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Abstract

Background: Cultivated soybean (Glycine max) is a major agricultural crop that provides a crucial source of edible
protein and oil. Decreased amounts of saturated palmitic acid and increased amounts of unsaturated oleic acid in
soybean oil are considered optimal for human cardiovascular health and therefore there has considerable interest
by breeders in discovering genes affecting the relative concentrations of these fatty acids. Using a genome-wide
association (GWA) approach with nearly 30,000 single nucleotide polymorphisms (SNPs), we investigated the
genetic basis of protein, oil and all five fatty acid levels in seeds from a sample of 570 wild soybeans
(Glycine soja), the progenitor of domesticated soybean, to identify quantitative trait loci (QTLs) affecting
these seed composition traits.

Results: We discovered 29 SNPs located on ten different chromosomes that are significantly associated with
the seven seed composition traits in our wild soybean sample. Eight SNPs co-localized with QTLs previously
uncovered in linkage or association mapping studies conducted with cultivated soybean samples, while the
remaining SNPs appeared to be in novel locations. Twenty-four of the SNPs significantly associated with fatty
acid variation, with the majority located on chromosomes 14 (6 SNPs) and seven (8 SNPs). Two SNPs were
common for two or more fatty acids, suggesting loci with pleiotropic effects. We also identified some
candidate genes that are involved in fatty acid metabolism and regulation. For each of the seven traits, most
of the SNPs produced differences between the average phenotypic values of the two homozygotes of about
one-half standard deviation and contributed over 3% of their total variability.

Conclusions: This is the first GWA study conducted on seed composition traits solely in wild soybean
populations, and a number of QTLs were found that have not been previously discovered. Some of these
may be useful to breeders who select for increased protein/oil content or altered fatty acid ratios in the
seeds. The results also provide additional insight into the genetic architecture of these traits in a large sample
of wild soybean, and suggest some new candidate genes whose molecular effects on these traits need to be
further studied.
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Background
Cultivated soybean (Glycine max (L.) Merr.) is a major agri-

cultural crop that provides a crucial source of edible protein

and oil [1]. Although the seed protein composition typically

is about double that of oil, soybean produces over half of

the world’s vegetable oil (http://www.soystats.com). Soy-

bean oil is comprised almost entirely of two saturated

(palmitic and stearic acid), and three unsaturated fatty acids

(oleic, linoleic, and linolenic acid). The relative proportions

of these fatty acids determine the overall quality of the oil,

with decreased amounts of saturated palmitic acid and

increased amounts of unsaturated oleic acid considered

optimal for human cardiovascular health [2, 3]. Minimal

amounts of linoleic and linolenic acid also are beneficial

because partial hydrogenation of soybean oil routinely done

to improve the oxidative stability of these fatty acids leads

to the production of undesirable trans-fats [4].

Given the enormous agricultural importance of seed

composition traits in soybean, it is not surprising that

there have been a number of studies aimed at under-

standing their genetic basis [5–7]. Much of our genetic

knowledge has come from discovery of quantitative trait

loci (QTLs) located at various sites on all of the 20 chro-

mosomes throughout the soybean genome that affect

one or more of these traits [5, 6, 8–10]. Many of these

QTLs were discovered through linkage mapping that

requires F2, backcross, or recombinant inbred popula-

tions derived from original biparental crosses. With this

approach, therefore, any QTLs found are limited to those

whose alleles differ in the progenitor populations. A

perhaps even greater difficulty with bi-parental linkage

mapping is that the confidence intervals for the QTLs

uncovered typically are quite wide (often 20 cM or more)

because of extensive regions of linkage disequilibrium

(LD) in the populations analyzed [11]. These large gen-

omic regions may contain many underlying genes, making

the search for putative candidates difficult.

Especially with the recent availability of large numbers

of genomic markers in various taxa, genome-wide asso-

ciation studies (GWAS) increasingly have been used to

search for QTLs affecting various traits [12, 13]. This

approach can be applied to outbred or wild populations

that have experienced extensive recombination resulting

in shorter LD segments and therefore increased reso-

lution of marker-phenotype associations. GWA studies

sometimes can produce false negative results because of

potential confounding factors such as population struc-

ture and cryptic relatedness [14, 15], however, but

current statistical procedures adjust for these factors

[16]. A number of GWA studies have been successfully

applied to soybean seed composition traits [7, 17–21].

While this work on soybean has proceeded, to our

knowledge no comparable GWA study has been con-

ducted on seed composition traits solely in wild soybean

(Glycine soja Sieb & Zucc.), the progenitor of cultivated

soybeans. The level of genetic variability in soybean cul-

tivars has been considerably reduced from that in G. soja

[22–26] and therefore GWA analyses of this wild species

may be expected to yield some novel QTLs for seed

composition traits. We conducted such an analysis of

protein, oil and fatty acid content in 570 wild soybean

accessions genotyped with nearly 30,000 SNPs. We docu-

ment a number of SNPs significantly associated with these

traits, with some suggestions for candidate genes import-

ant for the seed composition trait variation.

Methods
Plant material and traits measured

The source material for the analysis originated from over

600G. soja accessions in the USDA Soybean Germplasm

Collection representing maturity groups V through IX.

These accessions were originally collected from various

sites primarily in South Korea and Japan although also

from a few sites in China (Additional file 1). All seeds

from these accessions were soaked for 15 min in concen-

trated sulfuric acid, rinsed in water and then air-dried

prior to planting. One replicate from each accession was

planted on May 19th, 1998 in hill plots in an open field in

Stoneville, MS (Lat. 33°26’N), using a completely random-

ized design (CRD). One replicate from each accession also

were planted on May 14, 1999 in the same plots using a

randomized complete block (RCB) design. The wild

soybean plants were allowed to mature at which time

seeds were harvested and used to quantify protein, oil and

fatty acid content. In the analysis we used the average of

the two replicate values for each accession. The total

number of individuals available was 570.

Seed composition measurements included protein and

oil concentration and the concentration of five fatty acids:

palmitic, stearic, oleic, linoleic and linolenic. Nitrogen

content of whole seeds was determined with a LECO FP-

428 Nitrogen Determinator (LECO Corp, St. Joseph MI).

A 6.25 conversion factor was used to calculate protein

concentration on a dry weight basis. Oil concentration

(dry weight basis) of whole seeds was determined with a

5 MHz nuclear magnetic resonance spectrometer (Newport

Oxford Instruments, Newport Pagnell, England). Fatty acid

methyl esters were prepared from chloroform/hexane/

methanol (8:5:2, v/v/v) extracts of crushed seed by trans-

methylation with sodium methoxide. Fatty acid compos-

ition was determined with a Hewlett-Packard 5890-II (Palo

Alto, CA) gas chromatograph equipped with dual flame

ionization detectors, and a 0.53 mm x 30 m AT-Silar

capillary column (Alltech Associates, Deerfield, IL).

Authentic fatty acids were used for calibration. Protein

and oil were expressed as a percentage of the total seed

content whereas all fatty acids were expressed as a per-

centage of the oil content.
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Genotyping and quality control

SNP data for the 570 accessions were retrieved from the

publically-available soybase website (http://soybase.org/

snps/), which were genotyped using the Illumina Soy

SNP50k iSelect BeadChip (Illumina, San Diego, CA.

USA) containing a total of 52,041 SNPs as previously de-

scribed [25, 27]. The SNP alleles were called using the

GenomeStudio Genotyping Module v1.8.4 (Illumina, Inc.

San Diego, CA). SNPs without a known physical position

on any of the 20 chromosomes were excluded from

further analyses. Further, for the genome-wide associ-

ation analysis described below, we filtered the data by

removing SNPs with missing rates >10%, minor allele

frequencies < 0.05, and those existing in minor states so

that only two alleles were segregating at each SNP locus.

Heterozygote SNPs were also treated as missing since

they were rare (<2%) and wild soybeans reproduce

primarily by selfing. These adjustments reduced the

number of SNPs used in the analysis to 29,969.

Linkage disequilibrium estimation

We used the filtered SNP data to calculate linkage dis-

equilibrium (LD) across the wild soybean genome with

the TASSEL program, version 5 [28]. TASSEL produced

two measures of LD: squared correlations (r2s) and stan-

dardized disequilibrium coefficients (D’s). For various Kb

distance intervals, we derived means of the distances

between SNP pairs and then plotted these means against

r2 values to visualize the rate of LD decay.

Preliminary statistical analysis

We first inspected the distributions of the phenotypic

values for the seven traits and found that they were

skewed for oleic and linoleic acid but approximately

normal for the other five traits. We did not transform

the values for any of the traits because our sample size

was reasonably large [29]. We calculated basic statistics,

including means and standard deviations, for these traits

in the total sample of 570. In addition, Pearson correla-

tions were calculated for each pair of traits, and their

significance assessed by the false discovery rate proced-

ure [30]. We also conducted one-way ANOVAs for each

of the seven traits to test whether those originally from

South Korea differed from those from Japan. We re-

stricted this geographic analysis to these two countries

because they comprised 534 of the 549 accessions whose

locations were known.

Genome-wide association analysis

We used TASSEL to test for the association of the seven

traits with each SNP across the wild soybean genome.

For each trait we first ran a general linear model (GLM)

and then a compressed mixed linear model (CMLM)

that included a kinship matrix (K) to account for familial

relatedness. We also ran CMLMs that included the K

matrix as well as the first 3 (Q3), 10 (Q10), 25 (Q25) or

50 (Q50) principal components (PCs) derived from a

principal components analysis of the SNP data. The PC

values were treated as fixed covariates in these models

and were used to adjust for population structure. From

the results for each of these models, we generated

quantile-quantile (QQ) plots of the observed versus

expected p-values at each SNP. For each trait, the model

chosen for eventual analysis was that determined by the

distribution of the QQ plot as well as its associated

genomic inflation value (λ). Generally those plots that

yielded λ values closest to 1.00 were considered optimal.

All probabilities generated in the association runs were

transformed by –log10P, and the highest scores on each

chromosome were inspected to determine whether they

reached a significance threshold. We calculated this

threshold by first estimating the total number of inde-

pendent SNPs following the method of Li and Ji [31].

This number was 11,149, considerably below the total

number of SNPs used (29,969) because many of them

were correlated due to linkage disequilibrium. The 5%

genome-wide threshold therefore was established at a

probability of 0.05/11,149 = 4.48 x 10−6, equivalent to a

–log10P score of 5.348. In addition, we considered a

probability of 0.63/11,149 = 5.65 x 10−5 (-log10P = 4.248)

as being suggestive of a SNP/trait association. These

0.05 and 0.63 values are widely accepted thresholds for

significant and suggestive QTLs [32]. We used conven-

tional Manhattan plots to help with visualization of

SNPs reaching either of these thresholds.

For all SNPs reaching at least the suggestive level of

association, we tallied estimates of their allelic effects

from TASSEL. These effects estimate the difference

between the average phenotypic values of the two

homozygotes. TASSEL also computed SNP r2 values

that we multiplied by 100 to estimate the percentage

contribution of each SNP to the total phenotypic vari-

ation in each trait. We also calculated heritabilities for

each trait across the entire genome from the ratio of

the genetic variance to the total of the genetic and

residual variance REML estimates obtained through

the Efficient Mixed-Model Association (EMMA) algo-

rithm in TASSEL.

QTL and candidate gene search

Once all significant SNPs were identified, we used the

soybean reference genome, SoyBase (www.soybase.org)

to search for all genes located in the regions extending

50 Kb on each side of the SNPs. Any of these genes were

regarded as potential candidate genes. We also used

SoyBase to search for any QTLs in similar locations that

previously have been found to affect the protein/oil or

fatty acid traits.
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Results
Wild soybean traits

Protein comprised nearly one-half (48%) of the total dry

weight of the wild soybean seeds in our sample whereas

the percentage of oil was 11% (Table 1). The three unsat-

urated fatty acids (oleic, linoleic, and linolenic acid)

made up fully 83% of the content of the oil, with the

remaining 17% contributed by the saturated fatty acids

(palmitic and stearic acid). The coefficients of variation

show that protein and linoleic acid are the least variable

traits whereas oleic acid is the most variable. Correla-

tions among the seven traits are mostly low to moderate

in magnitude with the exception of the high, negative as-

sociations of oleic acid with both linoleic and linolenic

acid. Nearly all (19/21) of the correlations are statisti-

cally significant (P < 0.05).

One-way ANOVAs showed that mean protein levels

did not significantly differ between seeds originating in

Japan versus those from South Korea (P = 0.19), but

mean levels of oil and all five fatty acids did exhibit sig-

nificant differences (P < 0.05). Inspection of the means

showed that oil, palmitic and oleic acid levels were

higher in seeds from South Korea compared to those

from Japan whereas the reverse occurred for stearic,

linoleic, and linolenic acid (Additional file 2). Differences

between the two means were relatively small, ranging

from 0.14% (stearic acid) to 2.06% (palmitic acid).

Linkage disequilibrium

The results of the linkage disequilibrium estimation are

shown in Additional file 3 where r2 values are plotted

against distances (Kb units) between SNP pairs. This fig-

ure shows that the rate of LD decay is quite rapid. The

highest average r2 value is 0.47 for SNPs separated by

distances between 0 and 1 Kb, but falls to less than 0.03

for SNPs separated by about 100 Kb.

Association mapping

Association runs in TASSEL were performed for a num-

ber of CMLM models as previously described, and

yielded QQ plots that all were an improvement over the

GLM model (Fig. 1). This was especially the case for

models including principal components that adjusted

for population structure (a PCA bi-plot is shown in

Additional file 4). Based on inspections of the QQ

distributions and the calculated genomic inflation values,

the K +Q50 model was considered optimal for protein,

oil, palmitic acid, oleic acid and linolenic acid whereas the

K +Q10 model appeared most appropriate for stearic acid

and linoleic acid. Genomic inflation values for these

models varied from 0.97 to 1.02 for all traits except oleic

acid which exhibited a slightly inflated value of 1.08 even

with the K+Q50 model (Fig. 1). Using these two models,

the CMLM analyses produced a total of 29 SNPs associ-

ated with the seed composition traits, with details summa-

rized in Table 2.

For protein, two SNPs on chromosomes 14 and 18

reached the chromosome-wide threshold of association

(Table 2; Fig. 2). Three SNPs were associated with oil,

one on chromosome three and two close to each other

on chromosome 20. All five SNPs exhibit additive effects

of about ½ standard deviations and contribute 3% or

more to the total phenotypic variation in these traits.

The heritability estimates for protein (0.22) and oil

(0.32) estimated in TASSEL were quite low (Table 2),

especially for protein.

TASSEL runs uncovered a total of 24 SNPs associ-

ated with the fatty acids, including one on chromo-

some 16 for oleic acid and two on chromosome

seven for linoleic acid that reached the 5% genome-

wide significance level (Table 2, Figs. 3 and 4). These

SNPs are located on seven different chromosomes,

with three on chromosome 16, four on chromosome

two, six on chromosome 14, and eight on chro-

mosome seven. The fourteen SNPs located on chro-

mosomes seven and 14 collectively are the most

prominent feature in the Manhattan plots (Figs. 3

and 4). The SNPs contribute on average 3.32% of

the total variation in the fatty acids. Heritabilities

estimated for these traits generally are higher than

those for protein and oil, ranging from 0.44 to 0.49

and averaging 0.45.

Table 1 Basic statistics for the seven traits in the wild soybean population (n = 570)

Mean StDev CV Oil Palmitic Acid Stearic Acid Oleic Acid Linoleic Acid Linolenic Acid

Protein 48.10 2.626 5.46 −0.36* 0.23* 0.14* 0.22* −0.26* −0.17*

Oil 11.02 1.185 10.75 −0.20* −0.04 0.30* 0.01 −0.34*

Palmitic Acid 12.90 1.020 7.91 0.33* 0.25* −0.41* −0.38*

Stearic Acid 3.89 0.466 11.98 0.36* −0.30* −0.49*

Oleic Acid 14.88 3.673 24.68 −0.78* −0.76*

Linoleic Acid 54.27 2.686 4.95 0.28*

Linolenic Acid 14.05 2.645 18.83

Shown are means (in percentages), standard deviations, and coefficients of variation (CVs) for each of the wild soybean traits as well as their pairwise correlations

(* = P < 0.05 from false discovery rate tests of significance)
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Three SNPs were associated with each of the two satu-

rated fatty acids, palmitic acid and stearic acid (Table 2,

Fig. 3). Two stearic acid SNPs are clustered together on

chromosome 14 (17.50—17.56 Mb), but are at a different

location than the chromosome 14 SNP associated with

palmitic acid (22.5 Mb) and another SNP on this

chromosome associated with protein (24.4 Mb). Allelic

effects for the underlying QTLs affecting palmitic and

stearic acid tend to be higher than for those affecting

protein and oil.

For the unsaturated fatty acids, five SNPs were associ-

ated with oleic acid, 9 with linoleic acid, and four with

linolenic acid (Table 2, Fig. 4) A chromosome 14 SNP at

22537916 bp is associated with both oleic and linolenic

acid, as well as palmitic acid, suggesting pleiotropy of

an underlying gene that is affecting all three traits.

Pleiotropy also is apparent with a SNP on chromo-

some seven at 11603310 bp associated with both oleic

and linoleic acid. All other SNPs, however, appear to

occupy unique chromosomal locations. Allelic effects

Fig. 1 Comparison of QQ plots using different GWA models for the wild soybean seed composition traits. Shown are plots of observed and
expected –log10P values for protein a, oil b, palmitic acid c, stearic acid d, oleic acid e, linoleic acid f and linolenic acid g. Shown are results for

the general linear model (GLM) and composite mixed linear models (CMLMs) with a kinship matrix (K) alone and with K plus the first 10 (Q10)
and 50 (Q50) principal components from a principal components analysis of the SNP data
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of SNPs associated with the unsaturated fatty acids

are highest for linolenic acid, ranging from 0.75 to

0.89 standard deviations.

QTLs and candidate genes

A total of 29 SNPs are significantly associated with the

seed composition traits in our wild soybean populations.

Eight co-located with QTLs previously identified in

cultivated soybean populations (Table 3), including two

each for oil and stearic acid, one for linoleic acid, and

one for linolenic acid. We also found a number of genes

that harbor, or are adjacent to, the 29 SNPs associated

with the seed composition traits (Additional file 5).

Some of these genes are involved in fatty acid metabol-

ism and regulations, such as those encoding plant

stearoyl-acyl-carrier-protein desaturase family protein,

and phospholipase D alpha 1. (Additional file 5).

Discussion

The intent of this investigation was to identify SNPs

and candidate genes that play an important role in

the seed composition trait variation in our wild soy-

bean population. We were especially interested to

see whether we might identify a number of novel

QTLs not discovered in the linkage or association

mapping studies previously done with cultivated soybean

Table 2 SNPs associated with each of the wild soybean seed composition traits

Trait SNP Chr bp P - Log10P Allelic effect % h2

PROTEIN ss715617976 14 24367698 3.10E-05 4.51 A 0.551 3.41 0.22

PROTEIN ss715631057 18 45438677 3.42E-05 4.47 A 0.574 3.09

OIL ss715585518 3 34839398 9.21E-06 5.04 A 0.527 3.53 0.32

OIL ss715637730 20 36705945 1.31E-05 4.88 A 0.479 3.31

OIL ss715637732 20 36710220 3.24E-05 4.49 A 0.422 2.99

PALMITIC ACID ss715595323 6 5303094 1.91E-05 4.72 A −0.567 3.87 0.45

PALMITIC ACID ss715597684 7 37911072 5.07E-06 5.29 A −0.646 3.40

PALMITIC ACID ss715617910 14 22537916 4.15E-05 4.38 C 0.801 3.13

STEARIC ACID ss715618427 14 17499955 5.17E-05 4.29 A 0.704 2.95 0.50

STEARIC ACID ss715618430 14 17561477 3.37E-05 4.47 A 0.753 3.15

STEARIC ACID ss715625341 16 6804502 5.31E-06 5.27 C −0.745 3.76

OLEIC ACID ss715596070 7 11603310 1.25E-05 4.90 G 0.545 3.39

OLEIC ACID ss715617910 14 22537916 2.06E-05 4.69 C 0.693 3.13 0.36

OLEIC ACID ss715623399 16 1258943 2.23E-06 5.65 A −0.472 2.93

OLEIC ACID ss715623400 16 1260003 6.66E-06 5.18 A −0.374 2.76

OLEIC ACID ss715633271 19 12874336 5.24E-05 4.28 G −0.588 2.49

LINOLEIC ACID ss715582510 2 39934224 8.71E-06 5.06 A −0.691 3.60 0.49

LINOLEIC ACID ss715582512 2 39940256 1.57E-05 4.80 A −0.692 3.41

LINOLEIC ACID ss715596075 7 11584261 2E-05 4.70 C 0.546 2.72

LINOLEIC ACID ss715596074 7 11585878 1.39E-05 4.86 C −0.562 3.35

LINOLEIC ACID ss715596072 7 11592971 9.15E-06 5.04 C −0.577 3.52

LINOLEIC ACID ss715596071 7 11602516 1.88E-05 4.73 A −0.549 3.64

LINOLEIC ACID ss715596070 7 11603310 2.10E-06 5.68 G −0.636 3.38

LINOLEIC ACID ss715596058 7 11756838 3.62E-06 5.44 C 0.696 4.17

LINOLEIC ACID ss715604488 9 44197778 3.2E-05 4.50 A −0.430 4.04

LINOLENIC ACID ss715583655 2 573749 5.04E-05 4.30 C 0.745 3.72 0.44

LINOLENIC ACID ss715583662 2 578327 1.46E-05 4.84 C 0.741 3.34

LINOLENIC ACID ss715617909 14 22514991 3.99E-05 4.40 C −0.842 3.01

LINOLENIC ACID ss715617910 14 22537916 6.71E-06 5.17 C −0.891 2.92

Shown are the locations (in base pairs, bp), standardized allelic effects, and the percentage (%) of the total phenotypic variation explained for SNPs (r2 X 100) on

all chromosomes (Chr) associated with the wild soybean traits. The allelic effect is the standardized effect of the allele listed (A, C, G) compared with the alternate

allele and also represents the standardized difference in the means of the two homozygous genotypes. All –log10P scores (where P = the probability of SNP/trait

associations) exceeding 5.348 are significant at the 5% experimentwise level and those exceeding 4.248 are significant at the chromosome-wide level. Heritabilities

(h2) calculated using all SNPS also are given for each trait
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samples. By using GWA strategy with high-density of

genome-wide SNPs, we were able to uncover SNP as-

sociations for these traits, some of which co-localized

with previously-identified QTLs in cultivated soybean

populations whereas others appeared to be novel.

Below we discuss details regarding these SNPs and

Fig. 2 Manhattan plots for protein and oil content in the wild soybean sample. The red horizontal line denotes the experimentwise threshold and

the blue line denotes the chromosome-wide threshold
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Fig. 3 Manhattan plots for the two saturated fatty acids in the wild soybean sample. The red horizontal line denotes the experimentwise
threshold and the blue line denotes the chromosome-wide threshold
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Fig. 4 Manhattan plots for the three unsaturated fatty acids in the wild soybean sample. The red horizontal line denotes the experimentwise
threshold and the blue line denotes the chromosome-wide threshold
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their potential underlying candidate genes affecting

each of the traits.

Wild soybean protein and oil

The protein content in our wild soybean sample aver-

aged about 48%, a higher mean percentage than typically

is seen in cultivated soybeans [6, 17]. Consistent with

this, Chen and Nelson [33] found that the mean protein

level in a wild soybean sample was significantly higher

than that in a sample of cultivated soybeans. The con-

ventional explanation for this disparity is that selection

for cultivated soybean varieties generally has focused on

increased yield and oil content [19], traits that tend to

be negatively related to protein content [34, 35, 36]. Esti-

mates of the phenotypic correlation of protein and oil

content in cultivated soybeans range from −0.62 to

−0.78 [7, 20, 21], and some loci affecting both traits

exhibit antagonistic pleiotropy [20]. Our estimated

protein/oil correlation of −0.36 (Table 1) was consider-

ably lower, and presumably is a reflection of reduced

selection pressure on oil content in wild soybeans.

The genetic variability in protein content as estimated

by its heritability was a rather low 0.22 and thus it is not

surprising that only two SNPs associated with this trait

reached even the suggestive threshold level. This herit-

ability estimate for protein is strictly applicable to our

specific sample of (maturity groups V through IX) wild

soybean accessions and thus estimates from other

studies may be very different depending upon the num-

ber of QTLs segregating for protein, the maturity groups

Table 3 Soybean QTLs and candidate genes for the peak SNPs found for the 7 soybean traits

TRAIT SNP CHR BP Previous
QTLs

Gene ID

PROTEIN ss715617976 14 24367698

PROTEIN ss715631057 18 45438677 [57]

OIL ss715585518 3 34839398

OIL ss715637730 20 36705945 [58] Glyma.20G124700.1

OIL ss715637732 20 36710220 [58] Glyma.20G124700.1

PALMITIC ACID ss715595323 6 5303094

PALMITIC ACID ss715597684 7 37911072

PALMITIC ACID ss715617910 14 22537916

STEARIC ACID ss715618427 14 17499955 [59] Glyma.14G121400.1

STEARIC ACID ss715618430 14 17561477 [59]

STEARIC ACID ss715625341 16 6804502 Glyma.16G068500.1

OLEIC ACID ss715596070 7 11603310 [60]

OLEIC ACID ss715617910 14 22537916

OLEIC ACID ss715623399 16 1258943

OLEIC ACID ss715623400 16 1260003

OLEIC ACID ss715633271 19 12874336

LINOLEIC ACID ss715582510 2 39934224

LINOLEIC ACID ss715582512 2 39940256

LINOLEIC ACID ss715596075 7 11584261 Glyma.07G112100.1

LINOLEIC ACID ss715596074 7 11585878 Glyma.07G112100.1

LINOLEIC ACID ss715596072 7 11592971

LINOLEIC ACID ss715596071 7 11602516

LINOLEIC ACID ss715596070 7 11603310

LINOLEIC ACID ss715596058 7 11756838

LINOLEIC ACID ss715604488 9 44197778 Glyma.09G218700.1

LINOLENIC ACID ss715583655 2 573749

LINOLENIC ACID ss715583662 2 578327 Glytma.02G005200.1

LINOLENIC ACID ss715617909 14 22514991 [60]

LINOLENIC ACID ss715617910 14 22537916 [60]

Gene IDs are given for soybean genes containing the SNPs and are based on SoyBase searches
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sampled, and various other factors. For example, the

heritability of protein content estimated by Hwang et al.

[7] in a GWA study of cultivated soybeans was a

quite high 0.78. Consistent with this, Hwang et al. [7]

also uncovered 40 SNPs significantly associated with

protein content, although used a very low threshold

of −log10P = 3.0. Only five of their 40 SNPs, all tightly

clustered on chromosome 20 [7] exceeded our -log10P

suggestive threshold of 4.248. On the other hand,

Bandillo et al. [20] used a more conservative -log10P

threshold of 5.17, and found 19 SNPs (11 clustered

on chromosome 20) associated with protein in their

domesticated soybean sample.

The oil content in the wild soybeans we analyzed aver-

aged 11%, well below the 15–25% levels typically found

in cultivated soybeans [18]. Selection for increased oil

content has been practiced for many years, and Zhou et

al. [19] recently have identified 96 separate selective

sweeps located within known oil QTL regions. Oil

variability in our wild soybean sample as assessed by the

coefficient of variation (10.8) was higher than compar-

able estimates for cultivated soybeans such as that of

4.74 calculated by Akond et al. [6] among recombinant

inbred lines.

As was the case for protein content, the heritability

for oil content was considerably lower (0.32) than

various estimates such as 0.66 [17] and 0.78 [7] made

for cultivated soybean samples. These consistently

higher levels of heritability for both protein and oil

content in soybean may well reflect the past history of

selection for these traits among a number of different

soybean populations. Three SNPs in the wild soybeans

showed associations with oil, including one on chromo-

some three in a region not enclosing any previously-

discovered QTLs or genes affecting oil (Table 3). This

makes the identity of the candidate gene underlying

this association more speculative, although some

possibilities are listed in Additional file 5. Two other

SNPs on chromosome 20 are located within Glyma.20

G124700.1, which therefore is a strong possibility for a

candidate gene affecting protein.

Wild soybean saturated fatty acids

The mean for palmitic acid in our wild soybean sam-

ple was nearly 13%, slightly higher than the 11% [37]

to 12% [5] levels typically found in soybean oil. Be-

cause this predominant saturated fatty acid in cu-

ltivated soybeans is associated with cardiovascular

problems [38], efforts have been made to reduce its

level [5, 39, 40]. Considerable success has been

achieved with the discovery of alleles at two inde-

pendent loci, fap1 on chromosome nine and fap3 on

chromosome five, either of which can reduce palmitic

acid levels to as low as 6% or even lower [41, 42].

Unfortunately, these alleles also tend to decrease

overall yield [42] and thus compromise their usefulness in

soybean breeding regimes. This suggests that a use-

ful alternate might be to screen wild soybeans for

accessions with reduced palmitic acid levels to iden-

tify novel genes for eventual transfer to domesticated

varieties. The palmitic acid level in our accessions

from Japan was less than for those from South

Korea when all plants were grown in a common en-

vironment, so there clearly is some natural genetic

variation for this trait in wild soybeans across differ-

ent geographic areas.

Beyond major gene effects, many QTLs with minor

effects on palmitic acid levels have been discovered in

soybean [5, 18], and our study uncovered three add-

itional QTLs for this trait in wild soybeans that all

appear to be in novel positions. The SNP on chromo-

some 14 at 22537916 bp had the greatest effect, with the

TT genotype at this marker decreasing the palmitic acid

mean from 12.95% in the CC genotype to 12.15%. Selec-

tion for the T allele at this marker therefore might be

useful in reducing the palmitic acid level, but this same

allele also reduced oleic acid (Table 2) from about 15%

in the GG genotype to 12% in the TT genotype).

Although this is consistent with the positive correlation

between palmitic and oleic acid in our sample (Table 1),

increases rather than decreases in oleic acid are consid-

ered optimal for cardiovascular health [3]. A better strat-

egy therefore would be to select for QTLs affecting

palmitic acid, such as those we found on chromosomes

six and seven (Table 2), that have no pleiotropic effects

on oleic acid.

We also discovered three SNPs associated with the

other saturated fatty acid, stearic acid (Table 2). Two

were clustered on chromosome 14, and it seems quite

likely that the candidate gene underlying both SNPs is

Glyma.14G121400.1 that codes for plant stearoyl-acyl-

carrier-protein desaturase. This is an enzyme that catalyzes

the conversion of stearoyl-ACP to oleoyol-ACP and

plays an important role in the biosynthesis of unsat-

urated fatty acids (specifically, oleic acid) from sa-

turated fatty acids [43]. The other SNP associated

with stearic acid is located in the soybean gene Gly-

ma.16G068500.1 that codes for surfeit locus protein

two (SURF2). Ma et al. [44] found that this protein

was differentially expressed after 6 and 12 h of

rehydration of desiccated Myrothamnus flabellifolia

branches, with the fatty acid biosynthetic pathway

among those significantly enriched during the rehy-

dration process.

Wild soybean unsaturated fatty acids

Oleic acid is a monounsaturated fatty acid that at high

levels is associated with increased health benefits as well
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as oxidative stability [5, 45]. In soybean, this fatty acid

typically averages 20–25% [46, 47], although its level in

our wild soybean sample was considerably lower than

this (overall average = 15%), especially in accessions from

Japan. This difference might partially be explained by

selection for overall oil content in domesticated soy-

beans that has increased oleic acid levels as well. Con-

sistent with this, oleic acid in our wild soybean sample

was the only one of the five fatty acids to exhibit a

significant, positive (although low) correlation with total

oil content (Table 1). Direct selection for increased oleic

acid itself also has been practiced in domesticated soy-

beans, especially with the discovery of mutant FAD2

genes that can increase its level to as much as 80% or

more [47, 48]. This approach appears very promising,

although in some populations these mutant alleles may

negatively impact yield [5].

We found five SNPs associated with oleic acid, includ-

ing one on chromosome 14 in the same position as a

SNP associated with palmitic acid. Two SNPs clustered

on chromosome 16 generated the highest –log10P

values, but mapped in a region where no previous QTLs

affecting oleic acid have been reported. Among the

candidate gene possibilities in this region is Gly-

ma.16G014000 that codes for the enzyme pectin methy-

lesterase 1 (Additional file 5) that in kiwis is influenced

by the level of oleic acid [49]. An oleic acid SNP on

chromosome seven was interesting because it coloca-

lized with another SNP associated with linoleic acid, dis-

cussed below. A final SNP on chromosome nine showed

an association with oleic acid, but it barely reached the

suggestive threshold and in fact would fall below this

level with an appropriate adjustment for the genomic

inflation in this trait.

Linoleic acid is a polyunsaturated fatty acid that,

unlike oleic acid, does not exhibit oxidative stability

and therefore can quickly become rancid, effectively

reducing its shelf life [10, 47]. To remedy this, soy oil

typically is hydrogenated, but this produces trans-fats

that are associated with cardiovascular problems [4, 50].

Linoleic acid makes up the largest proportion (typically

about 2%) in soy oil (Fehr [37]), as it also did in our

wild soybean sample (mean = 54%), so there has been

a considerable incentive to considerably reduce the

level of this fatty acid. Fortunately, the mutant FAD2

genes discussed above do precisely this by largely

disrupting the conversion of oleic acid precursors into

linoleic acid precursors [47]. As a consequence, less

emphasis appears to have been put on discovering

major genes that reduce linoleic acid levels, although

a number of QTLs with minor effects on fatty acid

have been discovered [6, 18].

Our CMLM analysis produced nine SNPs associated

with linoleic acid, the highest number for any of the

seven traits. Most notable were six SNPs clustered in an

interval from 11.58 to 11.75 Mb on chromosome seven,

an area where no previous QTLs affecting this trait have

been found. Two SNPs in the proximal part of this re-

gion (at ll.58 Mb) are found within Glyma.07G112100.1,

and three other SNPs (11.59 to 11.60 Mb) are within 50

Kb of this gene. In Arabidopsis, this gene codes for a

mitochondrial transcription termination factor (MTERF)

family protein. Babiychuk et al. [51] characterized a

number of Arabidopsis proteins in the MTERF family,

and showed that they are essential for plastid gene

expression and plant development, including biosyn-

thesis of fatty acids. Thus this gene would appear to be a

strong candidate for the QTLs on chromosome seven

affecting linoleic acid in the wild soybeans. Gly-

ma.07G112100.1 also is within 50 Kb of the SNP on

chromosome seven associated with palmitic acid

(Additional file 5), so seems a likely candidate gene for

that fatty acid as well.

Like linoleic acid, linolenic acid also is a polyunsat-

urated fatty acid although its proportion in soy oil is

much less, typically about 8–10% [52]. Three key loci

coding for omega-3 fatty acid desaturases (FAD3A,

FAD3B, and FAD3C) have been discovered that con-

vert linoleic acid into linolenic acid [47, 48]. Further,

marker assays now have been developed to allow

breeders to screen for mutants at these loci that de-

crease linoleic acid to desirable levels [47]. As was

true for the other fatty acids, however, a number of

other QTLs affecting linoleic acid have been discov-

ered [10, 18]. We found four SNPs associated with

linoleic acid, including one on chromosome 14 at

precisely the same location (22537916 bp) as others

affecting both palmitic and oleic acid. Clearly there

appears to be a candidate gene in this area that is

pleiotropically affecting three of the five fatty acids.

QTL and candidate gene considerations

We discovered a total of 29 SNPs on ten different chro-

mosomes that were associated with the seed compos-

ition traits in our wild soybean sample. SNPs in clusters,

especially those on chromosomes seven and 14, probably

are of most interest and worth further investigation, but

all of the significant SNPs affecting these traits would

need to be verified in subsequent studies. If some of

these SNPs/candidate genes and their effects on the seed

composition traits are validated in future studies, this

should provide valuable information about the genetic

basis of protein and oil biosynthesis in wild soybean.

They may also prove worthwhile for eventual introgres-

sion into soybean lines to enhance breeding efforts for

increased protein or oil content and/or suggest add-

itional genetic control of pathways involved in seed

composition biosynthesis.
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Eight of the 29 significant SNPs co-localized with

previously-identified QTLs in cultivated soybean popula-

tions and some of the candidate genes identified here

are involved in fatty acid metabolism and regulations. It

was not surprising, however, that some of the well-

studied fatty acid pathway genes were not identified in

our wild soybean sample. There are several potential

reasons for this: 1) The genetic architecture of most

quantitative traits is very complex and population-

specific, with different QTLs/candidate genes for the

same trait typically identified in different populations

and/or species. For example, Li et al. [18] used 1205

SNPs developed for more than 600 candidate genes

identified in the model plant Arabidopsis, and found that

only a small fraction of these SNPs (37 out of 1205)

showed significant associations with fatty acid biosyn-

thetic genes in soybean. The wild soybean used here is

the closest wild relative of cultivated soybean, but has a

substantially higher level of genetic diversity. We there-

fore did not expect to find the same SNPs/genes control-

ling the seed composition traits in our sample as those

previously discovered in the more intensively-studied

cultivated soybean populations. 2) This result may sim-

ply be a reflection of the fact that these loci were not

polymorphic in our sample. Or even if some of these

genes turned out to be polymorphic, they could have

been missed because of a lack of sufficiently close SNP

markers. This is especially the case because the linkage

disequilibrium blocks in wild soybean populations are

well known to be much less extensive than those in

domesticated soybean samples. We investigated these

possibilities for the well-studied genes, fap1 (chromo-

some nine) and fap3 (chromosome five), in our genomic

data, and found that the closest SNPs were within 58.6

(fap1) and 606.8 kb (fap3) of the locations of these

genes. For fap3 especially, therefore, this suggests that

we may not have had adequate coverage of SNP markers

to detect the effect of this gene, if segregating. 3) Some

loci previously discovered as affecting these traits might

also have been missed if SNPs were eliminated that did

not meet the filtering criteria. 4) Given that most genes

exhibit interactions (epistasis), some genes known to

affect the seed composition traits may have had weaker

signals in wild soybean population than in other culti-

vated soybean populations, and their effects may not

have met the stringent statistical threshold for detection.

Regardless of the actual number of QTLs affecting the

seed composition traits in our wild soybean sample, SNP

variation for each of the traits was not nearly enough to

account for their total genetic variance as estimated by

their heritabilities. This ‘missing heritability’ is com-

mon in GWA studies and is generally ascribable to

several factors such as incomplete linkage between the

underlying genes and the closest markers and/or the

presence of rare variants that affect the traits of inter-

est [12, 15, 53]. The QTL results for the traits in our

sample of wild soybeans presumably reflect these and

various other factors. One factor may have been LD

which in the wild soybean genome spans much shorter

distances than in soybean, suggesting that the use of

many more markers would have resulted in the detection

of additional QTLs. Among the available soybean SNPs,

we filtered those with minor frequencies less than 0.05,

some of which may have been linked to genes affecting

the traits. If so, an alternative strategy would be to use a

linkage mapping approach where it is possible to con-

struct crosses that would produce an F2 generation with

minor alleles at moderate frequencies. We also were quite

successful in adjusting for population structure and thus

reducing genomic inflation that would have resulted in

higher -log10P association scores and thus more SNPs

associating with the wild soybean traits.

Beyond these kinds of considerations, it may well be

that the seed composition traits in our wild soybean

sample are affected by a number of genes, each with a

small effect. This sort of genetic architecture is common

in a number of traits, but detection of relatively weak

signals presents special difficulties for the GWA ap-

proach [15, 53]. As a potential example of this, the SNP

on chromosome 14 (at 22537916 bp) affecting palmitic

acid, oleic acid, and linolenic acid also exhibited associ-

ation scores of 2.26 (P = 0.005) with linoleic acid and

2.91 (P = 0.0013) with stearic acid. Although these scores

are well below the suggestive threshold, it is possible

that the underlying QTL in this region pleiotropically

affects all five rather than three fatty acids but we simply

do not have sufficient power to detect its effect on

linoleic and stearic acid.

The QTLs controlling variation in the seed compos-

ition traits in wild soybeans also may exhibit interactions

within loci (dominance) or between loci (epistasis). We

ran a preliminary analysis that included heterozygous

SNPs and uncovered suggestive evidence of dominance

effects, but the sample sizes for the heterozygotes in

most cases were so small (some were as low as 1) that

these results appeared unreliable and could represent

false positives [54]. The linkage mapping approach

generally would seem to be a better strategy for the

detection of dominance effects in generally selfing or-

ganisms such as G. soja. Non-additive epistatic effects

among different loci also may be an important part of

the genetic architecture of these traits. Tests for epistasis

in GWA studies are technically difficult [55] and only

rarely have been attempted [56]. As computer and statis-

tical techniques for the detection of epistasis in these

studies evolve, we predict that these effects will explain

some of the hidden genetic variability in many traits,

including those we have analyzed in wild soybeans.
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Conclusions
This GWA study is the first conducted on seed compos-

ition traits measured solely in a wild soybean population,

and revealed a number of QTLs that have not been pre-

viously discovered. Some of these QTLs may be useful

to breeders who select for increased protein/oil content

or altered fatty acid ratios in soybean seeds. Our results

also provide additional insight into the genetic architec-

ture of these traits in a large sample of wild soybean,

and suggest some new candidate genes whose molecular

effects on these traits need to be further studied.
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