approximately 600
kb between two genes in the family of kruppel-like transcription factors, KLF5 and KLF12 that
regulate cell growth and transformation10,11. This segment of chromosome 13 is frequently
deleted in a spectrum of cancers, including pancreatic cancer12,13 and may harbor a breast
cancer susceptibility locus based on linkage analysis in breast cancer families negative for
mutations in BRCA1 and BRCA2 genes14.

Five highly significant SNPs (ranked 2, 3, 4, 7 and 9 in the combined analysis; P≤5×10−7) map
to a region of chromosome 1q32.1, that harbors the nuclear receptor subfamily 5, group A,
member 2 (NR5A2) gene. The SNPs are distributed across a 105 kb genomic region, which
includes the 5′ end of NR5A2 extending to 91 kb upstream of the gene. The two most significant
SNPs in this region map to the first intron of NR5A2 (rs3790844, P=2.45×10−10; per allele OR.
0.77, 95% CI=0.71-0.84; unconstrained ORHet 0.75, 95% CI=0.68-0.83 and unconstrained
ORHom 0.64, 95% CI=0.52-0.79) and approximately 32 kb upstream of the gene (rs10919791,
P=6.37×10−10; per allele OR 0.77, 95% CI=0.71-0.84; unconstrained ORHet 0.76, 95%
CI=0.68-0.84 and unconstrained ORHom 0.63, 95% CI=0.50-0.79)). The LD between these
two SNPs is high, r2=0.81 in study controls and r2=0.71 in HapMap CEU. In this region, there
were three additional SNPs, rs3790843, rs12029406 and rs4465241 that were highly significant
(P < 5×10−7). Of these three SNPs, the telomeric one, rs3790843 is highly correlated with
rs3790844 and rs10919791 (r2 of 0.59 and 0.72 in PanScan European controls). The two SNPs
centromeric to rs3790844 and rs10919791 are not as strongly correlated (r2=0.05-0.38 in
PanScan European controls). In an analysis adjusted for the most highly associated SNP,
rs3790844, three of the other four SNPs, namely, rs10919791, rs3790843, and rs12029406
were no longer nominally significant (p>0.05) whereas the significance of the association with
rs4465241 (which had the lowest LD) decreased by several orders of magnitude after
adjustment (p=0.004). Together these findings suggest that the five SNPs mark a single
common allele, but further fine-mapping is needed.

NR5A2 encodes a nuclear receptor of the fushi tarazu (Ftz-F1) subfamily that is predominantly
expressed in exocrine pancreas, liver, intestine and ovaries in adults. The widespread
expression of NR5A2 in early embryos and early lethality of knockout mice implies a critical
role in development15. NR5A2 plays a role in cholesterol and bile acid homeostasis,
steroidogenesis and cell proliferation (for review see16). Evidence for its involvement in
transformation stems from the fact that NR5A2 interacts with β-catenin to activate expression
of cell cycle genes while haploinsufficiency of NR5A2 attenuates intestinal tumor formation
in the ApcMin/+ tumor model17.

The third locus identified is marked by rs401681 (P=3.66×10−7; per allele OR 1.19, 95%
CI=1.11-1.27; unconstrained ORHet 1.20, 95% CI=1.07-1.34 and unconstrained ORHom 1.41,
95% CI=1.23-1.61), which maps to chromosome 5p15.33. It resides in intron 13 of the cleft
lip and palate transmembrane 1-like gene (CLPTM1L), part of the CLPTM1L-TERT locus that
includes the telomerase reverse transcriptase gene (TERT), only 23 kb away. Both genes have
been implicated in carcinogenesis: the CLPTM1L gene is up-regulated in cisplatin-resistant
cell lines and may play a role in apopotosis18 whereas the TERT gene encodes the catalytic
subunit of telomerase, essential for maintaining telomere ends. When over-expressed in normal
cells, TERT can lead to prolonged cell lifespan and transformation19,20. While telomerase
activity cannot be detected in most normal tissues, it is seen in approximately 90% of human
cancers21. This region of chromosome 5p15.33 has been identified in genome-wide association
studies of a number of different cancers, including brain tumors, lung cancer, basal cell
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carcinoma, melanoma and now pancreatic cancer22-26. In a recent analysis of lung cancer in
smokers, the signal on chromosome 5p15.33 has been shown to be strongly associated with
the adenocarcinoma histology subtype27. Moreover, variants in this region, in LD with our
strongest signal, rs402710, have been suggested to be associated with levels of smoking-related
bulky aromatic DNA adducts, a relevant mechanism for pancreatic cancer which is also tobacco
related28. Germ-line mutations have been shown to contribute to the development of acute
myelogenous leukemia, whereas mutations in TERT account for a proportion of individuals
with an inherited bone marrow failure syndrome that is prone to hematologic
malignancies29-31. SNPs in the CLPTM1L-TERT region, including rs401681, also have shown
possible associations in additional cancers, namely bladder and prostate cancer22-24. Of note,
the C allele of rs401681 is associated with an increased risk of lung, prostate and bladder
cancers as well as basal cell carcinoma22-25 whereas the T allele is associated with increased
risk of pancreatic cancer (this study) and melanoma25. Lastly, a highly suggestive SNP in this
region that did not meet genome-wide significance, rs4635969 (ranked 12th in combined
analysis, P=1.05×10−6) is located between the CLPTM1L and TERT genes (r2=0.26 in 3,650
study controls and r2=0.36 in HapMap CEU).

It is notable that the estimated odds ratio for the variants meeting genome-wide significance
on chromosomes 13q22, 1q32 and 5p15 were consistent when restricted to data from either
the case-control studies or the cohort studies6. This similarity of estimated effect size between
the two study designs was also observed for rs505922 in the ABO locus in our previous
report6. The consistency of effect supports a role for loci at 13q22.1, 1q32.1, 5p15.33 and
ABO, and the divergent results for SHH (reported earlier6) on chromosome 7q36 indicate the
need for further investigation of the potential influence of study sampling design on detection
of regions using the GWAS strategy.

GWAS have emerged as a powerful, hypothesis-independent approach to identify common
alleles that influence disease risk. Our results show that pancreatic cancer is similar to other
complex diseases, in that multiple common disease alleles with small effects influence disease
risk. Our study has good power to detect common alleles with large effects (over 90% power
to detect a per allele relative risk of 1.4 or greater for an allele with 10% frequency at the
alpha=5×10−7 level) but less power to detect smaller effect sizes. Thus, although it is unlikely
that there are common alleles with large effects on the majority of sporadic pancreatic cancer
risk, it is likely that additional susceptibility alleles with moderate to small effects exist. The
list of susceptibility alleles should increase as further GWAS are performed for pancreatic
cancer to catalogue the variants with estimated risks below 1.3. Additional studies are needed
to assess the clinical utility of risk stratification that combines genetic markers with
epidemiologic risk factors already established for pancreatic cancer, namely adiposity,
smoking, diabetes and family history.

Our combined analysis of 3,851 individuals with pancreatic cancer and 3,934 controls has
yielded three new genomic regions associated with the risk of pancreatic cancer. Two regions
harbor candidate genes while the third locus on chromosome 13q22.1 maps to a large nongenic
region analogous to the 8q24 region; however, though the latter is associated with risk of
multiple cancers, including prostate, breast, colorectal and bladder cancers, the locus on
chromosome 13q22.1 appears to be specific for pancreatic cancer. The CPTM1L-TERT region
on chromosome 5p15.33 has been implicated in a disease spectrum that also includes lung
cancer, brain tumors, acute myelogenous leukemia, bone marrow failure syndromes and
pulmonary fibrosis. The fine-mapping of signals in the three regions identified by our GWAS
should guide selection of the optimal variants for functional studies into the biological
mechanism underpinning pancreatic carcinogenesis. These results, in turn, should help to
inform new preventive, diagnostic and/or therapeutic approaches designed to lessen the burden
of this highly fatal disease.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association Results, Recombination and Linkage Disequilibrium Plots for 13q22.1,
1q32.1, and 5p15.33
Association results are shown in the top panel for all cohort studies (blue squares), case-control
studies (green squares) and all studies combined (red diamonds). Overlaid on the association
panel for each locus is a plot of recombination rates (cM/Mb) across the region from CEU
study controls. A. The LD plot shows a region of chromosome 13q22.1 marked by SNPs,
rs9543325 and rs9564966 and bounded by SNPs between chromosome
13q22.1:72,721,214-72,854,007. These SNPs are within a 600 kb intergenic region between
KLF5 and KLF12. B. The LD plot shows a region of chromosome 1q32.1 marked by 5 SNPs,
rs3790844, rs10919791, rs3790843, rs12029406 and rs4465241 and bounded by SNPs
between chromosome 1q32.1:198,125,014-198,317,613. Note that rs3790844 and
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rs3790843are located in the first intron of the NR5A2 gene, shown above the LD plot. C. The
LD plot shows a region of chromosome 5p15.33 marked by rs401681and bounded by SNPs
between chr5p15.33: 1,296,475-1,476,905. rs401681 is located in the 13th intron of the
CLPTM1L gene, shown above the LD plot and 27 kb from the TERT gene. For all panels, LD
(r2) is depicted for SNPs with MAF > 5% using PanScan Controls of European background
(n=3,650 unrelated individuals). Locations are from NCBI Genome Build 36.
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