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Abstract

To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase
the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was
conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for
the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci
not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type
D (PTPRD) (P = 8.54610210; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR)
(P = 3.0661029; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with
the strongest signal at rs2237895 (P = 9.65610210; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic
susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to
be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of
differences in the molecular pathogenesis of T2D among various populations.
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Introduction

Type 2 diabetes (T2D) affects at least 6% of the world’s

population; the worldwide prevalence is expected to double by 2025

[1]. T2D is a complex disorder that is characterized by

hyperglycemia, which results from impaired pancreatic b cell

function, decreased insulin action at target tissues, and increased

glucose output by the liver [2]. Both genetic and environmental

factors contribute to the pathogenesis of T2D. The disease is

considered to be a polygenic disorder in which each genetic variant

confers a partial and additive effect. Only 5%–10% of T2D cases

are due to single gene defects; these include maturity-onset diabetes

of the young (MODY), insulin resistance syndromes, mitochondrial

diabetes, and neonatal diabetes [3–5]. Inherited variations have

been identified from studies of monogenic diabetes, and have

provided insights into b cell physiology, insulin release, and the

action of insulin on target cells [6].

Much effort has been devoted to finding common T2D genes,

including genome-wide linkage, candidate-gene, and genome-wide

association studies (GWAS). Whole-genome linkage scans have

identified chromosomal regions linked to T2D; however, with the

exception of regions 1q [7–13] and 20q, which have been

repeatedly mapped, linkage results vary from study to study

[14–19]. Candidate-gene studies have provided strong evidence

that common variants in the peroxisome proliferator-activated

receptor-r (PPARG) [20], potassium inwardly-rectifying channel

J11 (KCNJ11) [21–23], transcription factor 2 isoform b (TCF2)

[24,25], and Wolfram syndrome 1 (WFS1) [26] genes are

associated with T2D. These genes all have strong biological links

to diabetes, and rare, severe mutations cause monogenic diabetes.

GWAS have accelerated the identification of T2D susceptibility

genes, expanding the list from three in 2006 to over 20 genes in

2009. There are now at least 19 loci containing genes that increase

risk of T2D, including PPARG [27], KCNJ11 [27], KCNQ1 [28,29],
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CDKAL1 [27,29–33], CDKN2A-2B [27,32,33], CDC123-CAMK1D

[34], MTNR1B [35–37], TCF7L2 [31,38,39], TCF2 (HNF1B),

HHEX-KIF11-IDE [27,32,33,38], JAZF1 [34], IGF2BP2

[27,29,32], SLC30A8 [27,32,33,38], THADA [34], ADAMTS9 [34],

WFS1 [26], FTO [27,31], NOTCH2 [34], and TSPAN8 [34].

Variants in these genes have been identified almost exclusively in

populations of European descent, except for KCNQ1; individually,

these variants confer a modest risk (odds ratio [OR] = 1.1–1.25) of

developing T2D. KCNQ1 was identified as a T2D susceptibility

gene in three GWA scans in Japanese individuals, highlighting the

need to extend large-scale association efforts to different

populations, such as Asian populations [28,29,40]. The association

of other previously reported loci (CDKAL1, CDKN2A-2B, IGF2BP2,

TCF7L2, SLC30A8, HHEX, and KCNJ11) with T2D were also

replicated in the Japanese population [29,40,41].

To date, a GWA scan for T2D has not been conducted in the

Han Chinese population, although the association of some known

loci have been confirmed, including KCNQ1 and CDKAL1,

CDKN2A-2B, MTNR1B, TCF7L2, HNF1b, and KCNJ11 [42–47].

Therefore, we conducted a two-stage GWA scan for T2D in a

Han Chinese population residing in Taiwan. There were a total of

2,798 cases and 2,367 normal controls (995 cases and 894 controls

in stage 1, 1,803 cases and 1,473 controls in stage 2). Our

accomplished objective was to identify new diabetes susceptibility

loci that were associated with increased risk of T2D in a Han

Chinese population.

Results

Association analysis
We conducted a two-stage GWAS to identify genetic variants

for T2D in the Han-Chinese residing in Taiwan. In the first stage,

an exploratory genome-wide scan, we genotyped 995 T2D cases

and 894 population controls using the Illumina Hap550duov3

chip (Figure 1 and Table S1). For each sample genotyped in this

study, the average call rate was 99.9260.12%. After applying

stringent quality control criteria, high-quality genotypes for

516,737 SNPs (92.24%) were obtained, with an average call rate

Author Summary

Type 2 diabetes (T2D) is a complex disease that involves
many genes and environmental factors. Genome-wide and
candidate-gene association studies have thus far identified
at least 19 regions containing genes that may confer a risk
for T2D. However, most of these studies were conducted
with patients of European descent. We studied Chinese
patients with T2D and identified two genes, PTPRD and
SRR, that were not previously known to be involved in
diabetes and are involved in biological pathways different
from those implicated in T2D by previous association
reports. PTPRD is a protein tyrosine phosphatase and may
affect insulin signaling on its target cells. SRR encodes a
serine racemase that synthesizes D-serine from L-serine.
Both D-serine (coagonist) and the neurotransmitter
glutamate bind to NMDA receptors and trigger excitatory
neurotransmission in the brain. Glutamate signaling also
regulates insulin and glucagon secretion in pancreatic
islets. Thus, SRR and D-serine, in addition to regulating
insulin and glucagon secretion, may play a role in the
etiology of T2D. Our study suggests that, in different
patient populations, different genes may confer risks for
diabetes. Our findings may lead to a better understanding
of the molecular pathogenesis of T2D.

Figure 1. Graphical summary of T2D GWAS in a Han Chinese population. T2D association was determined for SNPs on the Illumina
HumanHap550K-Duo chip. The y-axis represents the 2log10 P value and the x-axis represents each of the 516,212 SNPs used in the primary scan of
995 T2D cases and 894 controls.
doi:10.1371/journal.pgen.1000847.g001
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of 99.9260.24% (Table S2). The results of principal component

analysis in stage 1 revealed no evidence for population

stratification between T2D cases and controls (P = 0.111, Fst

statistics between populations ,0.001) (Text S1; Figure S1).

Multidimensional scaling analysis using PLINK [48] produced

similar results (Text S1; Figure S2). Furthermore, genomic control

(GC) with a variance inflation factor l= 1.078 (trend test) did not

substantially change the results of this GWAS (Table S3).

We selected eight SNPs in seven regions: rs9985652 and

rs2044844 on 4p13, rs7192960 on 16q23.1, rs7361808 on 20p13,

rs1751960 on 10q11.23, rs4845624 on 1q21.3, rs391300 on

17p13.3, and rs648538 on 13q12.3. These SNPs had association P

values of ,1025 at stage 1 with any of the genotype, allele, trend,

dominant, and recessive models for subsequent cross-platform

validation using Sequenom (Table 1; Table S3). For SNPs with

weaker associations (P value between 1024 and 1025), we searched

for novel susceptibility candidates for T2D as implicated by (1)

gene function identified by a bioinformatics approach and (2) an

animal model showing defects in glucose homeostasis caused by

genes within the same subfamily. Therefore, we selected SNP

rs17584499 (P = 2.461025 under best model) for further investi-

gation. rs17584499 lies within protein tyrosine phosphatase

receptor type D (PTPRD). We hypothesized that PTPRD might

play a role in the regulation of insulin signaling, because its

subfamily members leukocyte common antigen-related (LAR) and

protein tyrosine phosphatase sigma (PTPRS) exhibit defects in

glucose homeostasis and insulin sensitivity in knockout and/or

transgenic mice [49–51].

We also evaluated the most significant SNP (rs231361) within

KCNQ1, which was previously reported to be a diabetes

susceptibility gene in a Japanese population, as well as in

populations of Korean, Chinese, and European ancestry [28,29].

Table 1. Association results for Type 2 diabetes in Han Chinese.

Joint anaysis of stage1+2

SNPa Chr.
Nearest
gene(s)

Risk
allele stage

RAF
(T2D)

RAF
(NC) OR (95% CI)

P value
(trend) OR (95% CI)

P value
(trend)

P value
(perm)

P value
(Fisher)

rs9985652 4 ATP8A1 A 1 0.54 0.48 1.25 (1.10–1.42) 9.3061024

GRXCR1 2 0.51 0.52 0.95 (0.86–1.05) 0.316 1.05 (0.97–1.14) 0.193 0.156 0.003

rs2044844 4 ATP8A1 C 1 0.53 0.48 1.24 (1.09–1.41) 9.3061024

GRXCR1 2 0.51 0.52 0.96 (0.87–1.06) 0.406 1.06 (0.98–1.14) 0.17 0.141 0.003

rs7192960 16 MAF C 1 0.75 0.68 1.39 (1.20–1.61) 7.6661026

WWOX 2 0.73 0.70 1.12 (1.01–1.25) 0.037 1.21 (1.11–1.33) 1.3361025 6.8261026 4.6161026

rs7361808 20 SIRPA G 1 0.09 0.06 1.60 (1.24–2.05) 2.3061024

2 0.06 0.06 1.07 (0.87–1.31) 0.52 1.25 (1.07–1.47) 0.005 0.005 0.001

rs1751960 10 LYZL1 G 1 0.53 0.46 1.34(1.18–1.53) 1.1361025

SVIL 2 0.50 0.49 1.05(0.95–1.16) 0.317 1.15(1.06–1.24) 3.7861024 4.0561024 4.8561025

rs4845624 1 RORC A 1 0.65 0.58 1.36 (1.19–1.56) 5.8561026

TMEM5 2 0.61 0.63 0.91 (0.83–1.01) 0.07 1.05 (0.97–1.14) 0.205 0.203 6.4661026

rs391300 17 SRR G 1 0.69 0.63 1.31 (1.14–1.50) 9.0061025

2 0.68 0.62 1.26 (1.14–1.40) 6.5561026 1.28 (1.18–1.39) 3.0661029 1.0061028 5.5261028*

rs4523957b 17 SRR T 1 0.71 0.65 1.30 (1.12–1.49) 3.2461024

2 0.68 0.63 1.26 (1.14–1.40) 8.2261026 1.27 (1.17–1.38) 1.4461028 3.0061028 1.3161028*

rs648538 13 KATNAL1 G 1 0.67 0.61 1.28 (1.12–1.47) 2.9261024

2 0.65 0.66 0.96 (0.86–1.06) 0.407 1.07(0.98–1.16) 0.116 0.125 0.001

rs17584499 9 PTPRD T 1 0.11 0.07 1.55 (1.23–1.94) 1.4161024

2 0.09 0.06 1.61 (1.33–1.95) 9.1561027 1.57 (1.36–1.82) 8.54610210 1.0061028 3.0761029*

rs231361 11 KCNQ1 T 1 0.85 0.81 1.39 (1.17–1.64) 1.4961024

2 0.83 0.79 1.26 (1.11–1.44) 2.8561024 1.30 (1.18–1.44) 2.8961027 3.1061027 7.6461027*

rs231359b 11 KCNQ1 A 1 0.85 0.81 1.36 (1.14–1.61) 4.5661024

2 0.84 0.80 1.32 (1.17–1.51) 1.6861025 1.33 (1.20–1.48) 3.4361028 5.0061028 1.5161027*

rs2237895c 11 KCNQ1 C 1 0.40 0.35 1.28 (1.12–1.46) 2.9261024

2 0.39 0.33 1.30 (1.17–1.45) 6.4661027 1.29 (1.19–1.40) 9.65610210 1.0061028 4.4261029*

aSNPs are arranged in order of decreasing P value under best statistical model in Stage 1.
bNeighboring SNPs also significantly associated with T2D.
cPreviously reported SNP associated with T2D 28, 29 and validated in our study.
*Empirical P value ,106 after 108 permutations.
Stage 1(Genome scan) included 995 cases and 894 controls. Stage 2 (replication stage) included 1,803 cases and 1,473 controls. Alleles were indexed to the forward
strand of NCBI Build 36. P value (trend), P value (PC), P value (permutation), and P value (meta) represent P values of trend test, principal component analysis using
EIGENSTRAT, permutation, and meta-analysis using Fisher’s method, respectively.
Risk allele, allele with higher frequency in cases compared to controls; RAF (T2D) and RAF (NC), risk allele frequencies in cases and controls, respectively; and OR, odds
ratio for risk allele.
doi:10.1371/journal.pgen.1000847.t001
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Together, these ten SNPs—the 8 SNPs with association p,1025,

rs17584499, and rs231361—were cross-platform validated and

yielded consistent results using both Illumina and Sequenom. The

concordance rate for stage 1 samples typed on the Illumina and

Sequenom platforms was 99.1%60.84% (Table S4).

We took these ten SNPs and an additional 29 neighboring SNPs

within the linkage disequilibrium (LD) block forward to replicate

in 3,803 additional samples (stage 2; 1,803 cases and 1,473

controls). The average call rate for each sample was

96.13%64.66%. After applying stringent quality control criteria,

high-quality genotypes for 35 SNPs (89.7%) were obtained, with

an average call rate of 98.96%60.24% (Table S2). Of the ten

SNPs selected in stage 1, only three SNPs still showed a strong

association in the stage 2 analysis: rs17584499 in PTPRD at

9p24.1-p23, rs231359 in KCNQ1 at 11p15.5, and rs391300 in

serine racemase (SRR) at 17p13.3 (Table 1). We were unable to

replicate the association between T2D and the remaining seven

SNPs in ATP8A1/GRXCR1, MAF/WWOX, SIRPA, LYZL1/SVIL,

RORC/TMEM5, and KATNAL1 in the stage 2 analysis (Table 1).

Joint analysis of stage 1 and stage 2 data revealed consistent results

with stage 2. The most significant associations were found for

rs391300, rs17584499, and rs231359 (Table 1; Figure 2). These

associations remained significant after calculating P values using

108 permutations of the disease state labels. Joint association

analysis was performed with all of the 2,798 T2D cases and 2,367

controls; this could achieve a power of 0.85 to detect a disease

allele with a frequency of 0.15 and an OR of 1.5, assuming a

disease prevalence of 0.06, at a significant level of 0.05 (Table S5).

Identification of two novel T2D loci and confirmation of
KCNQ1 association

Two previously unknown loci were detected in our joint analysis

of GWAS data. The strongest new association signal was found for

rs17584499 in intron 10 of PTPRD (P = 8.54610210 [trend test];

allelic OR = 1.57, 95% confidence interval [CI] = 1.36–1.82)

(Table 1; Figure 2). The second strongest signal was found with

rs391300 (P = 3.0661029 [trend test]; OR = 1.28, 95% CI = 1.18–

1.39). The nearby SNP rs4523957 also demonstrated a significant

association (P = 1.4461028; OR = 1.27, 95% CI = 1.17–1.38).

SNPs rs391300 and rs4523957 were in tight LD with one another

(r2 = 0.942 in HapMap HCB), and were located within the serine

racemase gene (SRR).

SNP rs231361, located in intron 11 of KCNQ1, had a less

significant association with T2D, and was selected in stage 1

(P = 1.4961024 [trend test]; OR = 1.39, 95% CI = 1.17–1.64)

(Table 1). We further genotyped eight additional SNPs within the

same LD block from the HapMap Asian group data: rs231359

yielded a P value of 4.5661024 with a trend test (OR = 1.36, 95%

CI = 1.14–1.61) (Figure 2). rs231361 and rs231359 were in strong

LD with one another (r2 = 1 in HapMap HCB), and were located

approximately 164 kb upstream of SNP rs2237897, which was

previously reported to be significantly associated with T2D in a

Japanese population [28,29]. We took rs231361, rs231359, and

neighboring SNPs within the LD block forward to replicate in

stage 2. Joint analysis of stage 1 and stage 2 data revealed that

rs231359 had an even stronger association with T2D than did

rs231361 (rs231359: P = 3.4361028, OR = 1.33, 95% CI = 1.2–

1.48; rs231361: P = 2.8961027, OR = 1.3, 95% CI = 1.18–1.44).

Additional SNPs that were reported to be significantly associated

with T2D in a Japanese population were further genotyped [28,29].

The average call rate for each sample was 99.12%67.21%. After

applying stringent quality control criteria, we obtained high-quality

genotypes with an average call rate of 99.16%60.18% (Table S2).

SNP rs2237895 showed the strongest association with T2D of all the

genotyped SNPs in KCNQ1 (P = 9.65610210; OR = 1.29, 95%

CI = 1.19–1.40) (Figure 2 and Figure S3; Table S6). Conditioning

on the rs2237895, the statistical significance of rs231361 (or

rs231359) disappeared. It seems the same underlying biological

effect between the 2 SNPs (Table S7).

Subsequently, we sequenced all of the exons, intron–exon

boundaries, and up to 1.2 kb of the promoter region of the KCNQ1

Figure 2. Regional plots of three significant associations. For
each of the (A) PTPRD, (B) SRR, and (C) KCNQ1 regions, the 2log10 P
values for the trend test from the primary scan were plotted as a
function of genomic position (NCBI Build 36). The SNPs with the
strongest signal and neighboring genotyped SNPs in the joint analysis
are denoted by blue diamonds. Green diamonds in the KCNQ1 region
(C) represent reported T2D–associated SNPs genotyped in all samples
of joint analysis. Estimated recombination rates (right y-axis) based on
the Chinese HapMap population was plotted to reflect the local LD
structure around the significant SNPs. Gene annotations were taken
from NCBI.
doi:10.1371/journal.pgen.1000847.g002
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gene in 50 individuals with T2D, and identified 42 polymorphic

variations, including one nonsynonymous P448R polymorphism

and two novel SNPs with minor allele frequency .0.03. We then

genotyped the two novel SNPs and one nonsynonymous

polymorphism; however, none of these SNPs showed an

association with T2D (Table S6).

Discussion

Our GWAS for T2D in a Han Chinese population found two

previously unreported susceptibility genes. All of the significant

variants detected in our study showed modest effects, with an OR

between 1.21 and 1.57. Two loci with less-significant associations

in our primary scan (stage 1), PTPRD and KCNQ1, were selected

for further replication; both showed compelling evidence of

association in joint analysis. The susceptibility loci we identified

in this study need to be further replicated in additional

populations. Of the 18 loci previously reported to be associated

with T2D (with the exception of KCNQ1), none of the P values for

any of the SNPs within or near the genes reached 1025 using

allele, genotype, trend, dominant, or recessive models (Table S8;

Figure S4). Three SNPs within CDKAL1, JAZF1, and HNF1B had

the lowest P values, ranging from 561024 to 1025, among the 18

known loci (Table S8). No significant associations were found

within these regions in our Han Chinese population.

The strongest new signal was observed for rs17584499 in

PTPRD. The overall Fst among 11 HapMap groups for

rs17584499 was estimated to be 0.068 [52], which indicated a

significant difference in allele frequencies among the populations

(P,0.0001, chi-square test ) (Table S9). PTPRD is widely

expressed in tissues, including skeletal muscle and pancreas, and

is expressed highest in the brain. PTPRD-deficient mice exhibit

impaired learning and memory, early growth retardation,

neonatal mortality, and posture and motor defects [53]. Multiple

mRNA isoforms are expressed by alternative splicing and/or

alternative transcription start sites in a developmental and tissue-

specific manner [54,55]. PTPRD belongs to the receptor type IIA

(R2A) subfamily of protein tyrosine phosphatases (PTPs). The

R2A PTP subfamily comprises LAR, PTPRS, and PTPRD. The

R2A family has been implicated in neural development, cancer,

and diabetes [56]. Although the complex phenotype including

neurological defects seen in knockout mice could obscure the roles

of these genes in glucose homeostasis, LAR- and PTPRS-deficient

mice were demonstrated to have altered glucose homeostasis and

insulin sensitivity [49–51]. Transgenic mice overexpressing LAR in

skeletal muscle show whole-body insulin resistance [57]. Because

R2A subfamily members are structurally very similar [54], PTPRD

could play a role in T2D pathogenesis and should be further

characterized.

The second new association locus was found for rs391300 and

rs4523957 in the biologically plausible candidate gene SRR. SRR

encodes a serine racemase that synthesizes D-serine from L-serine

[58,59]. D-serine is a physiological co-agonist of the N-methyl D-

aspartate (NMDA) class of glutamate receptors, the major

excitatory neurotransmitter receptors mediating synaptic neuro-

transmission in the brain [60,61]. NMDA receptor activation

requires binding of glutamate and D-serine, which plays a

neuromodulatory role in NMDA receptor transmission, synaptic

plasticity, cell migration, and neurotoxicity [62]. D-serine and

SRR are also present in the pancreas [63]. Glutamate signaling

functions in peripheral tissues, including the pancreas, and

positively modulates secretion of both glucagon and insulin in

pancreatic islets [64–66]. The nearby SNP rs216193 also showed

significant association (P = 2.4961026); this SNP resides 3.8 kb

upstream from SRR, within Smg-6 homolog, nonsense mediated

mRNA decay factor (C. elegans) (SMG6). rs216193 was in tight LD

with rs391300 (r2 = 0.942 in HapMap HCB). Based on their

biological functions and the association results, neither SMG6 nor

any of the nearby genes TSR1, SGSM2, MNT, and METT10D

were compelling candidates for association withT2D. However,

SRR was significantly associated with T2D; thus, we suggest that

dysregulation of D-serine could alter glutamate signaling and

affect insulin or glucagon secretion in T2D pathogenesis.

rs7192960 also had a suggestive association with T2D

(P = 1.3261025; OR = 1.21, 95% CI = 1.11–1.33). This SNP

which lies approximately 211 kb downstream of v-maf musculo-

aponeurotic fibrosarcoma oncogene homolog (avian) (MAF) and

170 kb downstream of WW domain containing oxidoreductase

(WWOX). WWOX is a tumor suppressor gene that spans the

second most common human fragile site FRA16D [67,68], and is

disrupted in many tumors, including pancreatic carcinoma

[67,69–73]. MAF encodes the transcription factor c-Maf, a

member of the Maf family of basic-Zip (bZip) transcription

factors. c-Maf is involved in development and differentiation of the

lens [74,75], kidney [76], immune system [77], adipose tissue [78],

and pancreas [79]. It is expressed in a cells of the pancreatic islets

[80], and is a strong transactivator of the glucagon promoter that

regulates glucagon gene expression [80,81]. c-Maf is also

associated with early-onset and morbid adult obesity [82].

Our GWAS revealed that KCNQ1, which was previously

reported to be associated with T2D in several populations, was

also associated with T2D in a Han Chinese population residing in

Taiwan. KCNQ1 encodes the pore-forming a subunit of a voltage-

gated K+ channel (KvLQT1), which is involved in repolarization

of the action potential in cardiac muscle [83,84]. Mutations in

KCNQ1 cause long QT syndrome [85,86] and familial atrial

fibrillation [87]. KCNQ1 is widely expressed, including in the heart,

brain, kidney, liver, intestine, and pancreas [88–90]. It is also

expressed in pancreatic islets, and blockade of the KvLQT1

channel stimulates insulin secretion in insulin-secreting INS-1 cells

[91]. KCNQ1 knockout mice have cardiac dysfunctions [88,92] and

enhanced systemic insulin sensitivity [93]. In our study, variants in

the coding region did not show an association with T2D. The

functional variant(s) could be located in the regulatory element of

KCNQ1, rather than in the coding region. We did not find an

association between either CDKAL1 or IGF2BP2 and T2D, in

contrast with the results described in a previous study [29], nor did

we find T2D associated with various other genes identified in

populations of European descent.

In conclusion, we identified two previously unknown loci that

are associated with T2D in a Han Chinese population, and

confirmed the reported association of KCNQ1 with T2D. The

novel T2D risk loci may involve genes that are implicated in

insulin sensitivity and control of glucagon and insulin secretion:

PTPRD may participate in the regulation of insulin action on its

target cells, while SRR variants may alter glutamate signaling in

the pancreas, thus regulating insulin and/or glucagon secretion.

Our study suggests that in different patient populations, different

genes may confer risks for diabetes, which may lead to a better

understanding of the molecular pathogenesis of T2D.

Materials and Methods

Ethical statement
The study was approved by the institutional review board and

the ethics committee of each institution. Written informed consent

was obtained from each participant in accordance with institu-

tional requirements and the Declaration of Helsinki Principles.

Type 2 Diabetes in Han Chinese

PLoS Genetics | www.plosgenetics.org 5 February 2010 | Volume 6 | Issue 2 | e1000847



Subject participants
A total of 2,798 unrelated individuals with T2D, age .20 years,

were recruited from China Medical University Hospital (CMUH),

Taichung, Taiwan; Chia-Yi Christian Hospital (CYCH), Chia-Yi,

Taiwan; and National Taiwan University Hospital (NTU), Taipei,

Taiwan. All of the T2D cases were diagnosed according to medical

records and fasting plasma glucose levels using American Diabetic

Association Criteria. Subjects with type 1 diabetes, gestational

diabetes, and maturity-onset diabetes of the young (MODY) were

excluded from this study. For the two-stage GWAS, we genotyped

995 T2D cases and 894 controls in the first exploratory genome-

wide scan (stage 1). In the replication stage (stage 2), we genotyped

selected SNPs in additional samples from 1,803 T2D cases and

1,473 controls. The controls were randomly selected from the

Taiwan Han Chinese Cell and Genome Bank [94]. The criteria

for controls in the association study were (1) no past diagnostic

history of T2D, (2) HbA1C ranging from 3.4 to 6, and (3)

BMI,32. The two control groups were comparable with respect

to BMI, gender, age at study, and level of HbA1C. All of the

participating T2D cases and controls were of Han Chinese origin,

which is the origin of 98% of the Taiwan population. Details of

demographic data are shown in Table S10.

Genotyping
Genomic DNA was extracted from peripheral blood using the

Puregene DNA isolation kit (Gentra Systems, Minneapolis, MN,

USA). In stage 1, whole genome genotyping using the Illumina

HumanHap550-Duo BeadChip was performed by deCODE

Genetics (Reykjavı́k, Iceland). Genotype calling was performed

using the standard procedure implemented in BeadStudio

(Illumina, Inc., San Diego, CA, USA), with the default parameters

suggested by the platform manufacturer. Quality control of

genotype data was performed by examining several summary

statistics. First, the ratio of loci with heterozygous calls on the X

chromosome was calculated to double-check the subject’s gender.

Total successful call rate and the minor allele frequency of cases

and controls were also calculated for each SNP. SNPs were

excluded if they: (1) were nonpolymorphic in both cases and

controls, (2) had a total call rate ,95% in the cases and controls

combined, (3) had a minor allele frequency ,5% and a total call

rate ,99% in the cases and controls combined, and (4) had

significant distortion from Hardy–Weinberg equilibrium in the

controls (P,1027). Genotyping validation was performed using

the Sequenom iPLEX assay (Sequenom MassARRAY system;

Sequenom, San Diego, CA, USA). In the replication stage (stage

2), SNPs showing significant or suggestive associations with T2D

and their neighboring SNPs within the same LD block were

genotyped using the Sequenom iPLEX assay. The neighboring

SNPs in the same LD were selected from the HapMap Asian

(CHB + JPT) group data for fine mapping the significant signal.

Statistical analysis
T2D association analysis was carried out to compare allele

frequency and genotype distribution between cases and controls

using five single-point methods for each SNP: genotype, allele,

trend (Cochran–Armitage test), dominant, and recessive models.

The most significant test statistic obtained from the five models

was chosen. SNPs with P values less than a = 261028, a cut-off for

the multiple comparison adjusted by Bonferroni correction, were

considered to be significantly associated with the traits. The joint

analysis was conducted by combining the data from the stage 1

and 2 samples. We also applied Fisher’s method to combine P

values for joint analysis. The permutation test was carried out

genome-wide for 106 permutations, in which the phenotypes of

subjects were randomly rearranged. For better estimation of

empirical P values, the top SNPs were reexamined using 108

permutations. Each permutation proceeded as follows: (1) the case

and control labels were shuffled and redistributed to subjects, and

(2) the test statistics of the corresponding association test was

calculated based on the shuffled labels. The empirical P value was

defined as the number of permutations that were at least as

extreme as the original divided by the total number of

permutations. Detection of possible population stratification that

might influence association analysis was carried out using principle

component analysis, multidimensional scaling analysis, and

genomic control (Text S1). Quantile–quantile (Q–Q) plots were

then used to examine P value distributions (Figure 3 and Figure

S5).

Supporting Information

Figure S1 Principle component analysis (PCA) plot. The PCA

plot shows the first two principal components, estimated by

EIGENSTRAT (Price et al. Nat Genet 38: 904–909), based on

genotype data from 76,673 SNPs with equal spacing across the

human genome. No population stratification between the 995

Figure 3. Q–Q plot for the trend test. Q–Q plots are shown for the trend test based on the 516,212 quality SNPs of the initial analysis of 995 cases
and 894 controls. The red lines represent the upper and lower boundaries of the 95% confidence bands.
doi:10.1371/journal.pgen.1000847.g003
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T2D cases (green x) and 894 controls (red +) was detected

(P = 0.111, and Fst statistics between populations ,0.001).

Found at: doi:10.1371/journal.pgen.1000847.s001 (1.18 MB

TIF)

Figure S2 Multidimensional scaling analysis (MDS) plot. The

MDS plot shows the first two principal components, estimated by

PLINK (Zheng et al. Am J Hum Genet 81:559–575), based on

genotype data from 516,212 SNPs. No population stratification

between the 995 T2D cases (red) and 894 controls (blue) was

detected (IBS group-difference empirical P = 0.192598 for T1:

case/control less similar).

Found at: doi:10.1371/journal.pgen.1000847.s002 (0.74 MB

TIF)

Figure S3 LD block between rs231361 and rs223787.

Found at: doi:10.1371/journal.pgen.1000847.s003 (0.17 MB

TIF)

Figure S4 Comparisons to susceptible regions reported by

previous GWAS. For each of the (A) NOTCH2, (B) THADA, (C)

PPARG, (D) IGF2BP2, (E) ADAMTS9, (F) WFS1, (G) CDKAL1, (H)

JAF1, (I) SLC30A8, (J) CDKN2AB, (K) HHEX, (L) CDC123/

CAMK1D, (M) TCF7L2, (N) KCNJ11, (O) MTNR1B, (P) TSPAN8/

LGR5, (Q) FTO, and (R) TCF (HNF1B) regions, the 2log10 P

values from the primary scan are plotted as a function of genomic

position (NCBI Build 36). The reported SNPs in previous GWAS

are denoted by blue diamonds. Estimated recombination rates

(right y-axis) based on the Chinese HapMap population are

plotted to reflect the local LD structure around the significant

SNPs. Gene annotations and numbers of transcripts were taken

from NCBI.

Found at: doi:10.1371/journal.pgen.1000847.s004 (4.17 MB TIF)

Figure S5 Quantile-quantile (QQ) plots. QQ plots are shown for

the four association tests, (A) allelic, (B) genotype, (C) dominant,

and (D) recessive, based on the 516,212 quality SNPs of the initial

analysis of 995 cases and 894 controls. The upper and lower

boundaries of the 95% confidence bands are represented by the

red lines.

Found at: doi:10.1371/journal.pgen.1000847.s005 (3.10 MB TIF)

Table S1 Quality control of the subject participants in stage 1.

Found at: doi:10.1371/journal.pgen.1000847.s006 (0.03 MB

DOC)

Table S2 Quality control of the genotyping results.

Found at: doi:10.1371/journal.pgen.1000847.s007 (0.03 MB

DOC)

Table S3 Association results in stage 1.

Found at: doi:10.1371/journal.pgen.1000847.s008 (0.05 MB

DOC)

Table S4 Concordance rates for the 10 SNPs with significant

associations in stage 1.

Found at: doi:10.1371/journal.pgen.1000847.s009 (0.05 MB

DOC)

Table S5 Power Calculation using CaTS.

Found at: doi:10.1371/journal.pgen.1000847.s010 (0.05 MB

DOC)

Table S6 Association of additional SNPs within KCNQ1 in all

T2D cases and controls in the joint analysis.

Found at: doi:10.1371/journal.pgen.1000847.s011 (0.06 MB

DOC)

Table S7 Conditional analysis on rs2237895.

Found at: doi:10.1371/journal.pgen.1000847.s012 (0.03 MB

DOC)

Table S8 Previously reported loci and SNPs associated with

T2D.

Found at: doi:10.1371/journal.pgen.1000847.s013 (0.13 MB

DOC)

Table S9 Genotype frequency and allele frequency of

rs17584499 (founders only) from HapMap3.

Found at: doi:10.1371/journal.pgen.1000847.s014 (0.05 MB

DOC)

Table S10 Clinical characteristics of the subjects.

Found at: doi:10.1371/journal.pgen.1000847.s015 (0.04 MB

DOC)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1000847.s016 (0.03 MB

DOC)
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