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OPEN

ORIGINAL ARTICLE

A genome-wide association study identifies variants in
KCNIP4 associated with ACE inhibitor-induced cough
JD Mosley1, CM Shaffer1, SL Van Driest1,2, PE Weeke1,3, QS Wells1, JH Karnes1, DR Velez Edwards4, W-Q Wei5, PL Teixeira5,
L Bastarache5, DC Crawford6, R Li7, TA Manolio7, EP Bottinger8, CA McCarty9, JG Linneman10, MH Brilliant10, JA Pacheco11,
W Thompson11, RL Chisholm11, GP Jarvik12, DR Crosslin12, DS Carrell13, E Baldwin13, J Ralston13, EB Larson13, J Grafton13,
A Scrol13, H Jouni14, IJ Kullo14, G Tromp15, KM Borthwick15, H Kuivaniemi15, DJ Carey15, MD Ritchie16, Y Bradford16, SS Verma16,
CG Chute17, A Veluchamy18, MK Siddiqui18, CNA Palmer18, A Doney18, SH MahmoudPour19, AH Maitland-van der Zee19,
AD Morris20, JC Denny1,5,21 and DM Roden1,21

The most common side effect of angiotensin-converting enzyme inhibitor (ACEi) drugs is cough. We conducted a genome-wide
association study (GWAS) of ACEi-induced cough among 7080 subjects of diverse ancestries in the Electronic Medical Records and
Genomics (eMERGE) network. Cases were subjects diagnosed with ACEi-induced cough. Controls were subjects with at least
6 months of ACEi use and no cough. A GWAS (1595 cases and 5485 controls) identified associations on chromosome 4 in an intron
of KCNIP4. The strongest association was at rs145489027 (minor allele frequency = 0.33, odds ratio (OR) = 1.3 (95% confidence
interval (CI): 1.2–1.4), P= 1.0 × 10− 8). Replication for six single-nucleotide polymorphisms (SNPs) in KCNIP4 was tested in a second
eMERGE population (n= 926) and in the Genetics of Diabetes Audit and Research in Tayside, Scotland (GoDARTS) cohort (n= 4309).
Replication was observed at rs7675300 (OR= 1.32 (1.01–1.70), P= 0.04) in eMERGE and at rs16870989 and rs1495509 (OR= 1.15
(1.01–1.30), P= 0.03 for both) in GoDARTS. The combined association at rs1495509 was significant (OR = 1.23 (1.15–1.32),
P= 1.9 × 10− 9). These results indicate that SNPs in KCNIP4 may modulate ACEi-induced cough risk.

The Pharmacogenomics Journal (2016) 16, 231–237; doi:10.1038/tpj.2015.51; published online 14 July 2015

INTRODUCTION
Angiotensin-converting enzyme inhibitor drugs (ACEi) are fre-
quently used in clinical medicine for the treatment of elevated
blood pressure, heart failure and renal protection in chronic kidney
disease.1 Although this class of medications is generally well
tolerated, adverse reactions may prevent their use in some
individuals. The most common side effect is a persistent,
nonproductive cough that can start within days to months after
initiating therapy and requires cessation of ACEi use.2 Women are
1.5–2 times more likely to develop a cough than men.3 Some
epidemiological features of ACEi-induced cough suggest a genetic
predisposition to this adverse effect. In particular, there is racial
variation in the incidence of cough, with the highest rates observed
in east Asian populations where rates are 20–45%,4 as compared
with European American populations where rates are approxi-
mately 10%.5

The mechanism of ACEi-induced cough is not certain. ACEis
block the proteolytic enzyme angiotensin I-converting enzyme

(ACE), which cleaves a number of target proteins, including
angiotensin I, the primary mediator of the blood pressure-
lowering effects, and pro-inflammatory kinins.6 One suspected
mechanism of cough is the accumulation of these inflammatory
kinins, which may sensitize vagal afferent fibers leading to a
neurogenically mediated cough.7 There have been multiple
candidate gene studies testing for associations between genetic
variation in ACE and bradykinin pathway members and ACEi-
induced cough. There has been intense focus on the association of
cough with a common 287-bp insertion–deletion in the ACE
gene.3,8–11 A meta-analysis of 11 of these studies only found a
consistent association in a subgroup analysis of subjects aged
460 years.12 Significant single-nucleotide polymorphism (SNP)
associations have also been reported between mediators in the
bradykinin pathway. including the bradykinin B2 receptor
(BDKRB2), membrane metallo-endopeptidase (MME), prostaglan-
din receptor E (PTGER3), neurokinin 2 receptor (NK2R) and ACE.9,13–16

However, these findings have not been consistently observed
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across studies.3,10,17,18 Additional studies also suggest a role for
SNPs located within the ABO gene, which have been shown to
regulate the plasma ACE levels and have also been associated
with ACEi cough.10,14,19,20

In the present study, we used a genome-wide association study
(GWAS) approach to carry out a comprehensive analysis of genetic
determinants of ACEi-induced cough. Subjects were identified
through the Electronic Medical Records and Genomics (eMERGE)
network, a consortium of medical centers that utilize electronic
medical records (EMR) as a tool for genomic research.21 Candidate
SNPs were first identified using a multi-racial discovery cohort. The
most significant candidate SNPs were then evaluated in two
independent replication cohorts. We report here a significant
signal at the KCNIP4 locus indicating that variant potassium
channel function or neuronal signaling contributes to the risk of
a cough.

MATERIALS AND METHODS
Study population
The discovery study population comprised 7080 adult subjects collected
from six sites participating in the phases I and II of eMERGE Network (Phase
I: Vanderbilt University (VUMC), Marshfield Clinic, Northwestern University,
Mayo Clinic and Group Health Research Institute; and Phase II: Geisinger
Health System and Mount Sinai).21,22 Subjects used for the discovery
population were selected to maximize the representation across sites while
minimizing the number of genotyping platforms represented. In addition,
cases and controls genotyped on OMNI-QUAD platforms and that were part
of the Vanderbilt Electronic Systems for Pharmacogenomic Assessment
(VESPA) study that examined the genomics of drug response phenotypes
were also included.23 For subgroup analyses, genetic ancestry assignment
was determined using STRUCTURE24 in conjunction with 1917 ancestry
informative markers (from the Illumina Test Panel25), with European
ancestry defined as 490% probability of being in the CEU cluster and
African ancestry defined as 470% probability of being in the YRI cluster,
using a HapMap population as the reference (Supplementary Figures S1–
S3). Site-specific subject counts are shown in Supplementary Table S1.

Phenotype data
The phenotype evaluated was cough attributable to the use of an ACEi. The
algorithm identifying cases and controls was developed at VUMC and
subsequently validated and deployed at the other eMERGE sites. The
phenotype definition incorporated an iterative process whereby automated
case and control assignment algorithms were validated against assign-
ments made by manual review of the EMR.26 Phenotyping algorithms were
refined until the positive predictive value reached the predesignated target
of ⩾ 95%. In the final algorithms, cases were defined as subjects whose
records contained either an ACEi drug name or ACEi class designator and
‘cough’ on the same line within the structured ‘Allergy’ section of the
medical record. Hence, cases represent ACEi-induced cough recorded by a
health-care provider. Controls were subjects who had an ACEi drug name or
ACEi class on two medication listings with dates separated by at least
6 months and did not have a documented cough associated with ACEi use
in the Allergy section. Complete details of the algorithm are available from
PheKB (http://phekb.org/phenotypes). The mean positive predictive value
for cases and controls in the VUMC and replication sites was 100% and
97.5%, respectively (Supplementary Table S2).
Birth decade and sex were also extracted in addition to diagnosis codes

(International Classification of Diseases (ICD)-9 codes27) related to
comorbidities potentially contributive to the risk of cough, including
asthma, postnasal drip, gastroesophageal reflux disease, bronchitis,
emphysema, bronchiectasis, allergic alveolitis and chronic obstructive
pulmonary disease. Lists of the ICD-9 codes used to define each of these
conditions are shown in Supplementary Table S3. Subjects with ⩾ 1 ICD-9
codes for any of the conditions were considered to have the comorbidity.
Smoking status, categorized as ‘Ever’, ‘Never’ or ‘Missing’, was also
extracted from either structured EMR data or validated algorithms.28

Genotyping data
SNP genotype data were acquired on the Illumina HumanOmni1-Quad
(Vanderbilt), HumanOmni5-Quad (VUMC), Human1M-Duov3_B (VUMC),

HumanOmniExpress-12v1.0 (Geisinger), HumanOmniExpress (Mount Sinai)
and Human660W-Quadv1_A (all other sites and VUMC) (Supplementary
Table S1). Genotyping data for each platform were individually cleaned.
Quality control (QC) steps included identifying sex mismatches, SNPs
failing concordance with HapMap, Mendelian errors and duplicate
removal. After QC, a merged data set was created that contained
267 485 SNPs present on all platforms and with a call rate 498%. Cryptic
relatedness was assessed on the merged platforms by identical-by-descent
analysis, and one of a pair of subjects (n= 343 total) more closely related
than half-siblings was randomly excluded. Imputation was performed on
the merged intersection data set using IMPUTE229 in conjunction with the
1000 Genomes phase 3 reference panel for all populations. Prior to
imputation, strand alignment between study and reference genotypes and
prephasing of study genotypes into haplotypes was performed using
SHAPEIT.30 Only those imputed SNPs with a genotype probability 490%
were analyzed. SNPs with an Info score29 (measuring the average
probabilities for a given SNP) o0.7 were excluded from analyses. The
final analyses were restricted to 1 931 830 SNPs with a call rate 498%, a
Hardy–Weinberg P41× 10− 6 and minor allele frequency (MAF)40.01.
Principal components (PCs) fit to the preimputed SNP data set were
computed using EIGENSTRAT31 to adjust for population structure.
The primary single SNP tests of association were performed using

logistic regression assuming an additive genetic model, adjusting for 10
PCs, birth year and sex. A model that also incorporated binary covariates
for smoking status (captured by two binary variables: ‘Ever smoked’ and
‘Never smoked’) and each of the comorbidities of asthma, postnatal drip,
gastroesophageal reflux disease and lung disease (bronchitis, emphysema,
bronchiectasis, allergic alveolitis and chronic obstructive pulmonary
disease) was evaluated.

Replication cohorts
SNPs with an association P-value o5x10− 6 were evaluated in two
replication populations. The first replication set comprised additional
subjects available through the eMERGE network who had SNP genotyping
as part of eMERGE Phase II in addition to 53 additional cases and controls
from VUMC that were not included in the original analyses. Covariate and
phenotype extraction from the EMR was as described above. Subjects were
genotyped on the Affymetrix Human SNP Array 6.0 (Mount Sinai,
Marshfield), Human660W-Quad (Marshfield), Human610-Quad (Mayo)
and HumanOmniExpress (Group Health, Northwestern) platforms
(Supplementary Table S4). QC steps, as described above, were performed
per the QC protocol established by the eMERGE Genomics Working
Group.32 Each data set was then individually imputed by platform using
IMPUTE229 and the 1000 Genomes cosmopolitan reference panel.33

Imputed data were extracted and merged using the same QC filters as
described above. The replication analyses were conducted in 157 cases
and 769 controls that had480% probability of being in the CEU cluster by
STRUCTURE analyses. Multivariable analyses adjusting for PCs and
covariates were performed, as described above. A replication P-value of
0.05 was considered statistically significant.
The second replication set was derived from the GoDARTS (Genetics of

Diabetes Audit and Research in Tayside, Scotland) 2011 cohort and
contained prescription information between 1990 and 2011 for 17 601 self-
reported Caucasian diabetics and non-diabetics from the Tayside area.
Cases were defined as subjects who switched from an ACEi to an
angiotensin receptor blocker, a drug that targets a downstream receptor in
the angiotensin–renin–aldosterone pathway. The positive predictive values
of a possible and probable ACEi adverse drug reaction using this case
definition were 90.5% and 68.3%, respectively. The most frequent adverse
reactions associated with this case definition were cough and the rare
reaction of angioedema. Controls were defined as those who had filled
ACEi prescriptions within 9 months of the study’s censor date or their date
of death. Subjects who were ever concurrently on ACEis and angiotensin
receptor blockers were also categorized as controls. A total of 710 cases
and 3599 controls were available for analysis. Subjects were genotyped on
the Affymetrix 6.0 (Affymetrix, Santa Clara, CA, USA) (381 cases and 1924
controls) or Illumina HumanOmniExpress (Illumina, San Diego, CA, USA)
(329 cases and 1675 controls) platforms. Both platforms were imputed
using IMPUTE229 and the 1000 Genomes reference panel. SNPs deviating
from Hardy–Weinberg equation (Po1 × 10− 6) or with an Info Scoreo0.4
were excluded. An additive genetic model adjusting for age and sex was
first computed separately for each genotyping platform and the results
were meta-analyzed using GWAMA.34
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Data analysis
All QC analyses and GWA analyses were performed using PLINK v1.07.35

GoDARTS data were also analyzed using SNPTEST v2.536 and GWAMA v2.
1.34 All other analyses were performed using SAS v9.3 (SAS Institute, Cary,
NC, USA). SNP data around the KCNIP4 gene were visualized using
LocusZoom37. The forest plot was generated using the Metafor package.38

The publicly available GTEx39, HaploReg v340 and the NCBI expression
quantitative trait locus (eQTL) databases were used to identify eQTLs and
functional motifs associated with the most significant candidate SNPs.

Ethics statement
The eMERGE study was approved by the Institutional Review Board at each
site.21,41 The GoDARTS study was approved by the Tayside Medical Ethics
Committee and informed consent was obtained for all participants.

RESULTS
A total of 1595 cases of ACEi-induced cough and 5485 controls
were analyzed in the discovery cohort (Table 1). The majority of
subjects were of European ancestry, with about 15% of subjects
belonging to other racial/ethnic groups. As compared with
controls, the cases had a higher proportion of females
(Po0.001), were younger, as measured by birth decade
(Po0.001), more likely to have been smokers (Po0.001) and
differed with respect to frequencies of diagnoses of gastroeso-
phageal reflux disease (Po0.001), postnatal drip (Po0.001) and
structural lung disease (Po0.001), all of which may contribute to a
chronic cough. However, the directions of associations for these
variables were not consistent, as smoking and lung disease were
associated with decreased rates of ACEi cough, whereas the other
variables were associated with increased rates.
In multivariable regression analyses adjusting for PCs, sex and

birth year, two SNPs located on chromosome 4 reached genome-
wide significance (Figure 1, Supplementary Figure S4). All of the
SNPs with an association P-valueo5x10− 6 were exclusively located
in intron 4 in the gene ‘Kv Channel Interacting Protein 4’ (KCNIP4)
(Figure 2 and Supplementary Figure S5). The strongest association
was in the imputed SNP rs145489027 (MAF=0.30, odds ratio
(OR) = 1.3 (95% confidence interval (CI): 1.2–1.4), P=1.0× 10− 8;
Table 2). When results were stratified by site, there was a consistent
direction of association across sites, with ORs ranging from 1.1 to
1.5 (Supplementary Table S5). When the analyses were additionally

adjusted for cough risk factors, the association at the SNP remained
significant (OR=1.3 (95% CI: 1.2–1.4), P=1.0 ×10− 8; Supplementary
Figure S6). Similar results were observed when subjects with lung
disease were excluded (OR=1.3 (95% CI: 1.2–1.5), P=3.0x10− 8;
Supplementary Figure S7). A regression model adjusting for the
rs145489027 SNP eliminated the associations (P40.05) for the other
most significant SNPs, indicating that the SNPs represent a
common signal (the r2 between this SNP and other most significant
SNPs was 0.68 for rs7661530 and rs6838116 and 0.98 for rs7675300,
rs16870989 and rs1495509 in a 1000G European ancestry popula-
tion). In a subset analysis of African Americans and European

Table 1. Population characteristics of the discovery cohort

Cases, n (%) Controls, n (%) P-valuea

Male 626 (39.3) 3029 (55.2) o0.001
Female 969 (60.7) 2456 (44.8)

Genetic ancestry
European ancestry 1346 (84.3) 4661 (85.0) o0.001
African ancestry 178 (11.2) 701 (12.8)
Other 71 (4.5) 123 (2.2)

Birth decade (IQR) 1930–1950 1920–1940 o0.001
Ever smoked 515 (32.9) 2403 (43.8) o0.001b

History of
Asthma 262 (16.4) 882 (16.1) 0.74
GERD 668 (41.9) 2035 (37.1) o0.001
PND 530 (33.2) 1507 (27.5) o0.001
Other lung disease 331 (20.8) 1626 (29.7) o0.001

Abbreviations: GERD, gastroesophageal reflux disease; IQR, interqquartile
range; PND, postnasal drip. aP-value obtained from chi-square analysis.
bCalculation excludes 776 subjects (184 cases, 592 controls) with an
unknown smoking history.

Figure 1. Manhattan plot of genotyped single-nucleotide poly-
morphisms associated with angiotensin-converting enzyme
inhibitor-induced cough using an additive model adjusted for 10
principal components, age, sex, history of asthma, reflux, postnasal
drip and lung disease. The red line indicates the genome-wide
significance threshold of alpha= 5 × 10− 8.

Figure 2. LocusZoom plot of most strongly associated single-
nucleotide polymorphisms (SNPs) from genome-wide association
study located in the region of KCNIP4 (chr4:20330238–22350374),
centered around SNP rs145489027 (shown in purple). Linkage
disequilibrium (based on r2 values) with respect to rs145489027 are
based on the CEU reference population. Imputed SNPs are denoted
by squares and genotyped SNPs by circles.
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Americans, this SNP was most strongly associated with cough in
European Americans (MAF=0.33, OR=1.3 (95% CI: 1.2–1.4),
P=2.5× 10− 7; Table 3). Although the direction of the effect was
similar in African Americans, these associations were not significant
in this smaller subset of subjects (n=879). ACEi-induced cough has
been observed to occur more frequently in women3. In analyses
stratified by sex, ORs were similar for men (OR=1.3 (95% CI: 1.2–
1.5), P=1.4 × 10−4) and women (OR=1.3 (95% CI: 1.1–1.5),
P=1.1× 10− 5). A search of publicly available data sets did not
identify eQTLs or functional motifs associated the most significant
SNPs. We specifically examined the associations using all SNPs
located in 16 previously reported candidate genes (see

Supplementary Materials). No significant associations (Po0.05)
were observed after applying a Bonferroni correction adjusting for
multiple testing or in a subset analysis of older subjects born
before 1960.
We sought replication for the SNPs in KCNIP4 with an

association P-value o5 × 10− 6 in two independent data sets
(Supplementary Tables S6 and S7). Of the six SNPs identified in the
discovery cohort, five were available in each of the final QC’ed
eMERGE and GoDARTS replication sets. In both replication sets,
the MAFs and association statistics were similar to those observed
in the European ancestry subjects in the discovery population
(Table 2). The most significantly associated SNP from the discovery
analysis (rs145489027) did not reach statistical significance in
either replication population (Table 2). One SNP (rs7675300) was
significantly associated with ACEi cough in the eMERGE set,
(OR= 1.32 (1.01–1.70), P= 0.04). Two SNPs were significantly
associated in the GoDARTS set: rs16870989 (OR= 1.15 (1.01–
1.30), P= 0.03) and rs1495509 (OR = 1.15 (1.01–1.30), P= 0.03). In a
meta-analysis performed using both replication sets, three of the
four SNPs present in both sets had an association at Po0.05
(rs16870989: OR= 1.17 (1.03–1.34), P= 0.009; rs145489027: OR=
1.15 (1.01–1.31), P= 0.02); and rs1495509: OR= 1.17 (1.03–1.34),
P= 0.009); Supplementary Table S8). In a meta-analysis across all
discovery and replication populations, four of the most significant
SNPs reached genome-wide significance (Table 2) with the non-
imputed SNP rs1495509 (highlighted in Figure 2), showing the
strongest association (Figure 3). The combined association statistic
across the replication sets at this SNP was (OR = 1.23 (1.15–1.32),
P= 1.9 × 10− 9) and did not demonstrate significant heterogeneity
across studies (P= 0.42).

Table 2. Most significantly associated SNPs

SNP Minor allele MAF OR 95% CI P-value

Discoverya

rs7661530 T 0.33 1.27 (1.17–1.39) 6.1 × 10− 8

rs6838116 A 0.33 1.28 (1.17–1.40) 3.1 × 10− 8

rs7675300 A 0.31 1.27 (1.16–1.39) 1.1 × 10− 7

rs16870989 A 0.31 1.27 (1.16–1.39) 1.1 × 10− 7

rs145489027 A 0.30 1.30 (1.19–1.42) 1.0 × 10− 8

rs1495509 C 0.31 1.27 (1.17–1.39) 7.8 × 10− 8

Replication
eMERGEb

rs7661530 T 0.35 1.24 (0.96–1.59) 0.09
rs7675300 A 0.33 1.32 (1.01–1.70) 0.04
rs16870989 A 0.33 1.28 (0.98–1.65) 0.06
rs145489027 A 0.32 1.28 (0.98–1.68) 0.07
rs1495509 C 0.33 1.28 (0.98–1.65) 0.06

GoDARTSc

rs7661530 T 0.37 1.05 (0.89–1.23) 0.84
rs6838116 A 0.37 1.08 (0.95–1.20) 0.57
rs16870989 A 0.34 1.15 (1.01–1.30) 0.03
rs145489027 A 0.33 1.12 (0.99–1.27) 0.08
rs1495509 C 0.34 1.15 (1.01–1.30) 0.03

Meta-analysis
rs7661530 T — 1.22 (1.13–1.31) 9.6 × 10− 8

rs6838116d A — 1.17 (1.10–1.24) 4.2 × 10− 7

rs7675300d A — 1.27 (1.17–1.39) 1.4 × 10− 8

rs16870989 A — 1.23 (1.15–1.32) 4.9 × 10− 9

rs145489027 A — 1.24 (1.16–1.33) 2 × 10− 9

rs1495509 C — 1.23 (1.15–1.32) 1.9 × 10− 9

Abbreviations: CI, confidence interval; eMERGE, Electronic Medical Records
and Genomics; GoDARTS, Genetics of Diabetes Audit and Research in
Tayside, Scotland; MAF, minor allele frequency; OR, odds ratio; SNP, single-
nucleotide polymorphism. aFrom a multivariable logistic regression
assuming an additive genetic model and adjusted for 10 principal
components (PCs), birth year and sex. bFrom a multivariable logistic
regression (157 cases and 769 controls) assuming an additive genetic
model and adjusted for 3 PCs, birth year and sex. cFrom a meta-analysis
(710 cases and 3,599 controls) adjusted for age and sex. The P-value for the
Q-score P-value was 40.05 for each SNP. dBased on only two data sets.

Table 3. Association analyses by racial groups for SNP rs145489027

Racial group Cases Controls MAF cases MAF controls OR 95% CI P-valuea

European ancestry 1346 4661 0.37 0.32 1.3 (1.2–1.4) 2.5 × 10− 7

African ancestry 178 701 0.13 0.10 1.2 (0.9–1.8) 0.24
Otherb 71 123 0.29 0.20 1.4 (0.8–2.6) 0.25

Abbreviations: CI, confidence interval; MAF, minor allele frequency; OR, odds ratio; SNP, single-nucleotide polymorphism. aFrom a multivariable logistic
regression assuming an additive genetic model and adjusting for 10 principal components, birth year and sex. bIncludes subjects not meeting criteria for
inclusion with African ancestry and European ancestry.

Figure 3. Forest plot for the association between angiotensin-
converting enzyme inhibitor cough and KCNIP4 intronic single-
nucleotide polymorphism rs1495509 for the discovery (eMERGE
(Electronic Medical Records and Genomics) Network) and replication
(eMERGE and GoDARTS (Genetics of Diabetes Audit and Research in
Tayside, Scotland)) data sets. There was no heterogeneity across
studies (P= 0.43). CI, confidence interval.
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DISCUSSION
We describe the first large GWAS investigating SNP variants
associated with clinically diagnosed ACEi-associated cough. All
phenotype and genotype data for this study were derived from
clinical research settings that incorporate an EMR data system. We
found significant associations in a set of intronic SNPs located
within the gene KCNIP4. Several of these significant associations
were independently replicated in two European ancestry popula-
tions. In summary, these analyses identify a novel candidate gene
that may have a role in this common adverse reaction.
The SNPs showing the strongest association with the cough

phenotype are located exclusively in intron 4 of KCNIP4. KCNIP4 is
a member of the KChIP family of EF hand (helix-loop-helix)-
containing calcium-binding proteins. A major function attributed
to KCNIP4 is the regulation of Kv4 potassium channels, which are
significant contributors to action potential activity in neurons and
cardiac myocytes.42 The amino terminus of the KCNIP4 gene
product undergoes extensive alternative splicing and at least six
splice variants have been described.43 Of note, several of these
splice variants remove the flanking exons surrounding the intronic
region identified in these analyses. Alternative splicing has been
shown to have functional significance and can result in modula-
tion of Kv4 channel functions and their subcellular location.42,44

KCNIP4 isoforms are predominantly expressed in neuronal
structures in the brain and spinal cord, though some isoforms
are found in the kidney, stomach and small intestine.43 Little-to-no
expression of the gene has been observed in lung extracts.45,46

The most strongly associated SNPs are located within a single
intron of KCNIP4. These SNPs are not in linkage disequilibrium with
an amino-acid changing variant that would alter the primary
structure of the protein. Hence, it is more likely that these SNPs
have a regulatory role likely related to mRNA splicing or
expression. A leading hypothesized mechanism of the ACEi-
induced cough is stimulation of sensory nerve afferents within the
lung resulting from the accumulation of inflammatory mediators
that are normally cleaved by the ACE enzyme.47 This hypothesis
has served as the basis for candidate gene studies that have
focused on variation in inflammatory pathways within the lung.
Our results would suggest that the important source of this
variation may be directly related to the sensory nerves themselves,
as KCNIP4 has been found to be in both central and peripheral
neuronal structures. Indeed, if KCNIP4 expression in the lung were
restricted to sensory nerves, its protein and mRNA levels would be
expected to be low in samples derived from lung whole-cell
homogenates, especially if samples were taken from the lung
periphery. This restricted expression pattern could account for
why KCNIP4 has not been detected in the lung. In further support
of a role for KCNIP4 in lung physiology, a GWAS in mice identified
an association between KCNIP4 and airway hyper-responsiveness,
which was confirmed in studies of human asthma and airway
hyper-reactivity.48

Epidemiological studies have identified several factors asso-
ciated with an increased risk of ACEi-induced cough, including sex
and race. In particular, the prevalence of cough is higher among
women and east Asian populations.3,4 In our replication set, the
allele frequencies and effect sizes in subjects of European ancestry
were generally comparable to those observed in the discovery
sets. The ORs were weaker in the GoDARTS replication set, which is
likely attributable to the lower positive predictive value and
specificity of the case definition (switching from an ACEi
medication to an angiotensin receptor blocker) used in this
cohort.49,50 Among African Americans, the associated alleles had
lower MAFs. Although the association statistics trended in the
same direction, they did not reach statistical significance.
However, there was only 5% power to replicate the association
in this group owing to small numbers of subjects and lower allele
frequencies. Analyses across races suggest that this genomic

region around KCNIP4 might be a trans-population risk factor and
allele frequencies may contribute to prevalence differences in
ACEi-induced cough. However, a comparison of the MAFs for the
most significantly associated SNPs among HapMap European and
Asian populations show that the minor alleles are very similar in
these groups. Hence, racial differences in the frequencies of these
SNPs would not account for the prevalence differences between
these populations and would suggest that other independent or
modifying genetic factors may be contributing to racial
differences.
There are several limitations to this study. Cases and controls

were identified using the EMR data sources. A limitation of EMR
data is that data collection is not systematic and can be
incomplete. These limitations can lead to both differential and
nondifferential misclassification, which can skew or weaken
associations. For instance, subjects who had been switched from
ACEi therapy due to cough prior to the time period captured by
the EMR could be inappropriately assigned to the control group. In
addition, information pertaining to ACEi dosage, treatment
duration and indication could not be systematically extracted for
analysis. Hence, the contributions of these factors to ACEi cough
could not be evaluated. We were also unable to incorporate
elements of ACEi cough phenotype definitions that have been
used in some studies, such as evaluating that effect of cessation of
an ACEi on cough at a fixed time interval,18 as these protocols are
not standard in clinical practice. The study also had limited power
to detect associations for SNPs with an MAFo10%. Hence, the
contribution of low frequency variants to the phenotype could not
be quantified. Genotyping was performed using a number of
commercial SNP-genotyping platforms. Imputation across multiple
genotyping platforms can give rise to systematic frequency
differences, which can lead to inflated type I error in GWAS
studies.51 This problem is exacerbated when there are case and
control imbalances across platforms. To attenuate this bias, the
genotype data in the discovery set were imputed from an
intersection of SNPs across each platform being evaluated, an
approach that has been shown to decrease type I error rates.52 We
did not demonstrate a functional role for KCNIP4 in the cough
phenotype. Hence, it is possible the SNPs we identified are
involved in the regulation of a nearby gene unrelated to KCNIP4,
as has been reported for a number of other SNPs located within or
in close proximity of a gene.53,54 Epidemiological studies have
observed higher rates of ACEi-induced cough in some Asian
populations. This study did not assess the risks of the candidate
SNPs in this population.
In conclusion, we used a GWAS to identify SNP variants

associated with ACEi-induced cough using data derived from
eMERGE, a network of medical centers that utilize electronic
medical records as a tool for genomic research. We identified SNPs
in the intron of the gene KCNIP4 as potential candidates for this
adverse reaction. The mechanisms by which KCNIP4may contribute
to the cough are not known, and functional studies are needed to
further elucidate the pathophysiological mechanisms.
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