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INVESTIGATION

A Genome-Wide Association Study of Resistance to
Stripe Rust (Puccinia striiformis f. sp. tritici) in a
Worldwide Collection of Hexaploid Spring Wheat
(Triticum aestivum L.)

Marco Maccaferri,*,†,1 Junli Zhang,*,1 Peter Bulli,‡,1 Zewdie Abate,* Shiaoman Chao,§ Dario Cantu,**

Eligio Bossolini,* Xianming Chen,†† Michael Pumphrey,‡ and Jorge Dubcovsky*,‡‡,2

*Department of Plant Sciences, University of California, Davis, California 95616, †Department of Agricultural Sciences
(DipSA), University of Bologna, Bologna 40127, Italy, ‡Department of Crop and Soil Sciences, Washington State
University, Pullman, Washington 99164-6420, §USDA-ARS, 1605 Albrecht Blvd, Fargo, North Dakota 58105,
**Department of Viticulture and Enology, University of California, Davis, California 95616, ††USDA-ARS, Wheat Genetics,
Quality Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University,
Pullman, Washington 99164, and ‡‡Howard Hughes Medical Institute, Chevy Chase, Maryland 20815

ORCID ID: 0000-0002-7571-4345 (J.D.)

ABSTRACT New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high

virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify

new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of

1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western

United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-

assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were

observed for stripe rust infection type and severity. Greater levels of Pst resistancewere observed in a subpopulation

from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environ-

ments, including 10 with an experiment-wise adjusted Bonferroni probability, 0.10. These 10 quantitative trait loci

(QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45%when all QTL

were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL,

and likely represent new resistance loci. The other sevenQTLmapped close to known resistance genes and allelism

tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust

resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set

of resistance genes deployed to control this devastating disease.
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Stripe rust disease of wheat, caused by the fungus Puccinia striiformis

Westend. f. sp. tritici Erikss. (henceforth Pst), poses a major threat to

global wheat production (Chen 2005; Milus et al. 2009) and negatively

affects grain quality (Dimmock and Gooding 2002). Although

multiple fungicide applications can control this pathogen, devel-

oping resistant varieties is the most efficient and environmentally

sustainable means for reducing losses due to this disease (Line 2002;

Chen 2005).

Pst accessions are classified into physiological races based on their

virulence profile on a set of wheat differential lines (Wan and Chen

2014) (e.g., Supporting Information, Table S1), whereas Pst resistance

genes are classified as either race-specific or race nonspecific based on

their effectiveness against different Pst races. Race-specific resistance

genes, which are effective only against a subset of races, usually are

expressed from the seedling to the adult plant stages and generally

result in a strong hypersensitive response associated with high levels of

resistance. Race nonspecific resistance genes are effective against all
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Pst races, generally are expressed at adult plant stages, and are char-

acterized by various degrees of resistance (quantitative or partial re-

sistance). Many of these partial resistance genes exhibit enhanced

resistance at high temperatures and are designated as high-tempera-

ture adult plant resistance genes (Chen 2013). Pyramiding multiple

partial resistance genes is required to confer adequate levels of re-

sistance (Singh et al. 2000; Singh et al. 2005). Both race-specific and

race nonspecific resistance or partial resistance genes have been used

in breeding for rust resistance (Chen 2005; Lowe et al. 2011a). How-

ever, high genetic variation in the pathogen population and the rapid

rate of selection for new virulent races have forced wheat breeders to

focus on pyramiding strategies that combine multiple race-specific

and/or race nonspecific resistance genes to increase the durability of

the deployed resistance.

The 2013 Catalogue of Gene Symbols for Wheat (McIntosh et al.

2013) and the 201322014 Supplement (http://wheat.pw.usda.gov/

GG2/Triticum/wgc/2013/2013-2014_Supplement.pdf) include 67 offi-

cially named Yr genes (Yr12Yr67) and 42 with temporary Yr desig-

nations. At least 16 of the named genes have been introduced into

wheat varieties and breeding lines from wheat relatives and alien

species (Chen et al. 2014). Unfortunately, most of these resistance

genes are no longer effective against a new group of Pst races that

appeared around the year 2000 (Chen et al. 2010), which has gener-

ated the need for the identification of new sources of resistance. Al-

though recent quantitative trait loci (QTL) studies have documented

additional sources of resistance (Lowe et al. 2011b; Sukhwinder-Singh

et al. 2012; Vazquez et al. 2012; Christopher et al. 2013), the use of

biparental populations limits the extent of the germplasm that can be

explored for new sources of resistance.

Genome-wide association studies (GWAS) provide comprehensive

surveys of germplasm collections and are an excellent complement to

biparental mapping studies. Because GWAS exploits historical re-

combination events accumulated over multiple generations, the short

evolutionary history of polyploid wheat (Dubcovsky and Dvorak

2007) and its self-pollinating reproductive system result in lower map-

ping resolution compared with outcrossing species with a longer evo-

lutionary history such as maize (Chao et al. 2010). An advantage of

the high levels of linkage disequilibrium (LD) reported in wheat is that

the number of markers required for finding marker-trait associations

is greatly reduced (Chao et al. 2010).

To avoid the discovery of false marker-trait associations,

GWAS studies require adequate assessment and correction for

population structure. (Flint-Garcia et al. 2003; Yu et al. 2006;

Kang et al. 2008; Stich et al. 2008; Larsson et al. 2013). Even with

this correction, GWAS has limited power to detect allele variants

present in rare frequencies (Brachi et al. 2011; Wallace et al. 2014;

Zuk et al. 2014) or loci with multiple allelic variants (Zhang et al.

2012).

Despite these limitations, GWAS has been used successfully in

mapping QTL for different traits in several plant species (Brachi et al.

2010; Zhao et al. 2011; Wang et al. 2012; Jia et al. 2013; Lipka et al.

2013). In wheat, GWAS has been used successfully to study agro-

nomic traits (Breseghello and Sorrells 2006; Yao et al. 2009; Dodig

et al. 2012), quality traits (Reimer et al. 2008; Reif et al. 2011), pre-

harvest sprouting (Mohan et al. 2009; Kulwal et al. 2012), and disease

resistance (Adhikari et al. 2011; Hao et al. 2012; Kollers et al. 2013;

Letta et al. 2013).

In this study, we evaluated 1000 accessions from the US De-

partment of Agriculture Agricultural Research Service (USDA-ARS)

National Small Grains Collection (NSGC) spring wheat core collection

for resistance against Pst. Resistance was evaluated both at the seedling

stage in controlled environments (to four specific Pst races) and

at the adult plant stage in multiple years and field locations in the

western United States (to mixtures of naturally occurring Pst

races). We found evidence for 10 high-confidence associations

that were consistent across locations and compared their chro-

mosome locations with previously mapped Pst resistance genes

and QTL. We also identified the colinear regions in the rice and

Brachypodium genomes to accelerate the identification of addi-

tional markers for these QTL regions.

MATERIALS AND METHODS

Plant materials

One thousand accessions were selected randomly from the 2235 Tri-

ticum aestivum ssp. aestivum accessions available in the spring wheat

core collection assembled by the USDA-ARS Small Grains and Potato

Germplasm Research Unit. This core collection was assembled using

passport and phenotypic data and includes accessions from the dif-

ferent wheat producing regions of the world. Accessions from 89

countries were represented in this study, including accessions from

South America (20.9%), Africa (20.6%), Europe (19.6%), Asia (29.1%),

North America (7.0%), and Australia (2.8%). Seeds and DNAs used in

this study were obtained from single plant selections increased in

a nursery grown at the USDA-ARS Small Grains and Potato Germ-

plasm Research Unit, Aberdeen, Idaho. The genetic characterization

of these 1000 accessions [see SNP genotyping ofMaterial and Methods

below] resulted in the selection of 875 nonredundant accessions for

the GWAS analysis, which are listed in File S1.

Stripe rust response evaluation: adult-plant
field conditions

Accessions were evaluated under natural disease epidemics in six field

trials performed at three locations: Mount Vernon (48� 259 1299N

122� 199 3499W) in the western side of Washington state, Pullman

(46� 43’ 5999 N 117� 109 0099W) in the eastern side of Washington

state, and Davis (38� 339 1499N 121� 449 1799W) in northern Califor-

nia. Trials in Davis and Pullman were performed in 2011 and 2012,

and those in Mount Vernon in 2012 and 2013. The different year-

location combinations are referred hereafter as “environments.” Plant-

ing was in mid-November in Davis and mid-April for both Mount

Vernon and Pullman. Oversummering and overwintering of stripe

rust can occur in both Pacific Northwest and California, facilitating

local recurrent epidemics (Sharma-Poudyal et al. 2013). Pst inocu-

lum often is shared between California, Arizona, New Mexico, and

Northwestern Mexico. Additionally, Pst oversummering in north-

eastern California may constitute a source of inoculum for central

California (Kolmer et al. 2009) and for the Pacific Northwest (Chen

2005).

In all field trials, accessions were evaluated as nonreplicated single

rows. Rows were 2.0 m long with 0.40 m spacing between rows in

experiments at Davis, and 1.0 m long with 0.25 m spacing at both

Mount Vernon and Pullman. The susceptible checks used were

“D6301,” planted every six rows in Davis, and “Lemhi,” planted every

20 rows in Washington. The same susceptible checks also were

planted as spreader rows bordering the nurseries to ensure production

of sufficient inoculum to provide uniform stripe rust infection.

Stripe rust response was evaluated twice during the mid- to

advanced-phases of disease development to limit the number of

escapes. These evaluations were performed between plant heading

(Zadoks 50) and grain filling stage (Zadoks 80), when most flag leaves

of the susceptible checks displayed a disease severity of at least 50%.
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Only the evaluation showing the highest average disease pressure between

the two stages (usually the second one) was used in the GWAS analysis.

The infection type (IT) was scored using a 029 scale described previously

(Line and Qayoum 1992). Disease severity (SEV) was scored as per-

centage of infected leaf area. Additionally, days to heading and plant

height were evaluated to test their correlation with Pst resistance.

Other morphophysiological traits such as occurrence of pseudo-black

chaff, awns, wax, and glume hairiness were recorded as controls for

line identification.

Stripe rust response evaluation: single-race
seedling test

Seedlings of the 875 accessions were evaluated for IT response to four

Pst races, PSTv-4, PSTv-14, PSTv-37, and PSTv-40 (Wan and Chen

2014), under controlled greenhouse conditions. The Pst races were

maintained at the USDA-ARS, Washington State University. PSTv-

37 is a predominant and widely distributed race in the United States,

whereas PSTv-4, PSTv-14, and PSTv-40 are predominantly found

in the Pacific Northwest and California. The virulence/avirulence

formulas of the four races are described in Table S1 (Wan and

Chen 2014).

Three seeds of each accession were planted per well in a 96-well

tray containing Sunshine mix growing medium (SunGro Horticulture,

Agawam, MA). Lines of the stripe rust differential set and the stripe

rust-susceptible “Avocet S” were seeded in a separate 96-well tray. The

seeded trays were placed in a rust-free greenhouse at 20� with 50%

relative humidity. Seedlings were watered daily, and the gibberellin in-

hibitor (2-chloroethyl trimethylammonium chloride; Ohp, Inc, PA) was

used at a concentration of 1500 ppm to slow down the seedling growth

rate. Trays of 11-d-old seedlings were inoculated with urediniospores of

each race mixed with talc. The inoculated seedling trays were placed in

a dark dew chamber overnight at 10� with 100% relative humidity for

20 hr. After the incubation, seedlings were transferred to a greenhouse

with a diurnal temperature cycle programmed to change gradually

from 20� at 2:00 PM to 4� at 2:00 AM. Day/night regimes of 16-hr

light and 8-hr darkness were maintained throughout the experi-

ment. ITs were scored 18220 d after inoculation when the rust was

developed fully on the susceptible checks. ITs were scored using

a 029 scale (McNeal et al. 1971) similar to that used for the adult

plants under field conditions. Accessions with resistant to moder-

ately resistant IT scores of 026 were retested with each respective

Pst race.

SNP genotyping

For each accession, genomic DNA was extracted from the same

plant used to increase the seeds evaluated in this study. DNA ex-

tractions were performed at the USDA-ARS Small Grains and

Potato Germplasm Research Unit using the CTAB protocol (Stewart

and Via 1993). The DNA was precipitated by adding isopropanol,

followed by washing of the pellet with ice-cold 70% ethanol, and

resuspension in 200 mL of Tris HCl ethylenediaminetetraacetic acid

(pH 8.0).

Genotyping was carried out at the USDA-ARS genotyping lab-

oratory at Fargo, North Dakota, using the Infinium wheat SNP 9K

iSelect assay from the Illumina platform (Illumina Inc., San Diego, CA)

developed by the International Wheat SNP Consortium (Cavanagh

et al. 2013). The raw Illumina SNP data were processed with the

GenomeStudio v2011.1 software (Illumina). The array yielded 5234

scorable SNP markers. The polymorphic SNPs were ordered according

to the scaled map positions of the hexaploid wheat 9K SNP consensus

map (Cavanagh et al. 2013). The arm orientation of chromosomes 4A,

5A, and 5B presented here is in opposite orientation to the published

consensus map (Cavanagh et al. 2013).

The dataset was filtered using a 10% cutoff for missing data in

either loci or accessions (23 accessions were eliminated). On the basis

of the filtered SNP data, a triangular identity-by-state genetic sim-

ilarity matrix (Kang et al. 2008) was then obtained for all possible

pairs of accessions. For groups of accessions with $0.99 genetic sim-

ilarity, only one representative accession (the one with the lowest

number of missing data) was retained per group. After applying these

filtering criteria, a total of 875 accessions were retained for the GWAS.

Only SNPs with minor allele frequency (MAF) $0.10 (i.e., minor

allele present in at least 87 accessions) were considered for GWAS.

Of the 4585 SNPs that satisfied this criterion, 4374 were positioned on

the consensus map. Low-frequency SNPs were discarded to focus on

SNPs with greater statistical power (Turner et al. 2011). The downside

of this approach is the potential loss of true resistance loci present at

low frequency (increase in false negatives). In this study we prioritized

the reliability of the detected QTL over the sensitivity of the analyses.

Molecular markers tightly associated to two well-characterized loci

conferring resistance to multiple pathogens were included as internal

controls. The diagnostic KaspLr34 assay (http://www.cerealsdb.uk.net/

cerealgenomics/CerealsDB/SNPs/Documents/MAS, = wMAS000003)

was designed around a 3-bp indel in exon 11 of the Lr34/Yr18 gene

(Lagudah et al. 2009). Marker csSNP856 (=Kasp856) is tightly linked

to the Lr67/Yr46 locus but is not diagnostic for the resistance gene

(Forrest et al. 2014). Data for these two control markers are summa-

rized in File S3.

Population structure and genetic diversity

The mapped SNP data, together with the map information from

Cavanagh et al. (2013), were analyzed with HAPLOVIEW v4.2 (Barrett

et al. 2005) using the tagger function r2 = 1.0 to define a set of 3114

nonredundant SNPs for calculation of the kinship matrix. A subset

of 1036 highly informative, nonredundant representative SNPs (tagSNPs)

also were selected with HAPLOVIEW using the tagger function r2 =

0.25. The tagSNPs were used for population structure analysis using a

combination of distance- and model-based clustering analysis. Distance-

based cluster analysis was carried out using the Ward clustering algo-

rithm in R (R Core Team 2013) as implemented in “stats” package

(hclust). The model-based quantitative assessment of subpopulation

memberships of the accessions was carried out in STRUCTURE v

2.3.4 (Pritchard et al. 2000) using inferences based on molecular data

only and admixture model of population structure with correlated

allele frequencies. Numbers of hypothetical subpopulations ranging

from k =1 to 10 were assessed using 50,000 burn-in iterations fol-

lowed by 100,000 recorded Markov-Chain iterations. To estimate

the sampling variance (robustness) of population structure inference,

five independent runs were carried out for each k. The output from

STRUCTURE was analyzed in STRUCTURE HARVESTER (Earl

and Vonholdt 2012).

The Dk statistics based on the rate of change in the logarithm of

the probability of likelihood [LnP(D)] value between successive k

values (Evanno et al. 2005) was used to predict the optimum number

of subpopulations. On the basis of the final k values (four groups and

seven subgroups, respectively), two Q-matrices (875 · k) including the

corresponding population membership coefficients were obtained.

To determine the level of differentiation among subpopulations,

we calculated the fixation index (Fst) among all possible pairwise

combinations of the seven subpopulations using the software Arlequin

v. 3.5 (Excoffier et al. 2005). For this calculation we used all 4585 SNPs

and used 1000 permutations at P = 0.001. We also calculated the gene
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diversity (D) of each of the 7 subpopulations using the 4585 SNPs

with published formulas (Weir 1996).

LD analysis

HAPLOVIEW was used to obtain the LD squared allele frequency

correlation (r2) estimates for all pairwise comparisons between intra-

chromosomal SNPs and to visualize the local LD patterns. To analyze

the overall pattern of LD decay over genetic distances, syntenic pair-

wise LD r2 estimates from all chromosomes were plotted vs. the

corresponding pairwise genetic distances and a nonlinear regression

model was fitted in R based on the equation relating LD, recombina-

tion rate, and population size (Sved 1971; Rexroad and Vallejo 2009).

The curve fitting parameter a was set to 1 (no mutations). Nonlinear

fitting of the model was carried out using the nonlinear least squares

method in R. The map distance at which LD fell below the r2 thresh-

olds of 0.3 was used to define the confidence intervals of QTL detected

in this study. This is a frequently used LD threshold for QTL detection

(Ardlie et al. 2002; Shifman et al. 2003; Khatkar et al. 2008; Lawrence

et al. 2009).

Phenotypic data analysis

To improve normality of the original phenotypic data, logit, square root,

arcsine, and log transformation methods were tested. For IT, the data

were square root transformed [ITtransf = O (IT + 0.25)/10)] and for

SEV the data were arcsine-square root transformed [SEVtransf =

arcsine (O 1-(SEV+0.25)/100)]. The Shapiro-Wilk normality test

confirmed the improved normality of the transformed data relative

to the original data. Even though the correlations between normal

scores and best linear unbiased estimates (BLUE) values from all six

locations (BLUE-all) calculated from the transformed data were

relatively high (IT W = 0.98 and SEV W = 0.99), departures from

normality were still significant.

The transformed data were subjected to combined analyses of

variance (ANOVA) over environments using a mixed linear model

procedure including genotype, environment and genotype by envi-

ronment interactions as random factors. Broad sense heritability (H2)

estimates (Table 1) were calculated using the Restricted Maximum

Likelihood method (Corbeil and Searle 1976). BLUE values were

obtained across locations and years considering genotypes as a fixed

effect in the model. BLUE values were then used to perform GWAS.

Pearson correlation coefficients among environments were calcu-

lated for IT and SEV values to evaluate the consistency of the resistance

responses. Correlations between field-based Pst resistance responses

and both heading date and plant height were calculated to investi-

gate the influence of these traits on resistance. The proportion of

variation (R2) in Pst response across accessions explained by pop-

ulation structure was calculated using multiple regression of single

environment- and adjusted mean-phenotypes on the quantitative Q-7

STRUCTURE membership coefficient matrix.

Association analysis

GWAS for loci governing Pst response in the filtered set of 875 acces-

sions was performed using 4585 informative SNPs and the com-

pressed mixed linear model (Yu et al. 2006; Zhang et al. 2010)

implemented in the R package GAPIT (Lipka et al. 2012). Association

tests were carried out for: (1) all single environment data sets, (2)

BLUEs across experiments (years) for each location, and (3) BLUEs

across all six environments.

Different association test models were compared using the Bayesian

information criterion calculated using GAPIT for IT and SEV data from

all environments (Table S2). The following models were tested: (1) fixed

general linear model with no correction for population structure, (2)

general linear model models corrected for population structure using

the first 10 eigenvectors from principal component analysis (PC10),

percent membership coefficients based on STRUCTURE (Q4 and

Q7), and qualitative assignment to Ward clusters (W4 and W7, where

4 indicates the four main groups and seven the subpopulations), (3)

mixed linear model with the 875 · 875 kinship matrix (K), and (4) all

possible combinations of K and the other five methods. Models were

also evaluated using plots of observed vs. expected cumulative P values

based on the IT data from Davis 2011 (Stich et al. 2008) (Figure S1). All

mixed linear models including K performed similar to each other and

better than models without K (Table S2 and Figure S1). In addition, the

K mixed linear model without additional corrections showed the best

Bayesian information criterion value for both IT and SEV across all

environments (Table S2) and was selected for all GWAS analyses. As-

sociation probability values were estimated and both marker-wise

and experiment-wise thresholds were selected for different analyses.

The selected experiment-wise threshold was based on the Bonferroni-

corrected method with a = 0.10, which is roughly equivalent to a

marker-wise threshold P value = 1 · 1024 (9.65 · 1025 for 1036

tag-SNPs).

QTL that were significant (P # 0.05, marker-wise) in at least three

of the six environments for IT and/or SEV, with at least one environ-

ment with highly-significant differences (P # 0.01, marker-wise) were

first selected to identify Pst resistance loci with broad-spectrum re-

sistance effective across multiple locations. The same QTL selection

criteria were applied to a second GWAS that included only accessions

n Table 1 Means and ranges for response to Puccinia striiformis f. sp. tritici of 875 spring wheat accessions from the NSGC in six
environments (three locations · two years)

Mount Vernon (WA) Pullman (WA) Davis (CA) Across Environments

IT SEV IT SEV IT SEV IT SEV
Mean 4.5 51.8 4.1 50.7 3.9 48.3 4.1 50.3
Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 9.0 100 9.0 100 9.0 100 9.0 100
s2
G

0.0241���� 0.1199���� 0.0208���� 0.0759���� 0.0231���� 0.1201���� 0.0207���� 0.0951����

s2
E

0.0003ns 0.0112ns 0.0077ns 0.0302ns 0.0019ns 0.0088ns 0.0025ns 0.0100ns

s2
GE

0.00 0.00 0.00 0.00 0.0066�� 0.0295� 0.00 0.0004ns

s2
e

0.0091�� 0.0248���� 0.0086���� 0.0287���� 0.0066�� 0.0328� 0.0123��� 0.0486����

H2 0.84 0.87 0.72 0.72 0.75 0.77 0.89 0.91

Covariance estimates from the random model were calculated using the restricted maximum likelihood method on the transformed data. NSGC, National Small
Grains Collection; IT, infection type; SEV, disease severity;s2

G
, genotype variance estimate; s2

E
, environment variance estimate; s2

GE
, genotype · environment variance

estimate; s2
e
, residual variance estimate; H2, broad sense heritability; ns, not significant.

�P , 0.05; ��P , 0.01; ���P , 0.001; ����P , 0.0001.
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with BLUE across all locations (BLUE-all) IT scores greater than 3.

The objective of this second analysis, which included 593 accessions,

was to find QTL for partial resistance that might have been masked by

the presence of major resistance genes. The 97 QTL that passed the

previous two selection criteria for IT or SEV are summarized in the

Supplemental Information, Table S4, Table S5, Figure S2, and Figure S3.

Among these 97 QTL, only 10 were significant for the Bonferroni

test (experiment-wise P # 0.10) and are discussed in detail in this

study. The cumulative effect of the 10 significant QTL and their

interactions was estimated using an ANOVA model including pop-

ulation structure (Q7) as covariate.

Multiple colocating and/or adjacent SNPs in the consensus map

significantly associated with the disease response were assigned to

a single QTL when the LD r2 values among markers were$ 0.3, inter-

marker distances were within the QTL confidence interval, and

the SNPs showed consistent direction of the effects. The SNPs with

P values indicating the strongest association was considered as the

QTL-representative marker (henceforth, QTL-tagging SNP).

Enrichment of markers in the QTL regions and
preliminary annotation

To increase the number of markers in each QTL region, the consensus

map from the Illumina 90K SNP assay (Wang et al. 2014) was projected

onto the 9K SNP consensus map (Cavanagh et al. 2013), which was

used as reference map in BIOMERCATOR v4.2 (Sosnowski et al. 2012).

Flanking sequences of all the 9K and 90K Illumina SNPs that mapped

within the QTL confidence intervals (6 1.6 cM) were then used to

BLAST T. turgidum (Kronos) transcriptome, T. urartu transcriptome

(Krasileva et al. 2013), and A. tauschii cDNA database (http://plants.

ensembl.org/Aegilops_tauschii/Info/Index) to obtain longer query se-

quences for colinearity analysis. Sequence hits with alignment length

more than 99% of the query and more than 98% identity were used as

query in BLASTX searches of Brachypodium (Brachypodium distachyon

(L.) P. Beauv) and rice (Oryza sativa L.) databases using Gramene

(Monaco et al. 2014) (http://www.gramene.org). Annotations for the

orthologous Brachypodium and rice genes were retrieved from Phyto-

zome v9.1 (http://www.phytozome.net/). Results from protein domain

databases (pFAM domain descriptions), Protein ANalysis THrough

Evolutionary Relationships, EuKaryotic Orthologous Groups descrip-

tion, and Gene Ontology terms are summarized in File S2. Based on

these annotations, we identified Brachypodium and rice R genes, which

encode proteins that recognize pathogen effectors or their modified host

targets. These proteins are characterized by the presence of a variable

leucine-rich repeat (LRR) and include CC-NB-LRR (coiled-coil domain,

nucleotide binding site, LRR), RLP (receptor-like proteins coupled with

extracellular LRR), and RLK (kinase domain coupled with LRR)

(Chisholm et al. 2006).

Comparison of QTL locations with previously reported
Yr genes and QTL

For comparison with previous studies, the 10 experiment-wise

significant QTL identified in the GWAS, 56 named Yr genes (McIntosh

et al. 2013) (catalogue of gene symbols for wheat: 201322014 Sup-

plement; http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/2013-

2014_Supplement.pdf) and 169 previously mapped QTL were projected

onto a common integrated map including different marker types

(File S4).

The integrated map was produced extending the iterative map

compilation process described in the previous section (“iterative maps

compilation” tool in Biomercator v4.2 (Sosnowski et al. 2012)). The

process started with the 9K SNP consensus map (Cavanagh et al.

2013), followed by the sequential projection of the 90K SNP consensus

map (Wang et al. 2014), the tetraploid consensus map (Maccaferri

et al. 2014), the Synthetic · Opata DH GBS map (Saintenac et al.

2013), the Diversity Array Technology integrated map (http://www.

diversityarrays.com/search/node/Wheat%20DArT%20map), the 2004

SSR consensus map (Somers et al. 2004), and the Synthetic · Opata

ITMI BARC SSR map (Song et al. 2005). The software option for

automatic resolution of common markers inversions was used.

For the named Pst resistance genes the closest flanking markers were

used to generate confidence intervals that are reported in File S5. Dis-

tances in cM were converted into relative % length distances by dividing

them by total chromosome length, and were then projected onto sche-

matic chromosomes. Confidence intervals for published QTL were cal-

culated using Darvasi and Soller prediction formulas (Darvasi and Soller

1997). QTL identified in this GWAS were projected on the same com-

piled map, using confidence intervals of 6 1.6 cM (where LD was

predicted to fall below the critical levels of r2 = 0.3).

RESULTS

Spring wheat panel composition and population
genetic structure

Based on genetic profiles of the Illumina iSelect 9K SNP array, 875

nonredundant genotypes with less than 10% missing data were

identified among the 1000 spring T. aestivum ssp. aestivum accessions

initially selected from the NSGC core wheat collection. These 875 acces-

sions (File S1) included 172 landraces, 255 registered cultivars, 299

Figure 1 Geographic distribution of seven subpopula-
tions identified in the analysis of the population
structure of 875 accessions from the National Small
Grains Collection spring wheat core collection. The
large pie chart indicates the relative number of acces-
sions in the seven subpopulations. The smaller pie
charts indicate their relative distribution in specific
countries (the size of these pie charts is proportional
to the number of accessions from that country).
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breeding lines, 6 genetic stocks, and 143 unclassified accessions. The

accessions originated from 87 countries on six continents and are

representative of the diverse wheat growing areas in the world (Fig-

ure 1). The characterization of these 875 accessions using a set of

nonredundant genome-wide tagSNPs and a combination of hierar-

chical Ward clustering and quantitative population structure model-

based Bayesian clustering revealed the presence of four main groups.

Groups 1 and 4 were further subdivided into two and three sub-

groups, respectively, giving a total of seven subgroups that reflect the

population structure of these accessions (Figure 2).

This population structure showed some association with the

geographic distribution of the accessions present in this panel (Figure

1). Group 1A was well represented in Mexico, in the Middle East

(Egypt, Israel, and Syria), and in the eastern and southern regions

of Africa (Kenya, Zimbabwe, and South Africa). Group 2 was pre-

dominant in accessions from Russia, Kazakhstan, Northern, and East-

ern Europe as well as Canada and United States. Group 3 was frequent

in Mediterranean countries in Europe and Northern Africa, Australia,

and South America, where spring wheats are predominantly planted

in the fall to better exploit winter precipitations. Group 4 was pre-

dominant in countries from Asia and is further subdivided into three

distinct subgroups. Subgroup 4A was predominant among landraces

and cultivated materials from Iran, Kazakhstan, Afghanistan, Tajikistan,

and Pakistan on one side, and Taiwan and Japan on the other side.

Subgroup 4B was found mainly in Western Asia (Iran, Armenia, and

Turkey) and Saudi Arabia, whereas subgroup 4C was predominant

in countries from Southern Asia (India, Nepal, and Pakistan).

The results from Ward’s clustering, the genotypic similarities, and

the subgroup membership coefficients based on STRUCTURE are

shown in Figure 2. The STRUCTURE membership coefficients re-

vealed a high degree of admixture in a large number of accessions, par-

ticularly among cultivars and modern breeding materials (Figure 2).

This result is consistent with the complex network of germplasm

exchange that characterizes modern wheat breeding worldwide. It is

important to point out that the proportions of subgroups presented

in Figure 1 and in the clusters in Figure 2, represent the proportions

of accessions in the NSGC spring wheat core collection, but may not

necessarily represent the current composition of cultivars in a specific

country or group.

Spring wheat panel response to Pst

The response of the 875 selected accessions to Pst was evaluated in six

environments (three locations · two years per location) characterized

by very high infection levels of Pst. Phenotypic variation was observed

in all environments, with infection types ranging from highly resistant

(13% of accessions with IT 022) to highly susceptible (17% of acces-

sions with IT 729). The frequency distributions of BLUE-all values

for IT and SEV were approximately normal, with a slight shift in the

IT response toward resistance (Figure 3, A and D). The square root

and arcsine transformations used in this study improved the

Figure 2 Population structure and its relationship to Puccinia striiformis f. sp. tritici (Pst) resistance. (A) Ward’s clustering of 875 accessions from
the NSGC spring wheat core collection. Vertical lines indicate genetic similarity thresholds used to classify accessions into 4 main groups (dashed
lines) and 7 subgroups (dotted lines). (B) 875 · 875 kinship matrix based on simple matching genetic similarities (IBS, identity by state).
Separations among Ward’s based groups are shown as horizontal dashed lines for main groups and as dotted-dashed lines for subgroups. (C)
Matrices of membership coefficients of accessions corresponding to 427 hypothetical subpopulations derived from the STRUCTURE analysis (D)
Response of accessions to Pst (IT, infection types, SEV, disease severity). Blue lines indicate Pst resistance and red lines Pst susceptibility (based on
the best linear unbiased estimates over six environments). (E) Percentage memberships of accessions from the seven subpopulations to the four
main continents.
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normality of the data (Figure 3, B and E). The analysis of variance

(Table 1) showed that the variance components for genotype were

highly significant (P # 0.0001) for both the individual locations and

the combined analysis across the six environments. By contrast, the

variance components for environment were not significant across all

analyses (Table 1). The variance component for the genotype by

environment interaction was significant only in Davis (P # 0.01 for

IT and P # 0.05 for SEV). Consistent with the previous results,

heritability values for IT and SEV were high for the individual loca-

tions (0.72 to 0.87, Table 1) and even greater for BLUE values across

all locations (H2 for IT = 0.89 and for SEV = 0.91, Table 1).

The high IT and SEV heritability values indicate limited environ-

mental variation relative to genotypic variation, an observation

supported also by high and significant correlations among environ-

ments. Pearson correlation coefficients for IT averaged 0.73 6 0.03

within locations and 0.65 6 0.01 across locations (Table 2). Very

similar correlations among environments were observed for SEV

(R = 0.74 6 0.05 within locations and 0.66 6 0.01 across locations,

Table 2). As expected, average correlations between SEV and IT values

were the greatest within the same environment (R = 0.83 6 0.02),

intermediate within the same location in different years (R = 0.70 6

0.03), and the lowest among locations (R = 0.63 6 0.01, Table 2).

Figure 3 Distributions of infection type (IT)
and disease severity (SEV). Distributions
of best linear unbiased estimates (BLUEs)
across all six environments for IT (A–B) and
SEV (D–E). “W” indicates the correlation
between observed values and normal scores
for the original (A and D) and transformed
(B and E) values. (C and F) Boxplot showing
differences among subpopulations for IT
(C) and SEV (F).
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The correlation between IT and SEV BLUE-all values was very high

(R = 0.93, Table S3).

The extent to which the Pst response of the 875 different acces-

sions was influenced by population structure is presented in Figure 2D

and Figure 3, C and F. In Figure 2D the IT and SEV values of each

accession are presented as heat-maps with blue indicating resistance

and red susceptibility. A greater proportion of resistant accessions was

evident in group 4C, whereas a greater proportion of susceptible

accessions was observed in group 4A. A more balanced distribution

of resistant and susceptible accessions was observed for the other

subpopulations (Figure 2D). A similar trend was observed in the

box plots for IT (Figure 3C) and SEV (Figure 3F). An ANOVA among

subpopulations showed significantly greater IT and SEV averages in

subpopulation 4C and significantly lower averages in subpopulation

4A (Tukey’s test P , 0.05, except for one nonsignificant SEV differ-

ence between subpopulations 4A and 4B). The association between

population structure and Pst resistance also was reflected in significant

multiple regressions (P # 0.01) between BLUE-all values and popu-

lation structure (Q7) for both IT (R2=0.141) and SEV (R2=0.166).

These significant associations indicated that corrections for population

structure were required for the GWAS. Comparison of different pop-

ulation structure correction methods (Figure S1 and the section Ma-

terial and Methods) indicated that the use of the kinship matrix (K)

was the most informative option for this dataset.

Corrections for plant height and heading time were evaluated to

determine whether they influenced the GWAS results for Pst resis-

tance. Both traits are critical for wheat performance in the field and

are known to have multiple pleiotropic effects. However, in this study

negligible correlations were observed between Pst resistance (IT and

SEV BLUE values across all six environments) and both heading time

(R2 , 0.005) and plant height (R2 , 0.05). Therefore, neither of these

traits was included as covariate in the GWAS for Pst resistance. None

of the high-confidence QTL selected in this study (Table 3) showed

significant association with plant height or heading time. However,

among the lower-confidence QTL, significant associations were

detected for one heading time QTL (IWA8513) and five plant height

QTL (IWA692, IWA1923, IWA4347, IWA6630, and IWA3796), which

were excluded from Table S4.

Spring wheat panel LD estimation

The extent of LD and the average trend of LD decay rate in this

association panel were estimated based on pairwise LD squared

correlation coefficients (r2) for all intrachromosomal SNP loci. The

trend of LD decay was described by a nonlinear regression of the pair-

wise r2 values on the corresponding map distances based on the

Illumina 9K SNP consensus map (Cavanagh et al. 2013) and by a

box-plot diagram of LD r2 distribution (Figure 4). Among the pairs of

markers that were completely linked in the consensus map the median

LD r2 was 0.69 (inter-quartiles ranging from 0.32 to 0.98). In the next

class, including noncompletely linked markers separated by less than

1 cM, the median LD r2 decreased to 0.3. Thus, on average, a 50% LD

decay rate was observed within 1 cM genetic distance. For the pairs of

markers linked at 125 cM the median r2 decreased to 0.12.

Similar results were obtained by fitting a nonlinear regression

equation (Sved 1971). Based on the fitted model, LD was predicted to

fall below the nominal critical levels of r2 = 0.3 at an inter-marker

genetic distance of 1.6 cM (Figure 4). This 1.6 cM distance at each side

of the peak of the significant associations was used to establish con-

fidence intervals for the QTL-harboring regions.

Association analyses for Pst resistance
across environments

Association analysis was performed separately for each of the six field

environments to identify chromosome regions including Pst resistance

genes effective against different combinations of Pst races. A total of 73

chromosome regions showed marker-wise significant associations with

either IT or SEV in at least three environments (Table S4 and Figure S2).

Among these QTL only seven were significant at the experiment-wise

Bonferroni threshold of P , 0.10 and are described in Table 3.

To test whether additional partial resistance QTL were masked by the

major resistance genes segregating in this panel, we performed a second

set of GWAS in which 282 accessions with highly resistant infection

types (ITs of 023) were not included in the analyses. GWAS using the

remaining 593 accessions with IT . 3 revealed 35 QTL showing

marker-wise significant associations with either IT or SEV in at

least three environments (Table S5 and Figure S3). Eleven of these 35

QTL overlapped with the previous set of 73 and 24 were new (Table S5).

Seven of the 35 QTL were significant at the experiment-wise Bonferroni

threshold (P, 0.10). Among these seven, four overlapped with the ones

identified in the previous GWAS (Table S4), and three (IWA3892,

IWA980, and IWA1034) were new and were added to Table 3.

Detailed information for the 10 significant loci is presented in

Table 3, which includes the representative SNP, the suggested name

for the QTL, and the probabilities of association with IT and SEV

values from the six individual environments and BLUE values. Table 3

also includes the favorable allele and its frequency in the complete

association panel and in each of the seven subpopulations. Five of the

10 significant loci had closely linked SNPs (, 1.6 cM and in LD to

each other) that also showed significant associations with Pst resis-

tance (Table S4 and Table S5), providing additional support for the

association between that chromosome region and resistance to Pst.

n Table 2 Pearson’s correlation coefficients for IT and SEV
response to Puccinia striiformis f. sp. tritici of 875 NSGC spring
wheat accessions in six environments

MTV-12 MTV-13 PLM-11 PLM-12 DVS-11 DVS-12

IT vs. ITa

MTV-12 0.78 0.68 0.74 0.64 0.67
MTV-13 0.59 0.67 0.58 0.62
PLM-11 0.73 0.59 0.65
PLM-12 0.63 0.70
DVS-11 0.67
DVS-12

SEV vs. SEV MTV-12 MTV-13 PLM-11 PLM-12 DVS-11 DVS-12
MTV-12 0.83 0.68 0.72 0.65 0.72
MTV-13 0.68 0.66 0.62 0.67
PLM-11 0.72 0.55 0.65
PLM-12 0.58 0.68
DVS-11 0.66
DVS-12

IT vs. SEV MTV-12 MTV-13 PLM-11 PLM-12 DVS-11 DVS-12
MTV-12 0.86 0.76 0.68 0.66 0.60 0.71
MTV-13 0.78 0.76 0.68 0.64 0.58 0.64
PLM-11 0.58 0.55 0.80 0.59 0.49 0.62
PLM-12 0.70 0.67 0.76 0.82 0.56 0.69
DVS-11 0.62 0.59 0.58 0.58 0.85 0.65
DVS-12 0.66 0.62 0.65 0.68 0.63 0.87

Gray highlight indicates comparisons between the same location and year. Bold
letters indicate comparisons between different years in the same location. All
correlation coefficients are highly significant (P , 0.0001). IT, infection type;
SEV, disease severity.
a
Locations: MTV, Mount Vernon, WA; PLM, Pullman, WA; DVS, Davis, CA.
Followed by year.
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Two of these QTL are described in more detail in Figure 5. In this

figure, the significance of the phenotype-SNP association (as –log P) is

plotted along the consensus map (Cavanagh et al. 2013) and com-

pared with local r2 LD patterns below. SNP-phenotype associations

rapidly decayed within 1-2 cM, in accordance with the observed trend

of LD decay rate estimated from SNP pairs (Figure 4).

Table 3 also indicates which of the 10 significant QTL identified in

the field studies were also significantly associated with resistance to the

four individual Pst races tested at the seedling stage in controlled

environments. Five of the 10 loci were significant for both the adult

plant (field studies) and seedling tests (controlled environment). A

similar proportion was observed among the lower-confidence QTL

Figure 4 Genome-wide average linkage disequilibrium (LD) decay over genetic distances. (A) Plot of pair-wise single-nucleotide polymorphism
LD r 2 values as a function of intermarker map distance (cM) based on a reference consensus map (Cavanagh et al. 2013). The red curve represents
the model fit to LD decay. The light-blue dashed line represents the61.6 cM confidence interval for the quantitative trait loci regions in which LD
r2 = 0.3. (B) Boxplot showing LD r2 values for incremental classes of single-nucleotide polymorphism pairwise map distances.

Figure 5 P value association plots and corresponding linkage disequilibrium (LD) r2 patterns for two significant Pst resistance quantitative trait
loci (QTL). The upper part of the graph shows P value plots of marker-trait associations for best linear unbiased estimates (BLUEs) of infection types
(IT) and disease severity (SEV) over six environments and for the three specific locations (MTV, Mount Vernon; PLM, Pullman; DVS, Davis). Map
distances (X-axis) are from the 9K SNP consensus map (Cavanagh et al. 2013). –Log (P) significance thresholds are reported using dashed lines.
Single-nucleotide polymorphism (SNP) codes and corresponding local LD r2 value patterns are in the lower part of the graph. Numbers within the
diamonds of the triangular LD matrix are the r2 values multiplied by 100.
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(47%; Table S4). QTL identified in the second GWAS for partial resis-

tance showed a lower proportion of loci that were significant in the

seedling tests (30%; Table S5). The levels of significance of the adult

plant and seedling QTL were generally similar, except for IWA4280

that showed exceptionally strong associations in the seedling tests (P ,

10224) but only moderate associations in the field experiments (Table S4).

The frequencies of favorable alleles in the different subpopulations

for the 10 significant QTL-tagging SNPs identified from the multi-

environmental trials are also summarized in Table 3. Similar fre-

quency information is also available for lower-confidence QTL that

were significant in at least three environments (Table S6 and Table S7).

Favorable alleles for QTL associated with markers IWA167, IWA5375,

and IWA6988 were present at high frequency in subpopulation 4C

(Pakistan-India-Nepal) and at relatively low frequencies in most of the

other subpopulations. The favorable allele for IWA422 was present at

relatively high frequency among the three Asian subpopulations (4A, 4B,

and 4C) and at lower frequencies in other subpopulations. The opposite

profile was observed for IWA7257 that was present at very low frequency

in the three Asian subpopulations and higher frequencies in the other

subpopulations. Subpopulation 4C showed a relatively higher proportion

of favorable alleles with very high or very low frequencies, a trend asso-

ciated with the lowest genetic diversity of subpopulation 4C among the

seven subpopulations (Table S6).

The proportion of phenotypic variance explained by the individual

QTL for IT and SEV BLUE values across all environments ranged

from 0.4 to 2.2% (Table 3). When these 10 QTL were analyzed to-

gether in an ANOVA including population structure as covariates

(Q7), they explained 15% and 12% of the observed variance for IT

and SEV BLUEs across all environments, respectively (excluding var-

iation explained by the population structure; Table S8). When the six

significant interactions among loci were added to the model, the pro-

portion of explained phenotypic variation (excluding population

structure) increased to 19% for IT and to 16% for SEV BLUE values

across all environments (Table S8). Interestingly, when the inter-

actions were added to the model, the highly significant effects of

IWA422 and IWA5202 became non-significant. These two markers

were involved in four of the six significant interactions that are pre-

sented in Figure S5. In general, the presence of the resistance allele

from one locus resulted in a reduced effect for the interacting locus

(Figure S5, A2E). However, in the IWA6988 · IWA167 interaction,

the presence of the susceptible alleles from one of these two loci was

associated with a reduction or elimination of the effect of the interact-

ing locus (Figure S5F).

Two markers tightly linked to known Pst resistance genes on chro-

mosome arms 7DS (Lr34/Yr18/Pm38) and 4DL (Lr67/Yr46) were used

as controls. The scoring of these two markers, their linkage with other

SNPs, and their association with Pst resistance traits are described in

supplemental File S3. Diagnostic marker KaspLr34 showed a MAF of

17.8% (resistant allele), which is higher than the 10% threshold selected

in this study. The KaspLr34 marker was significantly associated to IT

and SEV responses for three of the six environments (DVS_2012,

MTV_2012, MTV_2013), and adjusted averages across all environments

were significant experiment-wise (Bonferroni, 0.10). KaspLr34 did not

show appreciable LD (maximum r2 = 0.04, File S3) with any of the 22

polymorphic SNPs mapped on chromosome 7D.

Marker Kasp856, which is tightly linked to Lr67/Yr46 (chromo-

some 4DL), showed a MAF of 8.6%, and therefore, it would have been

excluded from our GWAS. This marker was strongly associated to Pst

severity values in DVS-2011, DVS-2012, and MTV-2013, and also

showed experiment-wise significant associations to the adjusted aver-

ages across all environments. Kasp856 was in LD to IWA5375 (r2

value = 0.41, MAF = 10%; File S3), which was found in our GWAS

to be significantly associated to Pst resistance. Markers IWA6277,

IWA5381, IWA5766, IWA5375, and Kasp856 defined three main hap-

lotypes within a 6.3 cM region. The haplotype G-A-G-T-A at these

five markers was associated to Pst resistance, supporting the results

obtained from the single SNP markers (File S3).

Relationship between number of favorable alleles and
Pst resistance

Considering all QTL-tagging SNPs with marker-wise significant effects

in at least three environments (97 in total, including the 24 for partial

resistance), the number of favorable alleles present in a specific accession

ranged from 23 to 65. The genetic profiles of the accessions for the 97

QTL-tagging SNPs are reported in File S1, where accessions were ranked

based on the number of favorable alleles. The 87 accessions (10%) with

the highest number of favorable alleles (favorable alleles = 56.6 6 0.3)

showed significantly lower (P , 0.0001) IT (2.3 6 0.1) and SEV

(22.5%6 1.8%) values than the 87 accessions with the lowest number

of favorable alleles (favorable alleles = 34.7 6 0.3, IT = 6.8 6 0.2,

SEV = 79.06 2.0). These significant associations were also reflected in

highly significant correlations (P , 0.0001) between the number of

favorable alleles and both IT (R = 0.68) and SEV (R = 0.67) values.

This result indicates that the variation in the number of favorable

alleles in these 97 QTL explains 45–46% of the variation in Pst re-

sistance in this germplasm collection, excluding variation explained by

population structure (Figure S4). Thus, this dataset may be a powerful

tool for genomic predictions of stripe rust resistance.

Comparison of significant QTL with rice and
Brachypodium genomes

To facilitate the identification of additional markers and to accelerate

the discovery of potential candidate genes, we established the co-

linearity between confidence intervals for the 10 QTL identified in this

study and the sequenced Brachypodium and rice genomes (File S2). As

a first step, we increased the number of markers in the QTL-confi-

dence intervals by projecting the wheat SNP consensus map generated

from the Illumina 90K assay (including 40,269 SNPs) onto the refer-

ence 9K Illumina consensus map using the program BIOMERCATOR

v4.2 (Sosnowski et al. 2012). On average, 12 SNP markers from the 9K

assay and 80 projected from the 90K assay (total 92) were detected per

QTL confidence interval (Table S10). Sequences of the original and

projected wheat SNP markers were then used to find the best hits in

Brachypodium and rice.

The Brachypodium and rice synteny relationships for the 10 QTL

confidence intervals are described in detail in File S2. On average, 60

Brachypodium and rice colinear annotated genes were identified per

confidence interval (Table S10). Based on the Phytozome v9.1 data-

base (http://www.phytozome.net/) 12.7% of the annotated colinear

genes were classified as R genes (CC-NB-LRR, RLP and RLK), with

higher proportions found in the confidence intervals for QTL

IWA3892, IWA422, IWA5202, and IWA1034 (Table S10).

Comparison of significant QTL with known Pst
resistance genes

To identify which of the 10 QTL-tagging SNPs described in Table 3

mapped on regions similar to 227 previously identified Pst resistance

genes (Yr) and QTL, we projected both sets of markers on an in-

tegrated map including different types of markers (File S4). Figure 6

shows the projection of these resistance loci onto standardized chro-

mosomes of similar length. The 10 highly-significant QTL identified

Volume 5 March 2015 | Stripe Rust Resistance in Spring Wheat | 459

http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS4.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS4.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS6.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS7.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS6.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS8.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS8.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FigureS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FigureS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FigureS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS3.xlsx
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS3.xlsx
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS3.xlsx
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS3.xlsx
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS1.xlsx
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FigureS4.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS2.xlsx
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS10.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS2.xlsx
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS10.pdf
http://www.phytozome.net/
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS10.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS4.xlsx


in this study are presented to the left of the chromosomes and

previously mapped Pst resistance genes and QTL to the right.

The numbers on top of the QTL (Figure 6, blue bars) indicate the

reference used to determine the confidence interval for the QTL.

These references, together with the confidence intervals (in % length) are

summarized in File S5.

Three of the 10 QTL-tagging markers reported in Table 3

(IWA980, IWA424, and IWA7257) were mapped far from any cur-

rently known Pst resistance gene or QTL, and likely represent novel

resistance loci (Figure 6 and File S5). IWA167 overlapped with QYr.

ufs-6D (Figure 6), but the peaks of these two QTL were mapped on

different chromosome arms and showed effects of different magnitude

(File S5), suggesting that they likely represent different genes.

The other six QTL-tagging markers were found in the proximity

(less than one tenth of the chromosome length) of named Yr resis-

tance genes or previously mapped Pst resistance QTL (Figure 6).

IWA422, IWA5202, and IWA5375 were mapped less than 3 cM from

previously mapped Pst resistance genes (Figure 6 and File S5), sug-

gesting that they may represent alleles of the same genes. IWA422 and

IWA5202 were mapped to the distal regions of chromosome arms

2AS and 3BS respectively, which include several previously mapped

Pst resistance genes and QTL that can correspond to these 2 QTL

(Figure 6 and File S5). IWA5375 was mapped in the proximity of the

Lr67/Yr46 region, and likely represents the same locus since no other

Pst resistance genes or QTL were mapped in their proximity.

The other three QTL-tagging markers (IWA3892, IWA1034, and

IWA6988) were mapped within the confidence intervals of previously

mapped Pst resistance genes or QTL (Figure 6 and File S5). However,

for each of these three QTL we found a second closely linked SNP that

showed marker-wise significant associations with Pst resistance in at

least three of the locations evaluated in this study (Table S4, gray

letters in parenthesis in Figure 6). The relationship between each of

these three pairs of linked SNP with previously mapped Pst resistance

genes or QTL is discussed in detail in supplemental File S5.

DISCUSSION

Population genetic structure

The population structure of 1000 accessions from the spring wheat

core collection was used as covariate in the GWAS mainly to reduce

the number of false associations (Yu et al. 2006), but it also provided

additional valuable information. First, the genetic characterization of

the 1,000 spring lines revealed the existence of ~100 near-identical

lines (.99% identical) in this panel, which were eliminated from our

analyses (together with another 25 with .10% missing data). The

elimination of the near-identical lines from the NSGC spring wheat

Figure 6 Chromosome positions of Pst-associated quantitative trait loci (QTL) identified in this study (experiment-wise Bonferroni P, 0.1) relative
to previously mapped Pst resistance genes and QTL. Chromosome lengths were all standardized to the same relative length. QTL-tagging single-
nucleotide polymorphisms identified in this genome-wide association (GWAS) are on the left side of the chromosomes. Those with a red line were
significant only in the overall GWAS, those with a blue line only in the GWAS for partial resistance, and those with a purple line were significant in
both (Table 3). Previously mapped Pst resistance genes (green) and QTL (blue) are on the right side of the chromosomes. The ID numbers on top
of the QTL indicate references and confidence intervals provided in File S5.

460 | M. Maccaferri et al.

http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/TableS4.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf
http://www.g3journal.org/content/suppl/2015/01/20/g3.114.014563.DC1/FileS5.pdf


core collection can reduce the size of the collection without a signifi-

cant loss of genetic diversity.

In addition, the genetic characterization of these accessions

organized the spring wheat core collection into seven subpopulations

of genetically related accessions (Figures 1 and 2). The Ward cluster-

ing analysis (Figure 2) revealed a major division between the subpo-

pulations enriched in accessions from Asia (4A, 4B, and 4C,

henceforth “Asian” subpopulations) and subpopulations that include

a large proportion of accessions from other parts of the world (1A, 1B,

2, and 3, henceforth “Western” subpopulations). This division was

also observed in a study of SNP diversity in the D-genome (Wang

et al. 2013), and may reflect the ancestral eastward and westward

expansion of agriculture (and of domesticated T. aestivum) after its

initial domestication in the Fertile Crescent roughly 10,000 years ago

(Dubcovsky and Dvorak 2007).

This major division was further supported by pairwise compar-

isons among subpopulations using Fst (Table S9), which provides a

measure of population differentiation due to genetic structure (Holsinger

and Weir 2009). Pairwise comparisons among the four “Western”

subpopulations showed smaller Fst values than comparisons between

the “Western” and “Asian” subpopulations, or among the “Asian” sub-

populations (Table S9). Among the “Asian” subpopulations, group 4C

was the most divergent (Table S9). This subpopulation is the smallest

(44 accessions) and the less diverse one, with an average polymorphism

information content that is roughly half of the averages observed in the

other six subpopulations (Table S6).

The “Western” subpopulations include a large proportion of mate-

rials released after 1960 (55%), which were likely influenced by the

Green Revolution. CIMMYT (Centro Internacional de Mejoramiento

de Maíz y Trigo) played a central role in the development and distri-

bution of these Green Revolution varieties, and accounts for 90% of

the accessions from Mexico presented in Figure 1. CIMMYT lines in

this collection belong mainly to the four “Western” subpopulations,

which may explain the abundance of these subpopulations in regions

that frequently receive or exchange germplasm with CIMMYT. Many

accessions included in the “Western” subpopulations show evidence

of high levels of admixture (Figure 2), which likely reflects the fre-

quent germplasm exchanges among wheat breeding programs from

these regions. A greater level of admixture among spring wheat vari-

eties than among winter wheat varieties has been reported also in

a different germplasm panel (Cavanagh et al. 2013).

Association between population genetic structure and
Pst resistance

Subpopulations1A, 1B, 2, and 3 show a uniform distribution of Pst IT

and SEV values (Figure 3, C and F), possibly an additional reflection

of the extensive admixture observed in these populations. By contrast,

a significant association between population structure and Pst re-

sponse was observed for the three subpopulations from Asia (Figure

3). Accessions from India, Nepal, and Pakistan in subpopulation 4C

displayed a greater proportion of moderately resistant to resistant

phenotypes than any of the other six subpopulations (Figure 3). In-

terestingly, a recent study of the ancestral relationships among world-

wide populations of Pst has pointed to the same Himalayan and

neighboring region as the putative center of origin for Pst. This hy-

pothesis was supported by the existence of high levels of diversity,

presence of private alleles, clear signatures of recombination, and

ability to produce sex-related structures in the Pst races from this

region (Ali et al. 2014). Archeological remains indicate that hexa-

ploid wheat was already cultivated in India-Pakistan between

4000 and 2000 BC (Tengberg 1999), which suggests that wheat

populations from this region may have the longest history of

interactions with Pst.

The ancient T. aestivum L. ssp. sphaerococcum (Percival) Mac Key

(synonym: T. sphaerococcum Percival) endemic to southern Pakistan

and northwestern India was described in the early 1920s as an early

flowering semidwarf wheat with semispherical grains and with resis-

tance to yellow rust (Percival 1921). This description indicates that

sources of resistance to Pst had already evolved in this region before

the introduction of modern wheat varieties. Several of the Pst resis-

tance QTL identified in this study (IWA167, IWA6988, IWA5375, and

IWA422) are present at higher frequencies in subpopulation 4C than

in any of the other subpopulations (Table 3) and may represent valu-

able alleles to enrich the “Western” subpopulation with novel or in-

frequent resistance alleles.

By contrast, subpopulation 4A showed the lowest levels of resis-

tance (Figure 3), suggesting that regions in which varieties from this

subpopulation are grown may be at a greater risk of Pst epidemics.

Regions where subpopulation 4A is at high frequency (Figure 1) may

benefit from the incorporation of resistance alleles identified in this

study that are absent or at very low frequency in the 4A subpopulation

(Table 3, Figure S6, and Figure S7). The observed heterogeneity of Pst

resistance levels among subpopulations (Figure 3, C and F) poses

additional challenges for the discovery of real associations by GWAS.

Adjustment of the GWAS analysis for population structure can reduce

this problem, as demonstrated in previous studies in rice (Zhao et al.

2011) and maize (Van Inghelandt et al. 2012), where similar levels of

associations between phenotypes and population structure were

reported.

The benefits of correcting for population structure are partially

offset by an increase in false negatives. Some real associations that are

highly correlated with the population structure can be lost in GWAS

analyses corrected for population structure. Similarly, the increased

protection for the identification of false positives achieved in this study

by the elimination of SNPs with MAFs lower than 0.1 is offset by the

inability to detect real resistance genes with low allele frequencies. In

this initial study, we favored the more stringent criteria. However,

alternative analyses can be performed using this dataset, which is

publicly available through the T3 database (http://triticeaetoolbox.org/)

and the ARS-GRIN system (http://www.ars-grin.gov/).

Significant associations in the GWAS

To identify new sources of resistance to Pst that were effective in

different environments of the western United States, we performed

field evaluations in three locations with very different ecological con-

ditions. Despite these differences, we observed high correlations

among IT and SEV values obtained from the different environments

(Table 2). These high correlations suggest that there might be similar

Pst populations across the western United States. This hypothesis is

supported by the known paths of spore dispersal by wind (Chen 2005)

and by periodic spore surveys across this region. In the last published

Pst race survey from 2010 (Wan and Chen 2014), 20% of the races

detected in California and Washington were shared between the two

states (PSTv-8, PSTv-14, PSTv-36, PSTv-37, PSTv-40, and PSTv-41),

providing further support to the previous hypothesis. The high corre-

lations among environments were also reflected in high heritability for

IT and SEV values (Table 1), which were favorable for the identifica-

tion of significant associations in the GWAS analyses.

Even with the high heritability values observed in this study, only

10 QTL were significant at the experiment-wise Bonferroni threshold

of P , 0.10 selected for this study (Table 3). Among these 10 signif-

icant QTL, seven were detected in the GWAS based on all 875
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accessions and three in the second GWAS that excluded accessions

with high levels of resistance. This suggests that the GWAS for partial

resistance provided additional power to detect associations that were

somehow masked by the effect of the major resistance genes. A similar

proportion of additional loci were detected among the lower

confidence QTL for partial resistance (24 of 97, Table S4 and Table

S5). Among the SNPs associated with QTL for partial resistance

a smaller proportion of loci were also effective at the seedling stage

(30%) compared with the proportion observed in the complete GWAS

analysis (47%). This is not surprising because many partial resistance

genes are effective only at the adult plant stage. In summary, elimina-

tion of highly resistant accessions from a GWAS for disease resistance

was a useful strategy to identify additional partial resistance genes. The

incorporation and deployment of partial resistance genes is an impor-

tant objective for wheat breeding programs because this type of re-

sistance genes have historically provided more durable resistance than

race specific resistance genes (Johnson 1984; Kolmer 1996; Santra et al.

2008; Krattinger et al. 2009; Lowe et al. 2011a; Chen 2013).

The two markers from known Pst resistance genes Yr18 (Lr34/

Yr18/Pm38) and Yr46 (Lr67/Yr46) included as controls in a separate

GWAS, both showed experiment-wise significant associations with Pst

resistance (P , 1 e-4, File S4). No linked markers were identified in

our study for Yr18 suggesting that the 9K iSelect chip did not provide

enough coverage in the D genome to detect all Pst resistance loci

present in our panel. The Yr46 marker was closely linked with

markers identified in our study that were significantly associated to

Pst resistance. However, the Kasp856 marker for Yr46 would have

been excluded in our original GWAS because its MAF was below

our selected 10% MAF threshold. Fortunately, some of the SNPs

linked to Kasp856 have MAF greater than 10% and the QTL was

detected. This result exemplifies the potential loss in sensitivity asso-

ciated with increased stringency.

The proportion of variation in IT values explained by each of the

10 selected QTL was relatively small (0.4–2.2%, Table 3) and similar to

values previously reported in GWAS for other quantitative traits in

maize and rice (Zhao et al. 2011; Peiffer et al. 2013; Peiffer et al. 2014).

When the 10 QTL were combined in a single ANOVA, 15% of the

variation (Table S8) in Pst resistance was explained by the model

(excluding the contribution of the population structure). This percent-

age increased to 19% when six significant two-way interactions were

added to the ANOVA model (Table S8 and Figure S5). We have

initiated the introgression of these loci into the common susceptible

background “Avocet S” to test these interactions experimentally.

In this study we also identified 87 QTL that showed significant

GWAS associations in at least three environments but that did not

pass the stringent experiment-wise Bonferroni threshold. These

loci may have a greater proportion of false positives and were,

therefore, excluded from the results reported in Table 3. However,

the inclusion of all 97 QTL in a combined ANOVA model increased

the percent of explained variation in IT BLUE-all values from 15 to

45% (excluding variation explained by population structure). These

results suggest that some of the lower-confidence QTL likely repre-

sent real associations. As a compromise, we included the 87 lower-

confidence QTL in Table S4 and Table S5, as candidates for future

validation studies.

The presence of real resistance genes among the lower-confidence

QTL is also supported by a high and significant correlation (R = 0.68)

between the number of favorable Pst alleles (among the 97 loci) and

the level of Pst resistance (File S1 and Figure S4). This high correlation

suggests that accessions carrying a high number of favorable alleles for

the different QTL identified in this study may be useful parental lines

for breeding programs interested in diversifying their sources of Pst

resistance genes. This high correlation also suggests that a genomic

selection approach aimed at increasing the number of favorable Pst

alleles for the QTL identified in this study is likely to increase the

levels of Pst resistance in the breeding populations.

The results discussed above suggest that Pst resistance in the spring

wheat core collection was governed by several resistance genes with

relatively larger effects (Table 3) modulated by a larger number of

genes with smaller effects (Table S4 and Table S5). This trait archi-

tecture is different from the architecture found for resistance to downy

mildew in a previous GWAS in Arabidopsis. The Arabidopsis study,

which tested resistance at the seedling level using specific races and in

controlled environmental facilities, detected few dominant resistance

genes that were concentrated in only four genomic regions (Nemri

et al. 2010). The larger association panel used in our study and the

increased statistical power may have contributed to the higher number

of QTL identified in this study. This greater number of detected QTL

also may be the result of the more complex environmental conditions

found in the field relative to the controlled environment. In the field,

the frequency of infection and the rate of development of the patho-

gen can be modulated by different morphological and physiological

characteristics of the plant and also by the simultaneous presence of

multiple Pst races and other pathogens. In addition, the use of adult

plants in our field studies can result in the detection of additional

adult plant resistance genes that are not effective at the seedling stage.

Comparison of significant QTL with colinear genes in
rice and Brachypodium

The LD decay rate between the 9K Illumina SNP (50% LD decay rate

at 1 cM) in this association panel was faster than that observed in elite

US spring wheat (50% LD decay rate at 6.3 cM; Chao et al. 2010). This

is not surprising because this elite US spring wheat panel includes

a less diverse germplasm than the NSGC spring wheat core collection

analyzed in this study and therefore has a lower level of historical

recombination. The intermarker distance at which LD fall below the

critical levels of r2 = 0.3 (1.6 cM) was selected to determine confidence

intervals for the 10 significant QTL identified in Table 3.

The projection of the 90K Illumina data (Wang et al. 2014) onto

these 10 QTL confidence intervals resulted in a 7.7-fold increase in the

number of SNP per confidence interval relative to the initial results

from the 9K chip map. The larger number of markers available per

confidence interval (on average 92 markers) facilitated the identifica-

tion of colinear regions in the sequenced genomes of the grass species

Brachypodium and rice (File S2). The annotation of the proteins

encoded by the Brachypodium and rice colinear genes was used to

infer the putative function of the wheat genes from where the SNPs

were derived. Among the wheat SNPs with a corresponding annotated

rice or Brachypodium protein (Table S10), 12.7% were classified as R

genes with two large groups in the confidence intervals for QTL

IWA422 and IWA5202 (Table S10). Interestingly, the colinear regions

for IWA422 (Brachypodium Chr. 5, 1.4324.20 Mb and rice Chr. 4,

0.0726.96 Mb) and for IWA5202 (Brachypodium Chr. 2, 0.7420.82

Mb and rice Chr. 4, 0.7220.92 Mb) include several NB-LRR and LRR-

receptor-like kinases. These results suggest that this region may in-

clude an ancestral R gene cluster that predates the divergence of the

grass subfamilies. It would be interesting to investigate if the multiple

Pst resistance genes and QTL mapped to the colinear distal regions of

wheat chromosome arms 2AS and 3BS (Figure 6 and File S5) are

associated with the presence of similar clusters of R genes in wheat.

In summary, these comparative analyses provided a large number

of molecular markers for each of the 10 targeted regions, which can be
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used both to identify haplotypes associated with resistance alleles, and

to accelerate the construction of high-density maps for these QTL. In

addition, pathogen-response related genes identified in the colinear

regions in Brachypodium and rice may provide a starting point for the

search of candidate genes in the colinear regions in wheat.

Comparison of significant QTL with previously
mapped genes

The results presented in Figure 6, provide an overview of the relation-

ships between the loci identified in this GWAS and 227 previously

mapped Pst resistance genes and QTL. However, these results should

be considered with caution because of the inherent limitations of

consensus maps. The limited number of common markers between

previous SSR-based and new SNP-based maps can result in distorted

distances in some region of the integrated map. The comparison also

is complicated by the low resolution of some of the original maps of

Pst resistance genes and by the extended LD in wheat. Therefore, the

relationships described in the two paragraphs below and in File S5

should be considered as tentative. For closely linked loci, allelism tests

will be required to determine which of the QTL identified here are

new resistance loci and which are alleles of previously identified genes.

Among the 10 significant QTL reported in Table 3, IWA980,

IWA424, and IWA7257 were mapped on chromosome regions where,

to our knowledge, no Pst resistance genes or QTL were reported

before. These results suggest that they are likely novel Pst resistance

loci (Figure 6). IWA167, one of the most significant QTL detected in

this study, was mapped within the flanking markers of a weak QTL

from Cappelle Desprez (QYr.ufs-6D; Agenbag et al. 2012). However,

the peak of QYr.ufs-6D was mapped on the long arm of chromosome

6D, whereas IWA167 is in the short arm. The different arm locations

and the different strength of these two QTL suggest that they are likely

the effect of different resistance genes (File S5). The IWA167 resis-

tance allele was almost fixed in the subpopulation from South Asia

(frequency = 0.95) and was found at very low frequency in some of the

other subpopulations, suggesting that it might be a useful gene to

diversify sources of resistance in wheat breeding programs outside

South Asia.

QTL associated with IWA422, IWA5202, and IWA5375 were very

close to previously mapped Pst resistance genes (, 3 cM) and likely

represent alleles of these genes (File S5). The results from the last three

significant loci (IWA3892, IWA1034, and IWA6988) are more difficult

to interpret because each of them has a linked SNP marker that was

also significantly associated (marker-wise) with Pst resistance in most

of the locations tested in this study and will require additional allelism

tests. In spite of these uncertainties, Figure 6 provides a good overview

of the distribution of Pst resistance genes on the wheat chromosomes.

Since 2000, new aggressive strains of Pst were identified in three

continents: North America, Australia, and Europe (Hovmoller et al.

2008). These races have increased aggressiveness and the ability to

produce more spores at greater temperatures than before (Milus et al.

2009). These new races with broader spectra of virulences have gen-

erated serious stripe rust epidemics in areas previously considered

unsuitable for the disease, and have turned stripe rust into one of

the most economically damaging wheat pathogens (Hodson 2011).

Therefore, the identification of novel Pst resistance genes in this

GWAS represents a valuable addition to the set of tools available to

wheat breeding programs to fight this devastating pathogen.

This GWAS also provides a good overview of the distribution of

resistance genes and the frequencies of the resistance alleles in

different wheat subpopulations around the world. The frequency

information is particularly useful for wheat breeders interested in

diversifying the sources of Pst resistance in their regional programs. In

particular, wheat germplasm from the Himalayan and neighboring

regions emerged from this study as a valuable source of resistance

genes that are absent or present at low frequencies in other regions of

the world.

As in other association studies, additional experimental validation

will be required to identify which of the accessions carrying favorable

SNP alleles actually carry the associated resistance gene. Allelism tests

also will be required to determine which of the identified QTL

represent novel resistance genes and which ones are alleles of

previously mapped genes. To initiate this validation process we have

crossed several accessions carrying favorable alleles for the selected

QTL with the susceptible variety “Avocet S”, which is the common

genetic background in the current single gene differential lines (Chen

et al. 2014). These single QTL introgressions in a common genetic

background will greatly simplify the planned allelism tests. In sum-

mary, this GWAS study has identified new sources of Pst resistance

and provided closely linked markers to accelerate their validation and

deployment in wheat breeding programs.
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