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Abstract

The different environments that humans experience are likely to impact physiology and disease susceptibility. In order to
estimate the magnitude of the impact of environment on transcript abundance, we examined gene expression in peripheral
blood leukocyte samples from 46 desert nomadic, mountain agrarian and coastal urban Moroccan Amazigh individuals.
Despite great expression heterogeneity in humans, as much as one third of the leukocyte transcriptome was found to be
associated with differences among regions. Genome-wide polymorphism analysis indicates that genetic differentiation in
the total sample is limited and is unlikely to explain the expression divergence. Methylation profiling of 1,505 CpG sites
suggests limited contribution of methylation to the observed differences in gene expression. Genetic network analysis
further implies that specific aspects of immune function are strongly affected by regional factors and may influence
susceptibility to respiratory and inflammatory disease. Our results show a strong genome-wide gene expression signature of
regional population differences that presumably include lifestyle, geography, and biotic factors, implying that these can
play at least as great a role as genetic divergence in modulating gene expression variation in humans.
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Introduction

Understanding the contribution of genetic and environmental

factors to variation in gene expression in humans is essential to

interpretation of the relationship between genotype and pheno-

type. Genetic differentiation has been the focus of several recent

studies that have extensively mapped gene expression variation to

specific genomic variants in lymphocyte samples [1] and Epstein-

Barr virus-transformed lymphoblastoid cell lines [2,3]. The

contribution of environmental factors to variation in gene

expression in humans has not yet been explicitly investigated.

Here we test the hypothesis that environmental factors can

generate significant transcriptional variation by contrasting

peripheral blood gene expression among three regionally distinct

samples of Moroccan Amazighs, who are a genetically relatively

homogeneous human population. The Amazighs, also known as

Berber people, occupy northwest Africa and are thought to

represent a genetically relatively homogeneous human population

[4,5]. They lead distinct ways of life and occupy diverse physical

geographic habitats across Morocco thus providing an excellent

opportunity to monitor the impact regional differences in living

circumstances have on gene expression and therefore physiology.

Peripheral blood is a readily accessible tissue sample that

integrates environmental factors such as immune exposure, diet,

and psychological state. We collected peripheral blood samples

and isolated total leukocytes for gene expression profiling. We set

out to establish the extent of the effect environmental factors

relating to lifestyle and geographic differences have on immune

expression profiles. Whole-genome genotyping and methylation

profiling were used to estimate the extent of population structure

and methylation differentiation in our sample as a proxy for their

effect on the observed expression differentiation.

Results/Discussion

Over a three week period, we obtained leukocyte samples from

peripheral blood for gene expression profiling from 16 Bedouin

living a traditional nomadic existence on the fringe of the Sahara

desert near the town of Errachidia, 18 inhabitants of Anza, an

urban slum-like settlement within the coastal city of Agadir, and 12

villagers from Sebt-Nabor, a remote rural mountain settlement

south of Agadir (Figure 1). We isolated the total leukocyte

population immediately after blood sampling [6], and extracted

total RNA. Expression profiles were monitored with Illumina

HumanRef8 v2 BeadChip oligonucleotide arrays representing

over 22,000 annotated genes [7], 10,177 of which were expressed

in the samples.

Effect of Lifestyle and Geography on Gene Expression
We detected several distinct global profiles of expression,

implying expression heterogeneity among individuals. This is seen

in the analysis of all expressed genes, but is readily visualized in a

heat map of two-way hierarchical clustering of the 1,000 most
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significant differentially expressed genes (Figure S1), highlighting

the dominant impact that locality has on gene expression profiles.

Surrogate variable analysis [8] was employed to capture and

control for additional sources of expression heterogeneity that may

include circadian cycle and age. This has been shown to increase

the accuracy of analyses and avoid confounding of signals due to

hidden sources of heterogeneity [8] (Figure S2 and Table S1). An

analysis of variance including terms for region, sex, batch, and six

significant surrogate variables confirmed the significant effect

regional factors have on gene expression. A total of 3,725 of

10,177 (37%) of the expressed transcripts were differentially

expressed with respect to region at the 1% false discovery rate

(FDR) cutoff in a full three-way comparison, rising to 6,215

transcripts (61%) at 5% FDR. Table 1 shows the number of

significant genes for each pairwise comparison. In the same

analysis 30 transcripts were differentially expressed with respect to

sex, at 1% FDR (70 at 5% FDR).

Given the geographical distance between the sampled localities

(urban to rural: 150 km; urban to nomadic: 560 km; rural to

nomadic: 650 km), and the scope of the differences in lifestyle, we

expected the nomadic sample to be the most differentiated.

However, volcano plots of significance against the magnitude of

gene expression divergence for each pairwise comparison of

regions (Figure 2A) imply that the nomads diverge less from both

the rural and urban individuals, than the urban diverge from rural

individuals. We also examined the differentiation of all three

regions (Figure 2B), which shows that the majority of the

differences between nomadic and rural individuals are also

observed in contrasts of these two localities with the urban sample.

Comparison of Environmental and Genetic Effects on
Gene Expression

It is usually difficult to contrast the genetic and environmental

contributions to leukocyte expression variation simultaneously,

since different ethnic groups occupy different environments, but

comparison with published results from laboratory cultures of cell

lines implies that the regional effect is relatively large. Transcript

abundance has recently been measured in B lymphoblastoid cell

lines derived from individuals of Asian, African and European

ancestry [9–11]. The proportion of genes differentially expressed

was for example jointly estimated within and among populations

Author Summary

The incidence of complex diseases such as diabetes,
asthma, and depression is almost epidemic in many
countries and coincides with transition in lifestyles. Clearly
this is a result of interaction between modern cultural and
environmental factors with the genetic legacy of human
history. To estimate the extent of the effects of environ-
mental factors, including lifestyle and geography, on gene
expression, we examined gene expression differentiation
in peripheral blood leukocyte samples from three Mor-
occan Amazigh groups leading distinct ways of life: desert
nomadic, mountain agrarian and coastal urban. Our data
shows that as much as one third of the leukocyte
transcriptome is associated with differences among the
three regions. Network analysis implies that specific
aspects of immune function are strongly affected by
regional factors and may influence disease susceptibility.
Genetic and methylation differentiation between the three
regions is limited and is unlikely to explain the extent of
the observed gene expression differentiation. Insight
gained from this study highlights the impact transitions
from traditional to modern lifestyles likely have on human
disease susceptibility and further warrant the need to
incorporate gene expression profiling alongside genetic
association studies for the prediction of disease suscepti-
bility.

Figure 1. Geographic locations of sampled Amazighs groups in Morocco. A total of 52 peripheral blood samples were collected: 20 urban
samples from the town of Anza (Latitude: 29.367u, Longitude: 29.633u), 15 rural samples from the rural village of Sebt-Nabor (Latitude: 31.450u,
Longitude: 29.650u), and 17 nomadic samples from the Sahara desert in eastern Morocco (Latitude: 31.809u, Longitude 24.603u). Subsets of these
were used in the gene expression profiling, genotyping and methylation profiling as described in Table S5.
doi:10.1371/journal.pgen.1000052.g001

Environmental Geography and Gene Expression
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[11], where it was concluded that approximately 17% of genes

differentiate African and European populations. This percentage is

based on the estimate that 83% of the genes are true nulls (that is,

false positives if all genes are assumed to be significantly different)

in the comparison. Using more stringent criteria, just 50 of 5,194

expressed genes were found to separate the two CEPH samples at

an FDR of 20%, compared with 2,770 of 10,177 genes at an FDR

of 1% in our similarly sized sample of leukocytes. In a reanalysis of

the Asian and European comparison data set from ref. [12], it was

shown that at least 94% of genes are differentially expressed with

respect to a temporal batch effect and ancestry [13]. The

reanalysis also estimated that 79% of genes are differentially

expressed with respect to the batch effect among individuals of

European ancestry. Therefore, of the 94% of genes differentially

Table 1. Number of differentially expressed genes.

Significance Threshold Urban vs. Rural Urban vs. Nomadic Nomadic vs. Rural Male vs. Female

Bonferroni P,0.01 408 (4.0%) 103 (1.0%) 57 (0.56%) 22 (0.22%)

FDR,0.01 2,770 (27.2%) 1,069 (10.5%) 794 (7.8%) 30 (0.29%)

P,0.01 3,044 (29.9%) 1,897 (18.6%) 1,674 (16.4%) 365 (3.6%)

Numbers and percentages of differentially expressed genes at three different significance levels were obtained after fitting an analysis of variance model that included
surrogate variables to account for unmodeled sources of differential expression, as well as fixed terms for location, sex, and batch.
doi:10.1371/journal.pgen.1000052.t001

Figure 2. Volcano plots of statistical significance versus magnitude of differential expression between locations. (A) For each
transcript, significance is shown as the negative logarithm of the P value on the y-axis, and the log base 2 of magnitude of mean expression
difference is on the x-axis. Dashed lines indicate the threshold for significance (green: P,0.05, blue: 1% FDR, and red: Bonferroni adjusted P,0.05).
The Venn diagram (B) shows the numbers of differentially expressed genes at 1% FDR for each comparison and the overlaps between them.
doi:10.1371/journal.pgen.1000052.g002

Environmental Geography and Gene Expression
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expressed with respect to year and ancestry, it can be estimated

that 79% of these are due to the batch effect alone. This yields an

estimate of 94%279% = 15% of genes being differentially

expressed with respect to ancestry, which is similar to that found

in ref. [11], and approximately half the level of differentiation we

observe due to regional non-genetic factors.

The effect of regional factors in our study is by contrast similar

to that of genetic influences on breast tumors [14] and of HIV

infection on peripheral blood [15]. We have reanalyzed the

Affymetrix dataset in ref. [15] contrasting PBMC expression in

HIV positive and negative mothers in a rural village in Botswana.

HIV infection status significantly impacts expression of 31% of the

10,000 most strongly transcribed transcripts at an FDR of 1% in

this study of a similar size. Consequently, expression heterogeneity

on a scale similar or greater to that observed among Moroccan

lifestyles can arise within a single community due to an identifiable

environmental agent. Furthermore, reanalysis of a breast cancer

cDNA microarray dataset [16] shows that 33% of transcripts

distinguish BRCA1 from BRCA2 mutant tumors [14]. Thus,

taken at face value, regional influences including lifestyle and

geographic effects appear to make as large a contribution to

leukocyte expression as common immune-related diseases.

It should be emphasized though that power to detect differential

expression varies among studies, being heavily influenced by such

technical factors as the array platform, sample size, and RNA

handling methods, not to mention biological factors such as tissue

homogeneity, genetic diversity, and individual environmental or

cultural differences. Nevertheless, the studies contrasting lympho-

blastoid lines from different populations should have been well

powered to detect differences of the magnitude we attribute to

lifestyle differences, and we also note that the estimates of the

fraction of differentially expressed genes among lifestyles was not

strongly affected by partial reduction of our dataset. Intriguingly,

an estimate of heritability of transcription in PBMC samples from

Mexican American families [1] was congruent with an estimate of

heritability of transcription in transformed lymphoblasts from a

British asthma cohort [3], both recent studies finding that over one

quarter of transcripts have heritabilities in excess of 0.3.

Heritability provides an estimate of the genetic contribution to

the expression trait, but is by definition a characteristic of a single

population in a common environment. Taken together these and

other studies thus establish that there is ample genetic variation

within populations, and that while there is some divergence

between human ethnic groups, the potential impact of environ-

mental variables can be much greater than that of genetic

divergence.

Genetic Differentiation Is Limited in our Sample
Although Amazighs are homogeneous relative to other human

groups [4], having retained a distinct cultural identity in Morocco

alongside Arabs and sub-Saharan Africans in the face of repeated

invasions throughout recorded history, it is possible that there has

been modest genetic differentiation among the three communities

[5]. Whole genome genotype profiles [17] were obtained for eight

randomly selected individuals from each region and principal

component analysis was used to infer the extent of genetic

variation from over 300,000 autosomal SNPs [18]. Out of the top

10 axes of variation, only one is significant (P = 0.0006, Tracy-

Widom test). It distinguishes three residents of urban Anza,

possibly indicating recent Arab admixture (Figure S3 and Table

S2). No significant axes of variation were detected when these

three individuals were removed from the analysis. There was a

suggestion of genetic divergence of the nomads in the second axis

but it only explained a small fraction of the genotypic variation

and was only marginally significant (P = 0.0167). By contrast,

application of principal component analysis to a European

American sample [18] indicated that the top ten axes were

statistically significant (P,0.01 for each) with the top two axes

having P,10212, supporting the evidence that Moroccan

Amazighs are a homogeneous group relative to other human

groups.

The absence of meaningful population structure was also

confirmed with Structure Version. 2.2 [19]. We applied the program

to 11,000 autosomal SNPs (500 randomly selected and approx-

imately uniformly distributed from each of the 22 autosomal

chromosomes) at K = 2–3 (Figure S4). At K = 2, Structure first

separates three individuals (8D, 5D, and 5G in Figure S1) from the

rest of samples; the same individuals were distinguished by

Eigenstrat analysis on the significant axis of variation. At K = 3, two

nomadic individuals cluster as a distinct unit but the rest of

samples show high membership coefficient to one group.

Increasing the number of SNPs had no effect on the results. As

K is increased, pairs of individuals show evidence for relatedness,

but these are not members of the same population, further

confirming the relative absence of population structure in the

dataset. Comparison of pairwise differences among individuals

confirms that, excluding the three outliers in Anza, there is no

notable difference in degree of relatedness of individuals within the

different populations. Taken together these results indicate that the

majority of the divergence in gene expression described here is

unlikely to be explained by genetic divergence.

Despite the absence of genomewide differentiation between the

study sites, it is possible that some of the expression divergence

could be due to genetic differences at a small number of loci that

regulate hundreds of downstream transcripts. These would likely

need to be nearly fixed between the populations to cause the

almost complete correspondence between expression profile and

locality. To explore this possibility, we estimated Fst for each of

over 300,000 sites for each of the three pairwise comparisons of

populations, and plotted the values in a sliding window of 100 sites

along each chromosome. Fst values are typically below 0.05 but

occasionally range up to just 0.11, averaging between 0.043 and

0.052 in each comparison, again confirming the low level of

genetic divergence. No fixed differences were detected.

To explore the relationship between genetic and expression

divergence at each locus, gene-specific Fst measures were

calculated by averaging Fst values of all SNPs located within 1-

Mb upstream and downstream of the expression probe. No

correlation between Fst and expression fold change (Figure S5A) or

significance (Figure S5B) was detected when this analysis was

performed for all 10,177 expressed genes and for all three pairwise

comparisons. Although some cis-acting, presumably regulatory,

variants have been shown to have large effects on transcript

abundance [1–3], this result argues against the population

expression differences being attributable to genetic divergence at

thousands of locally acting polymorphisms in our study. While a

few genes show both genetic and expression divergence, their

number is no greater than expected by coincidence.

Differential Methylation Analysis
The observed differential expression could be due to differences

in the ratios of the numerous cell types present in the total

leukocyte population, to transient changes in activity of transcrip-

tion factors and micro RNAs, or to longer-term epigenetic

modification of chromatin structure. To test for one possible

epigenetic mechanism, we measured the degree of methylation at

1,505 CpG sites [20] representing 805 genes of various classes,

including tumor suppressor genes, oncogenes, genes involved in

Environmental Geography and Gene Expression
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DNA repair, cell cycle control, differentiation and apoptosis. 420

of these sites were within genes included in our list of transcripts

differentially expressed among locations. 58 differences in CpG

site methylation between males and females were detected at a

P,0.01 with a mixed model analysis of variance (Figure 3A), the

majority involving X-linked genes, as expected given the

correspondence of methylation with X-inactivation [21] (Figure

S6), thus providing a positive control for the methodology.

However, only 18 CpG sites were found to differ between regions

in this analysis at the same significance level, which is no more

Figure 3. Sex and location effects on methylation patterns. Two-way clustering of differentially methylated CpG sites at P,0.05 (ANOVA) for
the sex effect (A) and for the location effect (B). Sample labels indicate their sex and location (M: male, F: female, E: nomad, SN: rural, and A: urban).
There is clear separation of the sexes in (A), and a suggestion of a signature of urban living for a dozen or so genes in (B) highlighted as the Anza-
enriched cluster.
doi:10.1371/journal.pgen.1000052.g003

Environmental Geography and Gene Expression
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than expected by chance. A small signature of a dozen or so genes

differentiated half of the urban population (Figure 3B), but on the

basis of our results epigenetic modification via methylation can

only account for a small fraction of the expression divergence

between regions.

Expression Differences and Impact on Immune Function
Global comparison of differential expression according to gene

ontology classes and pathway analysis implicates divergence in

core immune competence among the three groups. Ingenuity

Pathway Analysis was used to explore connectivity among

differentially expressed transcripts and identified significant

differential expression networks anchored by key immunoregula-

tory factors. For example, all of the genes connected to the cell

cycle and apoptosis regulators FOS and MYC [22] show

significant effects of regional factors (Figure 4A and Table S3).

The identities of the most differentially expressed genes also

suggest that the expression divergence among the three Amazigh

localities is likely to impact immune system function and disease

susceptibility (Fig 4B and Table S4). ). The following specific

examples illustrate this conclusion, which is further corroborated

by network analysis of clusters of differentially expressed genes.

The most enriched Ingenuity Knowledge Database disease

category in the differentially expressed genes list is the respiratory

disease class (P,0.0001, Fisher’s exact test). Our data shows that

IL-8, a respiratory cytokine and genetic variants of which have

been associated with asthma [23,24], is dramatically upregulated

in the inhabitants of urban Anza compared to the rural villagers

(P,0.0005, ANOVA) and the nomads (P,0.0004). Additionally,

four IRAK interleukin receptor-associated kinases, one of which is

associated with respiratory illness [25], were differentially

expressed by location (Figure S7). The urban Anza residents are

exposed to pollutants from a nearby concrete manufacturing plant

and other industrial units, and to viral pathogens that are not

experienced by nomads or villagers, and are known to have an

enhanced incidence of respiratory illness. This result suggests that

a genotype-by-environment effect resulting in aberrant expression

of IL-8 transcript abundance in leukocytes, should be considered

in parallel with the use of genotypic variation as a possible

diagnostic marker for respiratory illness.

The Human Leukocyte Antigen (HLA) complex is well known

to mediate response to infection as well as autoimmunity, as it

encodes the major histocompatibility molecules that present

antigens to the immune system. Intriguingly, two non-classical

members of the HLA complex, HLA-DM and HLA-DO, were

differentially expressed among the urban population compared to

the rural villagers (P,0.000009 and P,0.002, respectively) and to

the nomads (P,0.0009 and P,0.006, respectively). These are

thought to act in concert to process antigens for binding to MHC

[26], and are strongly co-regulated across our sample. This result

warrants further exploration of association of these genes with

immunological disease.

One of the two most divergent transcripts encodes POU2F2

(also known as OCT2), the octamer-binding transcription factor

that regulates differentiation of leukocytes [27]. Transcription of

this gene tends to be elevated in villagers relative to the other two

groups. ELK1, another important lymphoblastoid transcription

factor [28] that regulates FOS transcription [29], showed elevated

expression only in individuals from the village. Potential and

validated targets of ELK1 are enriched (P,0.004, Fisher’s exact

test) in the list of differentially expressed genes as determined by

counts of putative binding sites listed in the TRANSFAC database

[30]. Consequently, modulation of expression of this single

regulator probably has pleiotropic effects on immune function,

both at the level of cellular differentiation and function.

Conclusion
The most plausible explanation for the dramatic differentiation

of as much as a third of the transcriptome described here is that a

combination of biotic, abiotic, and cultural differences is involved.

A significant portion of these environmental factors can be

attributed to aspects related to lifestyle such as nutrition, history of

immune exposure, and psychological stress. Consequently, insight

gained from this study highlights the impact transitions from

traditional to modern lifestyles likely have on human disease

susceptibility, particularly through their impact on immune

function. We speculate that diseases due to genetic factors in

urban populations may bear little resemblance to the impact of the

same genetic factors in traditional societies. Since the causal

environmental factors and the mechanisms through which they act

remain to be identified, we advocate the incorporation of gene

expression profiling alongside genetic association studies for the

prediction of disease susceptibility.

Materials and Methods

Study Populations and Collection Protocol
Ethical approval for the study was granted by the Institutional

Review Board for the Use of Human Subjects in Research at

North Carolina State University, and the Moroccan Ministry of

Health. Peripheral blood samples were collected under informed

consent from 52 self-reported Moroccan Amazigh. All subjects

were between the ages of 18 and 52 and were reported to be in

good health at the time of blood sampling. The pastoral nomadic

subjects of the study (average age = 35) are Bedouins from an

Amazigh tribe inhabiting a region known as Tarda (Latitude:

31.809u, Longitude 24.603u) in the Sahara desert. The Bedouins

live in traditional tents and their subsistence comes from

domesticated animals. All but three subjects are unrelated (in

Figure S1, individuals labeled 9A and 6E are siblings and 8E is

their cousin). The rural subjects (average age = 32) are unrelated

permanent residents of the Sebt-Nabor village (Latitude: 31.450u,
Longitude: 29.650u). The subjects have a traditional lifestyle

based on traditional agriculture and herding with very little

exposure to urbanized lifestyle, one indication of which is that

access to the village was by a four hour donkey ride. The urban

subjects of the study (average age = 31) are unrelated permanent

residents of the urban town of Anza (Latitude: 29.367u, Longitude:

29.633u). All the subjects have been living in Anza for at least the

last 10 years.

The same sample collection protocol was followed for the three

collection sites in order to minimize the effect of this source on

gene expression heterogeneity. Blood samples were collected

within a period of three days for each locality in December 2006,

with collection each day spread over a 6 hour period from mid-

morning to mid-afternoon. Approximately 15 ml of peripheral

whole blood was collected by a phlebotomist using venipuncture.

The total leukocyte population was immediately (within 2 minutes)

isolated from 9 ml, and its total RNA was stabilized with the

LeukoLOCKTM Total RNA Isolation System (Ambion, Austin,

TX). The system incorporates depletion filter technology to isolate

leukocytes and eliminate plasma, platelets, and red blood cells, and

RNAlater to stabilize the RNA in the cells captured in the filter.

The remaining blood (approximately 6 ml) was stored in EDTA

tubes for DNA extraction. The filters and blood samples were kept

on ice, and then frozen at 220uC within three days of collection.

While we cannot exclude the possibility that sampling differences

Environmental Geography and Gene Expression
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Figure 4. Functional analysis of differentially expressed genes. (A) Differential expression of the FOS and MYC networks and enriched disease
classes. The Ingenuity Pathways Knowledge Base (IPKB) was used to generate networks of interacting genes that are overrepresented in the set of
transcripts differentially expressed (based on a 1% FDR cutoff) between the urban and rural samples. The top two networks are focused on the FOS and
MYC transcription factors, and every one of the genes that the IPKB indicate as interacting either genetically or biochemically are differentially expressed in
this comparison. Network connectivity is indicated as solid edges for direct interactions, and dashed edges for indirect interactions. Transcripts are
displayed in green for down-regulated and red for up-regulated, while cellular compartments in which the gene products are localized are also indicated.
Gold edges highlight shared interactions. The list of genes, their fold change and P values are listed in Table S3. (B) Overrepresentation of disease classes
affected by differentially expressed genes. Some of the Ingenuity Knowledge Database disease bio-function categories enriched (P,0.05) in differentially
expressed transcripts (1% FDR) in the three lifestyle pairwise comparisons (grey, urban vs. rural; blue, nomadic vs. urban; green, nomadic vs. rural). Fisher’s
exact test was used to calculate the P value associated with the probability that the number of genes in each biological function and/or disease assigned
to that data set is greater or less than expected by chance given the numbers of genes expressed in leukocytes.
doi:10.1371/journal.pgen.1000052.g004

Environmental Geography and Gene Expression
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at each locality contribute to expression divergence, the fact that

several individuals cluster outside their locality (Figure S1) argues

against this.

RNA and DNA Preparation
Total RNA extraction, cDNA and cRNA synthesis were

performed with the Illumina TotalPrep RNA Amplification kit

(Ambion, Austin, TX) following the manufacturer’s instructions.

Size distribution of the extracted total RNA and the amplified

cRNA was checked with Agilent’s RNA 6000 Nano LabChip kit and

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). The

quality of RNA and cRNA was comparable among all samples

used further in the experiment. DNA samples were extracted with

QIAamp DNA Kit (Qiagen, Valencia, CA). Standard gel

electrophoresis and the ND-1000 (NanoDrop Technologies,

Wilmington, DE) were used to check DNA quality and quantity,

respectively. The list of samples used for each experiment

described below is available in Table S5.

Gene Expression Profiling
Illumina’s HumanRef-8 v2 BeadChips (Illumina, San Diego,

CA) were used to generate expression profiles of more than 22,000

transcripts with 500 ng of labeled cRNA for each sample and

following manufacturer’s recommended protocols. All expression

data are available at NCBI Gene Expression Ominbus (GEO)

under series number GSE8847. The individual expression arrays

are listed as GSM219988 through GSM220033. An Excel

spreadsheet list of all differentially expressed gene is also available

online at the PLoS Genetics website as Dataset S1, and

significance criteria for all transcripts are provided as Dataset S2.

A randomized design was used to minimize chip effects. Four

individuals were replicated in the two batches; these clustered

adjacent to one another in hierarchical analysis and the expression

intensities were averaged in the statistical analysis. Expression

intensity measures were obtained from an average of 30 beads for

each transcript. The BeadChips were imaged with an Illumina

BeadArray Reader. The raw intensities were extracted with the

Gene Expression Module in Illumina’s BeadStudio software.

Expression intensities were log2 transformed and median-centered

by subtracting the mean value of each array from each intensity

value. 10,177 transcripts with expression at or above background

levels averaged across all the arrays were retained for further

analyses. These represent transcripts remaining after removal of

12,000 bead measurements that were considered to lay below

background detection levels because they are less than the

inflection point of a plot of rank-ordered log2 transformed,

median-centered, intensities of all of the transcripts on the array. A

median-centered normalization was carried out again from the

raw intensities considering only the 10,177 most expressed

transcripts, and the resulting relative fluorescence intensities were

used in further analyses. List of transcripts considered expressed in

leukocytes and lists of significance for differential expression for

each comparison are available in Tabes S6 and S7, respectively.

Statistical Modeling of Gene Expression
It has recently been shown that if there are additional sources of

expression variation due to factors not included in the model, then

this can lead to unreliable differential expression analyses due to

large-scale dependence among genes and potential confounding

with these unmodeled factors [8]. ‘‘Surrogate Variable Analysis’’

was developed to directly use the known variables (here, Location,

Sex, and Batch) and the entire expression data set in order to

estimate the signatures of these unmodeled factors, called

‘‘surrogate variables’’. Table S1 lists the surrogate variables

estimated and utilized in all of the analyses. After identifying

surrogate variables, differential expression was estimated using an

analysis of variance following standard methods [31] on the basis

of the following model:

Expression~BaselinezLocationzSexzLocation�Sexz

BatchzSurrogate VariableszNoise:

For each of the Location and Sex variables, a P value (ANOVA)

measuring significance of differential was obtained for each gene.

False discovery rates were calculated according to the qvalue

software package [14]. It should be noted that even though the

surrogate variables represent random effects, we were able to

effectively treat them as fixed in the model fitting process, since all

inference was performed conditional on the surrogate variables in

a conditional likelihood framework [32]. The effect on P value

distributions when including surrogate variables is shown in Figure

S2.

Functional and Promoter Enrichment Analysis
The network, functional and biomarker analyses were generat-

ed through the use of Ingenuity Pathways Analysis. Genes whose

expression was significantly differentially regulated between the

three locations were included using a 1% false discovery rate cutoff

from the surrogate variable analysis results. Fisher’s exact test was

used to calculate a P value associated with the probability that the

number of genes in each biological function and/or disease

assigned to that data set is greater or less than expected by chance

given the numbers of genes expressed in the leukocytes. The

program PRIMA [33] integrated in the software Expander [34] was

used to find transcription factors whose binding sites are more

frequent than expected by random in the promoters (spanning

from 1000 bp upstream the TSS to 200 bp downstream the TSS)

of the differentially expressed genes between locations. We used

version 27 of the list of binding sites in the TRANSFAC database

[30].

Genotyping and Population Structure
Twenty-four samples (eight randomly selected samples from

each population) were assayed with Illumina’s Infinium Human-

Hap300 SNP Chip following standard procedures. The Human-

Hap300 SNP Chip contains over 318,000 SNPs derived from

phase I of the International HapMap project [35]. The BeadChips

were imaged using Illumina’s BeadArray Reader and genotype

calls extracted with the Genotyping Module in Illumina’s

BeadStudio software. Principal component analysis was used to

infer the extent of genetic variation from over 300,000 autosomal

SNPs using Eigenstrat as described in ref. [18]. Structure Version 2.2

[19] was used to infer population structure. We applied the

program to 11,000 autosomal SNPs (500 randomly selected and

approximately uniformly distributed from each of the 22

chromosomes) at K = 2–3. We used a model with admixture and

correlated allele frequency for 100,000 iterations after a burn-in

length of 20,000. We used small K to analyze population structure

given our prior knowledge about the Moroccan population.

Structure runs at K = 2–3 were repeated under the no admixture

model with either correlated or uncorrelated allele frequencies

with similar results.

Methylation Assay
A methylation profile was obtained for 96 samples (14 nomadic

samples, 15 rural samples, and 19 urban samples, each sample
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represented by two technical replicates) with Illumina’s Gold-

enGate methylation Cancer Panel I array-based assay. DNA

samples were first subjected to a bisulfite conversion reaction using

ED DNA methylation kit (Zymo Research, Orange, CA) and then

subjected to Illumina’s GoldenGate methylation assay [20]. The

GoldenGate Methylation Cancer Panel I spans 1,505 CpG loci

selected from 807 genes falling into various classes, including

tumor suppressor genes, oncogenes, genes involved in DNA

repair, cell cycle control, differentiation and apoptosis. The raw

methylation ratios were extracted using the Methylation Module

in Illumina’s BeadStudio after a background normalization that

subtracts a background value derived by averaging the signals of

built-in negative control bead types. A mixed model analysis of

variance was applied on a CpG site-by-CpG site basis with the

PROC MIXED procedure implemented in SAS ver 9.1 (SAS

Institute, Cary, NC):

Yij~LocationizSexjzLocation�Sexijze

Location and Sex were considered fixed effects with the ith

location (i = urban, rural or nomadic) and the jth sex (j = male or

female). The effect of interaction between Location and Sex was

included in this model, and the error e was assumed to be

normally distributed with mean zero.

Supporting Information

Figure S1 Two-way hierarchical clustering of expression. The

heat map shows the clustering of expression profiles largely by

location. Each row represents one of the top 1,000 transcripts for

significance of the location effect and each column represents one

individual. Intensity of red indicates relatively high expression

relative to the sample mean, of blue relatively low expression.

Individuals are identified by a code with the first letter

representing gender (Male or Female), the second letter population

(D, desert/nomadic; A, Anza/urban; V, Sebt-Nabor village/

rural), the number corresponds to Illumina BeadArray, and last

letter is a unique identifier within each array. Note that the highest

level of clustering tends to be by population, while the two genders

also tend to cluster within populations. The clustering was

generated with Ward’s method in JMP Genomics ver. 3.0

implemented in JMP ver. 7.0.

Found at: doi:10.1371/journal.pgen.1000052.s001 (0.43 MB PDF)

Figure S2 Effect of surrogate variable inclusion on significance

testing. Quantile-quantile plots of the P-values resulting from

differential expression analyses with and without SVA. The solid

dots represent P-value quantiles and the dashed line is the line of

equality. Curves above the diagonal imply larger P-values without

SVA, and hence a gain in power from the analysis that include

surrogate variables. (A) Urban vs. Rural vs. Nomadic. (B) Urban

vs. Rural. (C) Urban vs. Nomadic. (D) Nomadic vs. Rural.

Found at: doi:10.1371/journal.pgen.1000052.s002 (0.11 MB PDF)

Figure S3 Eigenstrat analysis of population structure. The plot

shows the first two eigenvectors of genotypic variance for the three

Moroccan populations (red, urban; blue, rural; brown, nomads).

Only the first eigenvector is significant (P,0.0006, Tracy-Widom

test); it distinguishes three individuals within the urban sample as

indicated in the figure. The second eigenvector suggests a

separation of the nomads and villagers, but it is only marginally

significant (P,0.0167) and explains only a very small proportion

of the genotypic variance. Each square represents one of the 24

individuals who were genotyped.

Found at: doi:10.1371/journal.pgen.1000052.s003 (0.08 MB PDF)

Figure S4 Structure analysis of genotypic variation. Each

individual is represented by a column that is partitioned into K

colored segments representing the proportion of ancestry (Q value)

from each of the K clusters for each individual using 11,000

autosomal SNP markers. Two Structure run at K = 2 and K = 3

are shown. At K = 3, 80% of individuals have high membership

coefficient to one cluster.

Found at: doi:10.1371/journal.pgen.1000052.s004 (0.15 MB

DOC)

Figure S5 Genomewide genetic and gene expression differenti-

ation. Average Fst measures plotted against log2 fold change (A)

and negative log10 probability resulting from differential expres-

sion analyses with SVA (B), for each of the 10,177 expressed genes

and for each population pairwise comparison (Green, Nomadic vs.

Rural; Blue, Nomadic vs. Urban; Red, Urban vs. Rural). Each

open circle represents a gene. Gene-specific Fst values were

calculated for each gene by averaging Fst values for all segregating

SNPs within the gene and approximately 1Mb upstream and

downstream the gene. The percent variance explained is less than

0.001 with p.0.05 for all six regressions represented by these

plots.

Found at: doi:10.1371/journal.pgen.1000052.s005 (0.17 MB PDF)

Figure S6 Results of methylation analysis. Histograms show the

distribution by chromosome of CpG sites of (A) the 1,505 CpG

sites represented on Illumina’s GoldenGate Methylation Cancer

Panel I array; (B) the 97 differentially methylated CpG sites for the

sex effect at P,0.05 (ANOVA); (C) the 69 differentially

methylated CpG sites between locations at P,0.05, and (D) the

24 differentially methylated CpG sites for the sex and location

interaction effect at P,0.05. The X chromosome is shown in dark

green. Panel B can be considered a positive control for the success

of the analysis since methylation is known to preferentially mark

X-linked loci.

Found at: doi:10.1371/journal.pgen.1000052.s006 (0.14 MB PDF)

Figure S7 Correlations among Interleukin signaling compo-

nents. The three plots show the average relative transcript

abundance (log base 2 scale) for the indicated genes in the Urban

(U: Anza), Nomadic (N: Bedouin), and Rural (R: Sebt-Nabor)

locations. P values in brackets indicate the significance of the 3-

way location term from mixed model ANOVA. Across all 46

individuals, IL-8 is negatively correlated with IRAK2 (P = 0.0008),

IRAK1 is negatively correlated with IRAKBP1 (P = 0.008), and

IRAK3 is positively correlated with IRAK4 (P = 0.004).

Found at: doi:10.1371/journal.pgen.1000052.s007 (0.08 MB PDF)

Table S1 Surrogate variables

Found at: doi:10.1371/journal.pgen.1000052.s008 (0.05 MB

XLS)

Table S2 Eigenstrat principal component statistics

Found at: doi:10.1371/journal.pgen.1000052.s009 (0.06 MB PDF)

Table S3 List of genes in FOS and MYC networks shown in

Figure 4A

Found at: doi:10.1371/journal.pgen.1000052.s010 (0.09 MB PDF)

Table S4 Top 15 networks generated by Ingenuity from the list

of genes differentially expressed (1% FDR) for each location

pairwise comparison

Found at: doi:10.1371/journal.pgen.1000052.s011 (0.11 MB PDF)

Table S5 List of individuals and analyses

Found at: doi:10.1371/journal.pgen.1000052.s012 (0.09 MB PDF)
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Dataset S1 List of differentially expressed genes and their

annotation.

Found at: doi:10.1371/journal.pgen.1000052.s013 (1.49 MB

XLS)

Dataset S2 List of significance of differential expression by

various criteria.

Found at: doi:10.1371/journal.pgen.1000052.s014 (6.83 MB

XLS)
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