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A genome-wide positioning systems network
algorithm for in silico drug repurposing
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Charis Eng 1,2,3,11,12 & Joseph Loscalzo6

Recent advances in DNA/RNA sequencing have made it possible to identify new targets

rapidly and to repurpose approved drugs for treating heterogeneous diseases by the ‘precise’

targeting of individualized disease modules. In this study, we develop a Genome-wide

Positioning Systems network (GPSnet) algorithm for drug repurposing by specifically tar-

geting disease modules derived from individual patient’s DNA and RNA sequencing profiles

mapped to the human protein-protein interactome network. We investigate whole-exome

sequencing and transcriptome profiles from ~5,000 patients across 15 cancer types from The

Cancer Genome Atlas. We show that GPSnet-predicted disease modules can predict drug

responses and prioritize new indications for 140 approved drugs. Importantly, we experi-

mentally validate that an approved cardiac arrhythmia and heart failure drug, ouabain, shows

potential antitumor activities in lung adenocarcinoma by uniquely targeting a HIF1α/LEO1-

mediated cell metabolism pathway. In summary, GPSnet offers a network-based, in silico

drug repurposing framework for more efficacious therapeutic selections.
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A
fter the completion of the human genome project in 2003,
there has been unexpected enthusiasm for how genetics
and genomics would inform drug discovery and devel-

opment1. Although it is in its infancy, the use of genomics in the
drug discovery and development pipeline has generated some
successes2,3. For example, proprotein convertase subtilisin/kexin
type 9 (PCSK9), first discovered by human genetics studies in
2003, has generated great interest in genomics-informed drug
discovery in cardiovascular disease4. However, the overall clinical
efficacy of genome-derived approved drugs has remained limited
owing to the heterogeneity of complex diseases.

Drug development in the genomics era has become a highly
integrated systems pipeline in which complementary multi-omics
and computational methods are used3. Recent technological and
computational advances in genomics and systems biology have
now made it possible to identify new druggable targets and
therapeutic agents by uniquely targeting cancer type-specific
mechanisms (e.g., perturbed pathways in the disease module) that
cause or contribute to human disease5–8. For example, network-
based approaches have offered possibilities for drug repurposing8,
target identification9, and combination therapy10 by quantifying
the proximity of drug targets and disease proteins in the human
protein–protein interactome. It remains unclear as to how gen-
eralizable these network-based disease module identification
methodologies are in exploiting the wealth of massive multi-
omics data from genomics studies and offering novel insights into
cancer type-specific mechanisms. Were they to be successful, we
would ultimately be able to target precisely human disease
pathways, promoting the development of precision medicine.

In this study, we present a novel network-based disease module
identification and in silico drug repurposing methodology,
denoted the Genome-wide Positioning Systems network (GPSnet)
algorithm. Specifically, we demonstrate the feasibility of indivi-
dualized disease module identification by integrating large-scale
DNA sequencing and transcriptome (RNA-seq) profiling across
approximately 5000 human tumor genomes to the human
protein–protein interactome. We find that gene expression of
disease modules identified by GPSnet can predict drug responses
in cancer cell lines with high accuracy. Importantly, we show that
GPSnet can be used for in silico drug repurposing by uniquely
targeting the specific disease module (i.e., cancer type-specific
module) through combining network proximity measure and
gene-set enrichment analysis (GSEA) approaches. Furthermore
and importantly, we validate these network-based predictions
experimentally. From a translational perspective, if broadly
applied, GPSnet offers a powerful network-based tool for target
identification and drug repurposing. We believe this approach
can minimize the translational gap between genomics studies and
drug development, currently a significant bottleneck in precision
medicine.

Results
Modularity of highly mutated genes in the human interactome.
Disease proteins are not scattered randomly in the human
protein–protein interactome, but form one or several connected
subgraphs, defining the disease module7. Yet, whether the mutant
proteins directly derived from individual patient sequencing data
(e.g., whole-exome sequencing) form a statistically significant
module in the human protein–protein interactome (or subnet-
work in a disease module) remains unknown. To test this
hypothesis, we first collected the significantly mutated genes
(SMGs) identified from large-scale genome sequencing projects
across 15 cancer types (Supplementary Data 1, see Methods
section). We found that SMGs form highly connected subgraphs
in the human protein–protein interactome across all 15 cancer

types (Fig. 1a). In lung adenocarcinoma (LUAD), 83.1% of genes
(172/207, P= 1.6 × 10−62 [permutation test]) form the largest
connected component that is statistically signifcantly clus-
tered compared to the same number of randomly selected genes
with similar connectivity (degree) as the original SMGs in the
human interactome (Fig. 1b). Interestingly, we found that genes
with high somatic mutation frequency also tend to form highly
connected subgraphs compared to the same fraction of random
gene sets with the same degree distribution as the highly mutated
genes in the human interactome. For example, mutated genes
with high somatic mutation frequency form a significant module
(P= 3.0 × 10−11, Fig. 1b) in LUAD, although the module size of
highly mutated genes is less than that of SMGs. Previous studies
have suggested that well-known cancer genes/proteins often have
high connectivity in the literature-derived human protein–protein
interactome. To inspect potential literature data bias, we per-
formed the same network modularity analysis using the high-
throughput systematic interactome (see Methods section) iden-
tified by the (unbiased) yeast two-hybrid (Y2H) screening assays
previously published11. We found that the SMGs and highly
mutated genes form a significant module in this more limited but
unbiased interactome, as well (Supplementary Note 1 and Sup-
plementary Fig. 1), suggesting low literature data bias.

Figure 1c illustrates the connectivity of products of several
highly mutated genes (such as EGFR, TP53, and NF1) compared
to genes with low somatic mutation frequency in LUAD. These
observations are consistent with previous network-based studies
showing that experimentally reported cancer proteins are more
likely to connect to each other in the human interactome than to
noncancer proteins12–14. The strong modularity of gene products
with high mutation frequency led us to develop new network-
based methodologies to identify cancer type-specific disease
modules by mapping individual patient’s DNA sequencing data
to the human protein–protein interactome disease
network model.

Pipeline of GPSnet. Here, we present GPSnet, an integrated,
network-based methodology for cancer type-specific disease
module identification and in silico drug repurposing. Figure 2
illustrates the pipeline of the GPSnet algorithm, which contains
two main components: (a) cancer type-specific disease module
identification by integrating whole-exome sequencing (somatic
mutation) and transcriptome (RNA-seq) profiling into the
human protein–protein interactome (Fig. 2a), and (b) in silico
drug repurposing that targets uniquely cancer type-specific dis-
ease modules generated from the first step by implementing both
GSEA and network proximity approaches (Fig. 2b, c) com-
plemented by mechanistic in vitro validation (Fig. 2d) in human
cell lines (see Methods section).

Figure 1 shows that genes with high mutation frequency form
highly connected subgraphs called disease modules. In addition,
we find that genes in the subnetwork identified from the RNA-seq
database co-expressed protein–protein interactome are highly
mutated, and SMGs are significantly enriched in the subnetworks
identified from RNA-seq data, as well (Supplementary Note 2 and
Supplementary Figs. 2, 3). Here, we thereby define a module as a
subgraph within the human protein–protein interactome (see
Methods section) and calculate the score of the module M as

Zm ¼
P

i2M ðsðiÞ � μÞ
ffiffiffiffi

m
p ; ð1Þ

where m is the number of genes in module M, s(i) is the network-
predicted mutation frequency of gene i normalized by a gene’s
cDNA sequence length, and μ is the average mutation frequency
over the whole gene set for a specific cancer type after network
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smoothing using the random walk with restart algorithm (see
Supplementary Note 3). We denote ΓM as the set of genes that
interact with module M in the human protein–protein inter-
actome. Specifically, we first randomly select a protein (gene) as a
“seed protein.” For each gene i 2 ΓM , we next calculate its
connectivity significance15 in the human protein–protein inter-
actome as

PðiÞ ¼
X
ki

k¼km

m

k

� �
N �m

ki � k

� �

N

ki

� � ; ð2Þ

where ki is the degree of gene i, m is the number of genes in the
module, km is the number of module genes that link to gene i, and
N is the total number of genes in the gene set. For each seed

i 2 ΓM , we further calculate the expanded module score if gene i
is added to the module as

Zmþ1ðiÞ ¼
sðiÞ � μð Þ þP

i2M ðsðiÞ � μÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

mþ 1
p : ð3Þ

The candidate gene i will be added to the module to build a
new module by satisfying three criteria: (a) P(i) in Eq. (2) is less
than 0.05 (connectivity significance), (b) this candidate gene is
significantly co-expressed (P value < 0.05, F-statistic) within the
neighborhood of the raw module based on RNA-seq profiles of
tumor samples (see Methods section), and (c) Zmþ1ðiÞ>Zm. We
repeat steps (a) and (c) until no more genes can be added by these
criteria. In this study, we built ~60,000 raw modules for each
cancer type by randomly selecting each seed gene in the human
interactome approximately five times. Finally, we assembled the
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Fig. 1 Proof-of-concept of cancer type-specific disease module. a Both significantly mutated genes (SMGs, Supplementary Data 1) identified by statistical

approaches and highly mutated genes ranked by mutation frequency form a significant largest connected component (LCC) compared to random genes

with matching connectivity (degree) distributed in the human protein–protein interactome, across 15 cancer types (Supplementary Fig. 6). b The sizes of

the LCC of SMGs and of highly mutated proteins are shown for lung adenocarcinoma (LUAD). The y-axis (p) denotes the fraction of the number of random

modules against the total number of permutations. The observed module sizes, 172 (SMGs, orange line) and 76 (highly mutated gene, cyan line), are

significantly larger than the random expectation. The P value was calculated by permutation test. c A subgraph illustrating a subnetwork of highly mutated

genes versus genes with low mutation frequency in LUAD. The full names of the 15 cancer types are provided in the main text
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top 1% (approximately 300) modules with the highest module
scores and defined the largest connected component7 by
removing the isolated genes (less than 5% of isolated genes
[nodes] across all 15 cancer types) to define the final disease
module for each cancer type (Supplementary Fig. 4). Details are
provided in the Supplementary Note 3.

Cancer type-specific disease module identified by GPSnet. Via
GPSnet, we identify computationally the final cancer type-specific
disease modules for all 15 cancer types by integrating iteratively
the patients’ whole-exome sequencing and RNA-seq data into the
human protein–protein interactome (Fig. 2a). Figure 3a shows
the network visualization of disease modules identified by GPSnet
across 15 cancer types: urothelial bladder carcinoma (BLCA),
invasive breast carcinoma (BRCA), colorectal adenocarcinoma
(COAD), glioblastoma multiforme (GBM), head and neck squa-
mous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), acute myeloid leukemia (LAML), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), ovarian serous
cystadenocarcinoma (OV), prostate adenocarcinoma (PRAD),
skin cutaneous melanoma (SKCM), stomach adenocarcinoma

(STAD), papillary thyroid carcinoma (THCA), and uterine cor-
pus endometrial carcinoma (UCEC). The distributions of over-
lapping genes across different cancer types are provided in
Supplementary Fig. 5. We find that most cancer types share
multiple genes with other cancer types; however, several cancer
types, including prostate adenocarcinoma (PRAD, 84 unique
genes), papillary thyroid carcinoma (THCA, 108 unique genes),
and urothelial bladder carcinoma (BLCA, 50 unique genes), have
high numbers of unique module genes compared to other can-
cers, suggesting unique biological pathways for these cancer types.
The detailed data for 15 cancer type-specific disease modules
identified by GPSnet are provided in Supplementary Data 2.

We next attempted to validate the GPSnet-identified disease
modules via two approaches: (a) canonical disease pathway
enrichment analysis, and (b) well-known disease-associated
gene enrichment analysis. As shown in Fig. 3b, canonical cancer
pathway enrichment analyses showed that genes in the GPSnet-
predicted disease modules are significantly enriched in various
canonical cancer pathways, which is comparable to the
experimentally validated cancer genes from the Cancer Gene
Census (CGC) database16. We further find that the known
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Fig. 2 A diagram illustrating the pipeline of GPSnet for in silico drug repurposing. The GPSnet pipeline contains three key steps: a network-based

identification of cancer type-specific disease modules by integrating patient’s DNA sequencing (somatic mutations) and transcriptome (RNA-seq) data

into the human protein–protein interactome. We collected the human protein–protein interactions (PPIs) by assembling multiple types of experimental

data, and built the cancer type-specific (co-expression) PPI network based on tumors’ RNA-seq data (see Methods section). The Manhattan plot shows

the pan-cancer mutation load distribution. The heatmap shows gene expression (RNA-seq) across tumor samples; red denotes high expression levels and

blue denotes low-expression levels. b, c Performing both a network proximity analysis (quantifying the network distance of drug targets to cancer type-

specific disease modules from a in the human protein–protein interactome) and gene-set enrichment analysis (GSEA) by searching drug-up/

downregulated genes from drug-induced transcriptome data (Connectivity Map) in human cell lines in cancer type-specific disease modules; and d in silico

drug repurposing and experimental validation
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SMGs (Supplementary Data 1) are significantly enriched in the
disease modules identified by GPSnet across all 15 cancer types
(Fig. 3c, and Supplementary Fig. 6). For BRCA, SMGs are
enriched in the identified breast cancer modules, which is

significantly stronger than a random gene set with the same
connectivity (degree) distribution (P= 1.33 × 10−39, Fig. 3c).
We calculate the module similarity (Jaccard-Index) across 15
cancer types in Fig. 3d. We find that the disease modules of
several cancer types are very similar (such as LUAD and LUSC),
while some cancer types have unique disease modules, such as
LAML and PRAD, indicating both common mechanisms and
unique pathways identified by GPSnet. We further collect the
disease-associated genes from several publicly available data-
bases (Supplementary Data 3, see Methods section). Supple-
mentary Fig. 7 shows that cancer-associated genes are
significantly enriched in the cancer type-specific disease
modules identified by GPSnet, as well. To assess the impact of
the literature data bias of the human protein–protein inter-
actome, we re-identify cancer type-specific disease modules for
15 cancer types using the unbiased, Y2H high-throughput
systematic human interactome11. We find that known SMGs are
significantly enriched in the cancer type-specific disease
modules identified from the unbiased, systematic interactome
by GPSnet, as well, revealing the low literature data bias for
GPSnet (Supplementary Fig. 8). Altogether, cancer type-specific
disease modules are highly enriched in the known cancer genes
and canonical cancer pathways, suggesting potential pathobio-
logical implications of GPSnet-based analysis.

Identification of new pharmacogenomics biomarkers by
GPSnet. To examine further the potential pharmacogenomics
application of GPSnet, we downloaded robust multi-array (RMA)
gene expression profiles and drug response data (IC50, the half
maximal inhibitory concentration) across 1065 cell lines from the
Genomics of Drug Sensitivity in Cancer (GDSC) database17. We
then built regression models to predict drug responses (IC50)
based on RMA gene expression profiles of GPSnet-identified
disease modules (see Methods section) for three specific cancer
types: BRCA, LUAD, and SKCM. We focused on seven drugs
across those three cancer types using subject matter expertise
based on a combination of factors: (a) the highest variances of
IC50 of each drug among over 1065 cell lines; (b) drugs approved
by targeting specific pathways; and (c) cancer type with the
highest number of tumor samples from TCGA. These seven
selected drugs include enzastaurin, linifanib, olaparib, pictilisib,
refametinib, selumetinib, and vemurafenib.

We define cell lines whose IC50 value is higher than 10 µM as
drug-resistant cell lines and the remainder as drug sensitive cell
lines. As shown in Fig. 4, the area-under-the-receiver operating
characteristic curves (AUC) ranges from 0.711 to 0.821 across 7
drugs with 10-fold cross-validation, revealing high performance
in predicting drug responses by GPSnet-identified cancer type-
specific disease modules. For example, olaparib, an inhibitor of
poly (ADP-ribose) polymerase enzymes, is approved for treat-
ment of breast cancer and ovarian cancer18. Figure 4a reveals that
gene expression in the GPSnet-identified breast cancer disease
module can predict olaparib’s response with AUC= 0.820.
Vemurafenib, a B-Raf V600E targeted inhibitor, is approved for
the treatment of late-stage melanoma19. We find that the GPSnet-
predicted melanoma disease module can predict response to
vemurafenib with an AUC= 0.821 (Fig. 4c). Refametinib, a MEK
specific inhibitor, is currently in clinical trial for the treatment of
RAS-mutant cancers20. Figure 4a–c shows that the GPSnet-
predicted disease modules can accurately predict responses to
refametinib in all three cancer types: BRCA (AUC= 0.730),
LUAD (AUC= 0.819), and SKCM (AUC= 0.811). Altogether,
gene expression in the GPSnet-disease modules offer potential
pharmacogenomics biomarkers for assessment of drug resistance/
sensitivity in multiple types of cancer.
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Fig. 3 Network-based identification and validation of cancer type-specific

disease modules via GPSnet. a Pan-cancer analysis of cancer type-specific

disease modules (Supplementary Data 2) identified by GPSnet across 15 cancer

types. b Canonical cancer pathway enrichment analysis for the cancer type-

specific disease modules identified by GPSnet across 15 cancer types. c Known

cancer driver genes (named significantly mutated genes, Supplementary

Data 1) are appreciably enriched in cancer type-specific disease modules in

breast cancer. The cancer enrichment analyses for other cancer types are

provided in Supplementary Fig. 6. The P value was computed by the

permutation (randomization) test (see Methods section). d A heat map

illustrating modularity similarity between known cancer driver genes (named

significantly mutated genes) and the module genes identified by GPSnet across

15 cancer types. Modularity similarity (color key) is measured by the Jaccard-

index J ¼ A \ Bj j= A∪ Bj j, where gene set A represent the known cancer driver

genes (Y-axis) and gene set B represent module genes identified by GPSnet (X-

axis). The full names of the 15 cancer types are provided in main text
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High druggability of disease modules identified by GPSnet.
Previous studies have revealed that genes/proteins identified by
genome sequencing studies, such as genome-wide association
studies, often failed to identify novel druggable targets21. Inte-
gration of human PPIs, however, offers potential opportunities to
identify druggable pathways by targeting adjacent mutant
genes21. We further assessed whether genes in the GPSnet-
predicted modules could offer more druggable targets compared
to traditional statistics-based genome sequencing analysis. Inter-
estingly, we find that gene products from the GPSnet-predicted
modules are more likely to be targeted by approved drugs or
clinically investigational drugs compared to SMGs that are
identified by the statistics-based approaches alone (Supplemen-
tary Figs. 9, 10). For example, among 229 SMGs in breast cancer,
only 17 are targeted by known drugs. However, among 236 genes

in the GPSnet-predicted breast cancer module, 46 genes are tar-
geted by known drugs, three-fold higher than SMGs (P < 0.0001,
Fisher’s test). Furthermore, gene products in the GPSnet-
identified modules are significantly targeted by known drugs
compared to genome-wide drug targets’ distributions across all 15
cancer types (Supplementary Fig. 9). Importantly, the GPSnet-
identified disease modules contain targets of drugs (Supplemen-
tary Data 4) known to treat this disease in two cancer types:
LUAD (P < 0.0001, Fisher’s test, Supplementary Fig. 10) and
BRCA (P < 0.0001, Fisher’s test, Supplementary Fig. 10). We
further investigated drug target distribution in the human
protein-protein interactome. As expected, we found that neigh-
bors with significant connectivity to the known SMGs are more
likely to be targeted by known drugs compared to SMGs only, or
experimentally validated genes from the Cancer Gene Census
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Fig. 4 Pharmacogenomics validation for GPSnet-predicted disease modules. a–c The receiver operating characteristic (ROC) curves for seven selected

drugs: enzastaurin, linifanib, olaparib, pictilisib, refametinib, selumetinib, and vemurafenib, for three specific cancer types, including invasive breast

carcinoma (BRCA, a), lung adenocarcinoma (LUAD, b), and skin cutaneous melanoma (SKCM, c). Drug IC50 values were predicted based on regression

models built by utilizing gene expression profiles of the GPSnet-identified cancer type-specific disease modules as feature vectors (see Methods section).

The area under ROC curves (AUC) during 10-fold cross-validations are shown
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database16 (Supplementary Fig. 11). Taken together, disease
modules identified by GPSnet offer more druggable targets
compared to traditional statistics-based genome sequencing
analysis approaches. We, therefore, next turned to in silico drug
repurposing by uniquely targeting GPSnet-predicted cancer type-
specific disease modules derived from the human protein–protein
interactome analysis.

Uncovering new indications for approved drugs by GPSnet. To
identify novel indications for approved drugs, we utilize two
complementary approaches: (i) a network proximity (z-score)
measure that quantifies the relationship between cancer type-
specific disease modules identified by GPSnet and drug targets in
the human protein–protein interactome8 (see Methods section);
and (ii) gene-set enrichment analysis (GSEA)22 that examines
drug-induced gene signatures (up/downregulated genes in tumor
cells before and after drug treatments) in the GPSnet-predicted
disease module (Fig. 2c, see Methods section). Here, we investi-
gate 1309 drugs in total that have known target information from
publicly available databases or gene signatures from the Con-
nectivity Map database23 (see Methods section). Figure 5a shows
that 140 approved drugs (adjusted P < 0.01) are significantly
associated with at least one cancer type identified by network
proximity or GSEA approaches (Supplementary Data 5). For
example, several known cancer drugs (such as gefitinib, etoposide,
doxorubicin, and tamoxifen) defined by the first-level of the
Anatomical Therapeutic Chemical Classification codes are cor-
rectly predicted by the network proximity approach compared to
GSEA, revealing the power of the network approach for drug
repurposing, consistent with our recent study8.

To examine further the performance of in silico drug
repurposing in GPSnet, we inspected the top 10 predicted drugs
by both network proximity and GSEA in LUAD. We find that
two FDA-approved non-cancer drugs, niclosamide (an approved
drug for the treatment of tapeworm infestations) and ouabain (an
approved drug for treatment of cardiac arrhythmias and heart
failure), are predicted to have significant associations (direction-
ality of effect is not defined in this initial analysis) with LUAD by
both network proximity and GSEA approaches (Fig. 5a and
Supplementary Fig. 12). To test the antitumor effect of
niclosamide and ouabain on non-small cell lung cancer (NSCLC),
the MTS assay is performed to determine the cell proliferation
capacity of 6 different cell lines: A549, H522, H596, H1975,
HCC827, and PC9. We find that both niclosamide and ouabain
show potential antitumor effects on these NSCLC cell lines
(Fig. 5b, c). For example, ouabain is cytotoxic to all tested NSCLC
cells in the nanomolar (nM) range: IC50= 0.45 nM in A549 cells,
IC50= 0.58 nM in H522 cells, IC50= 0.62 nM in H596 cells, IC50

= 0.52 nM in H1975 cells, IC50= 0.94 nM in HCC827 cells, and
IC50= 2.48 nM in PC9 cells (Fig. 5c). Furthermore, a prolonged
colony formation assay is performed to investigate whether
ouabain causes irreversible growth arrest (Fig. 5d). We find that
ouabain significantly impairs A549 and H522 cell growth, as
demonstrated by a reduction in both colony number and colony
size in the ouabain-treated group. Altogether, ouabain exhibits
potential anti-proliferative efficacy and was, therefore, selected for
further experimental evaluation.

Ouabain inhibits HIF1α/LEO1 pathway in NSCLC cells. We
next examined the mechanism-of-action of ouabain in NSCLC by
network analysis on the lung-specific human protein–protein
interactome. Currently, there are four reported targets (ATP1A1,
EIF4E, HIF1α, and SRC) of ouabain in human cells. Figure 6a
shows that SRC has the closest distance to the LUAD disease
module identified by GPSnet, followed by HIF1α, EIF4E, and

ATP1A1. Both SRC and EIF4E play essential roles in multiple
cancers, including NSCLC24,25. We, therefore, examine whether
HIF1α contributes to the antitumor effect of ouabain as it shows a
closer network proximity to the LUAD module compared to the
primary target, ATP1A1 (Fig. 6a). As predicted, ouabain down-
regulates both mRNA and protein expression of HIF1α in a dose-
dependent manner in A549 cells (Fig. 6b, c). Knockdown of
HIF1A by two distinct siRNAs reduces the response of ouabain in
A549 cells from 5-fold to 6-fold (Supplementary Fig. 13).
Moreover, knockdown of HIF1A by two distinct shRNAs reduces
the response of ouabain in A549 cells approximately 17-fold
(Fig. 6d, e). These observations reveal that HIF1α may contribute
to the potential antitumor effect of ouabain in NSCLC cells.

HIF1α activates the transcription of multiple genes involved in
many human diseases, including cancer26. We next collect 719
putative HIF1α-targeted genes (Supplementary Data 6) identified
by different high-throughput experiments or the curated
literature (see Methods). We found that 251 HIF1α targeted
genes (Supplementary Data 6) were differentially expressed in
LUAD patients compared to normal control samples based on
TCGA data27. KEGG pathway enrichment analysis shows that the
top enriched pathways are cell metabolism-related pathways,
including redox pathways, such as glycolysis/gluconeogenesis
(adjusted P= 1.66 × 10−5) and central carbon metabolism, in
cancer (adjusted P= 0.001, Fig. 7a). We further tested the effects
of ouabain on redox metabolism using a highly responsive NAD
+/NADH sensor, SoNar, reported in our previous study28. We
found that ouabain at 10 or 20 nM reduced the NAD+/NADH
ratio in A549 cells (Supplementary Fig. 14), suggesting that
ouabain potentially targets cell (redox) metabolism in NSCLC
cells.

We next collected genome-wide gene expression profiles from
the CCLE database29 and the metabolite abundance on NSCLC
cell lines from a recent study30. We computed the correlation of
gene transcriptional activities and the serine/glycine abundance in
approximately 70 NSCLC cell lines having both gene expression
and metabolite abundance profiles. Among 251 HIF1α targeted
genes with differential expression in LUAD patients, we found
that the transcriptional activities of LEO1 showed the highest
correlation with [13C]serine or [13C]glycine abundance in NSCLC
cell lines (Supplementary Data 6 and Fig. 7b). We tested the effect
of ouabain on LEO1 in A549 cells. Figure 7c, d shows that
ouabain downregulates the expression of both mRNA and protein
levels of LEO1 in A549 cells, whereas it has minor effect on LEO1
protein expression in two normal human lung fibroblast lines
WI38 and MRC5. LEO1, encoding a component of RNA
polymerase II-associated factor complex, has been reported to
be involved in acute myelogenous leukemia31. Figure 7e shows
that overexpression of LEO1 is correlated with poor survival rate
in LUAD patients (P= 0.02, Log-rank test, see Methods section).
Taken together, these data show that regulation of HIF1α/LEO1-
mediated cell metabolism may contribute to ouabain’s antitumor
effects in NSCLC cells.

Discussion
Molecularly targeted agents have demonstrated clinical efficacy
and favorable toxicity profiles for the treatment of cancer
compared to nonspecific cytotoxic chemotherapeutic agents.
However, patients treated with those targeted agents often
develop drug resistance due to clinically actionable genetic and
epigenetic events in individuals, with survival typically pro-
longed by only a few months. Thus, there is clearly a need to
identify new treatments with high efficacy and low toxicity
profiles (e.g., by drug repurposing) for subsequent treatment of
relapsed patients.
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In this study, we developed an integrated interactome-based,
systems pharmacology approach, GPSnet, for the systematic
identification of novel targets (in cancer type-specific disease
modules) or for repurposing approved drugs for development of
new therapeutic strategies. To do so, we incorporated large-scale
patient transcriptome profiles, whole-exome sequencing, drug-

target network, and drug-induced microarray data into the
human protein–protein interactome. We showed that both
experimentally validated genes and canonical cancer pathways
were significantly enriched in the disease modules identified by
GPSnet. In addition, gene expression of GPSnet-identified disease
modules can predict drug responses with reasonable accuracy

B
L
C

A

B
R

C
A

C
O

A
D

GBM

HNSC

KIRC

LAML

LUAD

LUSC

OV

PRAD

S
K
C
M

S
T
A

DT
H

C
A

U
C

E
C

M
e
ta

b
o
lis

m

B
lo

o
d

Card
iovascular

Derm
atologicals

Genito-urinary

Anti-infectives

Anti-neoplastic

Musculo-skeletal

Nervous system

A
n
tip

a
ra

sitic

R
e
s
p
ira

to
ry

S
e
n
s
o
ry

o
rg

a
n
s s

u
oi

r
V

a

H
yd

ro
flu

m
et

hi
az

id
e

Phe
no

xy
be

nz
am

in
e

Aminoglutethimide

Methylergometrine

C
h
e
n
o
d
e
o
x
y
c
h
o
lic

Prochlorperazine

M
e
to

c
lo

p
ra

m
id

e

T
hioproperazine

Chlorprothixene

T
riflu

p
ro

m
a
zin

e

T
rih

e
xyp

h
e
n
id

yl

C
y
p
ro

h
e
p
ta

d
in

e

X
y
lo

m
e
ta

z
o
lin

e

P
yrim

e
th

a
m

in
e

M
ec

am
yl

am
in

e

Sulfaphenazole

T
rifluoperazine

Spiro
nolacto

ne

O
x
y
m

e
ta

z
o
lin

e

Levonorgestrel

Sulfinpyrazone

N
ic
lo
s
a
m
id
e

e
ni

m
gi

t
s

o
s

y
h

PD
ic

lo
fe

n
a
m

id
e

A
ce

ty
ls

a
lic

yl
ic

Promethazine

Clomipramine

Methotrexate

Mycophenolic

D
is

o
p
yr

a
m

id
e

Apomorphine
Dinoprostone

Mitoxantrone

T
rim

ip
ra

m
in

e

D
o
m

p
e
ri
d
o
n
e

Daunorubicin

Perphenazine

Progesterone

Fluphenazine

M
esoridazine

M
e
b
e
n
d
a
zo

le

O
n
d
a
n
s
e
tr

o
n

T
o
lb

u
ta

m
id

e

Methoxsalen

Galantamine

D
o
rz

o
la

m
id

e

Phenira
mine

P
io

g
lit

a
z
o
n
e

Mepyramine

R
em

oxipride

T
hioridazine

Leflunomide

Hydroxyzine

N
a
p
h
a
z
o
lin

e

O
m

e
p
ra

z
o
leB
u
m

e
ta

n
id

e

Doxorubicin

P
rocyclidine

Sim
va

st
atin

Dicloxacillin

Topiram
ate

C
h
lo

ro
q
u
in

e

C
ro

m
o
g
lic

ic

D
ic

o
u
m

a
ro

l

T
e
rb

u
ta

lin
e

F
en

of
ib

ra
te

Isoconazole

Carmustine

Gabapentin

R
isperidone

T
rip

ro
lid

in
e

M
ic

o
n
a
z
o
le

G
ua

nf
ac

in
e

Fenoprofen

Ketoprofen

Amoxapine

M
em

antine

P
rim

a
q
u
in

e
B

u
d
e
so

n
id

e

F
lu

va
st

at
in

N
im

od
ip
in
e

Probenecid

Fluspirilene

Imipramine

P
a
p
a
v
e
ri
n
e

Mefenamic

M
e
flo

q
u
in

e

M
e
n
a
d
io

n
e

A
ce

b
u
to

lo
l

M
et

op
ro

lo
l

Per
he

xi
lin

e

Zidovudine

Nilutamide

Tamoxifen

Flunarizine

T
razodone

Idoxuridine

Paroxetine

P
rom

azine

A
lp

re
n
o
lo

lD
o
xa

zo
si

n

O
u
a
b
a
in

Vera
pamil

F
el

od
ip

in
e

M
ex

ile
tin

e

Econazole

Carbachol

M
elatonin

F
le

ca
in

id
e

Cefadroxil

Irinotecan

N
ife

di
pi

ne

Etoposide

Clozapine

Is
o
e
ta

rin
e

D
ilt

ia
ze

m

Q
uin

id
in

e

Letrozole

C
e
tiriz

in
e

C
a
p
to

p
ri
l

Cefazolin

Diflunisal

Pergolide

e
n

o
x

ol
a

N

C
a
rt
e
o
lo

l

C
lo

n
id

in
e

Pra
ct

olo
l

Cefalotin

Enoxacin

Etodolac

Loxapine

Dapsone

Isoniazid

Gefitinib

S
ulpiride

O
rl
is

ta
t

Tim
olol

Lisuride

N
ad

ol
ol

Sota
lol

Niclosamide

CI

CI
OH

O

O
+

–
O

N

N

H

OH

O

O

OH

HO
HO

HO

OH

HO
HO

H

H

O
O

Ouabain

a

–2 –1 0 1 2

Niclosamide (Log µM)

C
e
ll 

v
ia

b
ili

ty
 (

%
)

0

20

40

60

80

100

120b c

A549

H522

Vehicle 6.25 nM 12.5 nM 25 nM 50 nM  Ouabaind

–5 –4 –3 –2 –1

Ouabain (Log µM)

C
e
ll 

v
ia

b
ili

ty
 (

%
)

0

20

40

60

80

100

120 A549

H522

H596

H1975

PC9

HCC827

A549

H522

H596

H1975

PC9

HCC827

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10744-6

8 NATURE COMMUNICATIONS |         (2019) 10:3476 | https://doi.org/10.1038/s41467-019-10744-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(Fig. 4). We also showed that disease modules identified in the
human protein–protein interactome are more likely to be drug-
gable than the disease genes identified by traditional statistical
approaches. Furthermore, we computationally identified multiple
potential anticancer indications for 140 approved drugs across 15
cancer types by combining network proximity and GSEA
approaches implemented in GPSnet. Importantly, we experi-
mentally validated that two approved non-cancer drugs (ouabain
and niclosamide) showed potential anticancer activities in several
NSCLC cell lines. Interestingly, ouabain’s targets do not show
significant network proximity with SMGs identified from tradi-
tional statistics-based genome sequencing analysis in the human
interactome (Supplementary Fig. 15), indicating the power of the
GPSnet algorithm. In summary, GPSnet offers a powerful
network-based framework to identify new therapeutic interven-
tions through uniquely integrating patient sequencing data and
the human interactome. If broadly applied, GPSnet could be
applied to other diseases as well.

Several potential limitations should be acknowledged. First,
previous studies have shown that well-known disease genes often
have high data bias in the literature-derived human
protein–protein interactome11. For this reason, we tested the
GPSnet algorithm in the unbiased, systematic Y2H interactome
with low literature data bias, and found consistent results based
on an integrated human interactome network that we used in this
study (Supplementary Fig. 8). For drug target enrichment ana-
lysis, we found that known drug targets are enriched in the new
disease modules identified by unbiased, systematic Y2H inter-
actome across 4 four cancer types; however, the enrichments are
not statistically significant (p-value ranges from 0.0667 to 0.0984,
permutation test, Supplementary Fig. 16). There are two possible
explanations for this finding: (i) literature data bias, and (ii)
network data incompleteness. The current Y2H unbiased inter-
actome we used only includes 46,203 PPIs (links) connecting
8072 unique proteins (nodes). We, therefore, used a more com-
prehensive binary human interactome (including 98,240 PPIs
connecting 12,994 unique proteins) published recently32. We
found that drug targets are significantly enriched in the new
disease modules identified from this more comprehensive binary
human interactome network (Supplementary Fig. 17). Thus,
building a high-quality, comprehensive, unbiased systematic
interactome would improve further the performance of GPSnet.

Here, we integrated both GSEA and network proximity
approaches (Fig. 2c) for in silico drug repurposing by integrating
physical drug-target interactions and functional drug-gene asso-
ciations with the cancer type-specific disease modules identified
by GPSnet into the human interactome. Owing to a lack of large-
scale published available experimental data, whether combining
GSEA and network proximity synergistically improves the per-
formance of drug repurposing compared to single approaches
(GSEA or network proximity) requires further evaluation. Drugs
can inhibit or activate protein function (including antagonists vs.
agonists), while disease alleles from genetic or genomic studies
harbor loss-of-function or gain-of-function phenotypes. For

example, an inhibitor that targets loss-of-function disease pro-
teins (e.g., tumor suppressors) often causes adverse effects. Hence,
integration of functional genomic assays (e.g., CRISPR-Cas9) or
large-scale disease gene expression profiles (e.g., well-defined
oncogenes or tumor suppressor genes) along with patient data
(e.g., health insurance claims data) for validation and in vitro or
in vivo mechanistic studies will improve in silico drug repur-
posing models in the future33. In this study, we experimentally
validated that ouabain showed potential antitumor effects in
NSCLC cells, consistent with several previous studies34,35.
Importantly, we demonstrated that ouabain may target HIF1α/
LEO1-mediated cell metabolic pathways in NSCLC cells by
integrating gene expression, metabolomics data, and network
analysis. However, the regulation of HIF1α and LEO1 in NSCLC
cell metabolism warrants future studies by several approaches,
such as CHIP-seq.

In summary, this study offers a powerful network-based
methodology for drug repurposing, and validates experimentally
ouabain and niclosamide as potential antitumor agents to treat
NSCLC. Importantly, we showed that ouabain potentially targets
the HIF1α/LEO1-mediated cell metabolism pathway in NSCLC
cells. To the best of our knowledge, GPSnet is a highly innovative
network-based methodology that integrates large-scale patient
DNA/RNA-seq data with the human protein–protein inter-
actome, enabling accelerated target identification and drug
development in cancer and other diseases if broadly applied. In
this manner, we can minimize the translational gap between
genomic medicine studies and clinical outcomes, a significant
goal in network medicine and precision medicine.

Methods
Collection of whole-exome sequencing data. We downloaded the tumor-normal
pairwise somatic mutation data for patients from three sources: (1) Elledge Lab
website at Harvard University (http://elledgelab.med.harvard.edu/?page_id=689),
(2) Sanger website: (ftp://ftp.sanger.ac.uk/pub/cancer/AlexandrovEtAl), and (3)
COSMIC: Catalog of Somatic Mutations in Cancer (https://cancer.sanger.ac.uk/
cosmic). To reduce redundancy and ensure the quality of somatic mutation data in
this study, we only focused on the somatic mutations in TCGA tumor-normal
matched samples from the aforementioned three datasets. The RNA-seq (read
counts) data for 15 cancer types were downloaded from GDC website (https://
portal.gdc.cancer.gov/) for computing co-expression (measured by Pearson Cor-
relation Coefficient) of PPI coding gene pairs.

Construction of drug-target network. We assembled high-quality physical drug-
target interactions for FDA-approved drugs from six commonly used data sources,
and defined a physical drug-target interaction using reported binding affinity data:
inhibition constant/potency (Ki), dissociation constant (Kd), median effective
concentration (EC50), or median inhibitory concentration (IC50) ≤ 10 µM. Drug-
target interactions were acquired from the DrugBank database (v4.3)36, the
Therapeutic Target Database (TTD, v4.3.02)37, and the PharmGKB database38.
Specifically, bioactivity data of drug-target pairs were collected from three com-
monly used databases: ChEMBL (v20)39, BindingDB40, and IUPHAR/BPS Guide to
PHARMACOLOGY41. After extracting the bioactivity data related to the drugs
from the prepared bioactivity databases, only those items meeting the following
four criteria were retained: (i) binding affinities, including Ki, Kd, IC50, or EC50,
≤10 μM; (ii) proteins represented by unique UniProt accession number; (iii) pro-
teins marked as “reviewed” in the UniProt database42; and (iv) proteins of human
origin.

Fig. 5 Network-based in silico drug repurposing and experimental validation. a A circos plot illustrating a global view of computationally predicted potential

anticancer indications for 140 approved drugs across 15 cancer types, identified by both network proximity and gene-set enrichment analysis approaches.

Drugs are grouped by their first-level Anatomical Therapeutic Chemical Classification (ATC) codes. Two overlapping drugs (ouabain and niclosamide)

from the top 10 lists identified by both network proximity and GSEA approaches in lung adenocarcinoma (Supplementary Data 5) were selected for

experimental validation. b, c Dose-response curves of ouabain (b) and niclosamide (c) in six representative non-small cell lung cancer (NSCLC) cell lines

(A549, H522, H596, H1975, HCC827, and PC9). Cells were treated with a series of concentrations of ouabain and niclosamide for 48 h. The CellTiter 96

AQueous one solution cell proliferation kit was used to determine cell viability (see Methods section). Data are represented as mean ± SEM (n= 3) and

each experiment was performed at least three times in duplicate. d Effect of ouabain on the colony formation assay in two NSCLC cell lines (A549

and H522)
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Building the human protein–protein interactome. To build the comprehensive
human protein–protein interactome as currently available, we assembled 15 com-
monly used databases with multiple experimental sources of evidence and the in-
house systematic human protein–protein interactome: (1) binary PPIs tested by high-
throughput yeast-two-hybrid (Y2H) systems in which we combined two publicly
available high-quality Y2H datasets11,43, and one dataset available from our website:
http://ccsb.dana-farber.org/interactome-data.html; (2) kinase-substrate interactions by

literature-derived low-throughput and high-throughput experiments from Kinome-
NetworkX44, Human Protein Resource Database (HPRD)45, PhosphoNetworks46,47,
PhosphositePlus48, DbPTM 3.049, and Phospho.ELM50; (3) carefully literature-curated
PPIs identified by affinity purification followed by mass spectrometry (AP-MS), and
by literature-derived low-throughput experiments from BioGRID51, PINA52, HPRD45,
MINT53, IntAct54, and InnateDB55; (4) high-quality PPIs from protein three-
dimensional (3D) structures reported in Instruct56; and (5) signaling networks by
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literature-derived low-throughput experiments as annotated in SignaLink2.057. The
genes were mapped to their Entrez ID based on the NCBI database58 as well as their
official gene symbols based on GeneCards (http://www.genecards.org/). Inferred data,
such as evolutionary analysis, gene expression data, and metabolic associations, were
excluded. The updated human interactome constructed in this way includes 170,000
protein–protein interactions (PPIs) (edges or links) connecting 15,474 unique proteins

(nodes). The unbiased, systematic human interactome11,43 was downloaded from our
website (https://ccsb.dana-farber.org/interactome-data.html).

Description of GPSnet. The GPSnet algorithm contains two main components:
cancer type-specific disease module identification, and in silico drug repurposing.

Fig. 6 Network-based experimental validation of ouabain’s likely mechanism-of-action in non-small cell lung cancer (NSCLC). a A highlighted subnetwork

reveals the inferred mechanism-of-action for ouabain’s anticancer effects on NSCLC by network analysis. The network distance (the shortest path) of four

known ouabain targets to the cancer type-specific disease module of lung adenocarcinoma in the human protein–protein interactome is ranked for SRC,

HIF1α, EIF4E, and ATP1A1. Yellow circles: known ouabain targets; blue circles: significantly mutated genes (SMGs) for lung adenocarcinoma (LUAD) based

on data from The Cancer Genome Atlas (Supplementary Data 1); purple circles: LUAD-specific module genes identified by GPSnet; green circles:

overlapping genes between SMGs and LUAD-specific module genes. The size of circle nodes denote the gene expression level in lung compared to other

31 tissues based on RNA-seq data from GTEx database (see Methods section). The protein–protein interactions (PPIs) among ouabain targets, LUAD-

specific module genes, and SMGs are labeled by blue links. The ouabain-target interactions are labeled by red links. Background light gray lines represent

other edges in the dense PPIs unrelated to the LUAD-specific disease module. b Ouabain downregulates gene expression of HIF1A in a dose-dependent

manner in A549 cells. c Western blot analysis of HIF1α protein expression (normalized by GAPHD) after CoCl2/ouabain treatment in A549 cells. The

uncropped image for c is included as Supplementary Fig. 22. d shRNA significantly downregulates HIF1A gene expression in A549 cells. Differences

between the two groups (b and d) were analyzed by Student’s t-test: *P-value < 0.05 and ***P-value < 0.001. e Cell viability reduction by ouabain is

perturbed by two specific shRNA against HIF1A. Each experiment was performed at least three times in duplicate. All data is represented as mean ± SEM

(n= 3) and each experiment was performed at least three times in duplicate
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Fig. 7 Ouabain regulates LEO1-mediated cell metabolism of non-small cell lung cancer (NSCLC) cells by bioinformatics and experimental validation.

a Pathway enrichment analysis for the differentially expressed HIF1A target genes in lung adenocarcinoma patients. FDR: false discovery rate (also denoted

the adjusted p-value for multiple testing using Bonferroni’s correction). b Correlation of LEO1 expression with serine or glycine abundance in NSCLC cell

lines (see Methods section and Supplementary Data 6). R: Pearson correlation coefficient. P-value (P) was calculated by F-statistics. n is the number of

NSCLC cell lines were used for each correlation analysis. c Ouabain downregulates gene expression of LEO1 in a dose-dependent manner in A549 cells.

Each experiment was performed at least three times in duplicate. Differences between the two groups were analyzed by Student’s t-test: **P-value < 0.01

and ***P-value < 0.001. Data is represented as mean ± SEM (n= 3) and each experiment was performed at least three times in duplicate. d Western blot

analysis of LEO1 protein expression (normalized by GAPDH) following ouabain treatment in A549 cells and two normal human lung fibroblasts cells (WI38

and MRC5). Uncropped images for d are included as Supplementary Fig. 23. e Survival analysis of LEO1 gene expression in NSCLC patients (see Methods

section). The P-value (P) was calculated by log-rank test. HR, hazard ratio
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Under our assumptions, the disease module should be highly connected in the
cancer type-specific co-expressed PPI networks derived from RNA-seq data, and
the genes in the module should tend to be the highly-mutated genes. We use the
random searching method to identify the disease module in GPSnet.

We first set the initial score of each gene i in each cancer type as s0ðiÞ ¼ mðiÞ
lðiÞ ,

where m(i) is the mutation frequency of gene i in the corresponding cancer type,
and l(i) is the cDNA length of gene i. In order to eliminate the influence of the
somatic mutation data that are sparse, the network smoothing method is used to
transmit the score across the whole network.

The random walk with restart process (RWR) is applied to calculate the
smoothing gene score. Consider a random walker starting from gene i, who will
move to a random neighbor with probability ð1� αÞ or returns to gene i with
probability α at each iterative time step, where α 2 ½0 1� is the parameter that drives
the restart probability of the random walk process. Here we use α= 0.5 to balance

the degree bias (Supplementary Figs. 18–21). Denote st
! as the score vector at step t,

and the propagation process can be described as:

stþ1
�! ¼ ð1� αÞW st

!þ α s0
!; ð4Þ

where s0
! is the vector of each gene’s initial score, and W is the transfer matrix with

Wij ¼ 1
kðjÞ if gene i interacts with gene j, otherwise Wij ¼ 0 (with kðjÞ the number of

neighbors of gene j in the network). The theoretical solution is:

~s ¼ α 1� 1� αð ÞWð Þ�1 s0
! ð5Þ

with the ith element of~s the smoothing score of gene i.
The module is defined as a sub-graph within the cancer type-specific co-

expressed PPI network, and the score of module M is calculated according to Eq. 1,
where m represents the number of genes in module M and μ is the average score
over the whole gene set for the corresponding cancer type. The following steps are
used to perform the random search process to generate a raw module. Initially, a
gene is randomly selected as the “seed” gene. We denote ΓM as the set of the genes
that interact with module M in the human interactome. For each gene i 2 ΓM , we
calculate the connectivity significance in the cancer type-specific PPI network by
Eq. 2.

For each gene i 2 ΓM , we calculate the expanded module score if gene i is added
to the module in Eq. 3. One raw module is obtained by repeating the searching
steps until no more genes can be added to the corresponding module. In this study,
we built approximately 60,000 raw modules for each cancer type. In this way, each
gene in the human interactome was randomly selected approximately five times.
We removed the raw modules with less than 10 genes, and collected the top 1%
(approximately 300) of modules with the highest module scores, indicating gene
confidence by calculating how many times each gene appears in these modules.
Finally, we selected the genes with gene confidence values larger than 0.5% and
assembled the largest connected component7 among these genes (removing
isolated nodes) in the cancer type-specific co-expressed PPI network as the final
disease module for each cancer type. The detailed description of GPSnet is
provided in the Supplementary Note 3 and Supplementary Fig. 4.

Pharmacogenomics models. We downloaded gene bulk expression profiles and
drug response data (defined by IC50 value) across cancer cell lines from the GDSC
database17. We built regression models to predict drug’s IC50 value using the
LIBSVM59 R package with default parameters and linear kernels. Specifically, the
GPSnet-identified disease modules with RMA gene expression profiles of cancer
cell lines were transformed into a matrix with each column of this matrix denoting
a feature vector and each row denoting a cancer cell line from the GDSC database.
Finally, the ROC curves were plotted using the R package.

Gene-set enrichment analysis (GSEA). We collected drug-gene signatures from
the Connectivity Map (CMap, build 02)23. The CMap comprises over 7000 gene
expression profiles from cultured human cell lines treated with various small
bioactive molecules (1309 total), at different concentrations, covering 6100 indi-
vidual instances. The CMap thus provides a measure of the extent of differential
expression for a given probe set. The amplitude (a) is defined as follows:

a ¼ t � c

ðt þ cÞ=2 ; ð6Þ

where t is the scaled and threshold average difference value for the drug treatment
group and c is the threshold average difference value for the control group. Thus, a
= 0 indicates no differential expression, a > 0 indicates increased expression
(upregulation) upon treatment, and a < 0 indicates decreased expression (down-
regulation) upon treatment. For example, an amplitude of 0.67 represents a two-
fold induction60. Drug gene signatures with amplitudes >0.67 were defined as
upregulated drug-gene pairs, and amplitudes <− 0.67 reflected downregulated
drug-gene pairs. We then mapped probe sets to the human genome. In total, we
compiled 1,874,674 drug-gene pairs from the CMap, connecting 1309 drugs and
12,768 genes.

For each drug-disease pair, we counted the number of module genes in a
particular cancer type identified by GPSnet, and those that are upregulated or
downregulated by drug treatments, as well as overlap or mutually exclusive pairs.

Here, we used P < 0.05 as a cutoff to identify significant drug-disease associations
(Supplementary Data 5).

Network proximity. Given S, the set of disease proteins, and T, the set of drug
targets, d(s,t), the closest distance measured by the average shortest path length
between node s and the nearest disease protein t in the human protein–protein
interactome, is defined as:

dðS;TÞ ¼ 1

Tk k
X

t2T
mins2Sdðs; tÞ ð7Þ

To evaluate the significance of the network distance between a drug and a given
disease, we constructed a reference distance distribution corresponding to the
expected distance between two randomly selected groups of proteins of the same
size and degree distribution as the original disease proteins and drug targets in the

network. This procedure was repeated 1000 times. The mean �d and standard
deviation (σd) of the reference distribution were used to calculate a z-score (zd) by
converting an observed (non-Euclidean) distance to a normalized (non-Euclidean)
distance (Supplementary Data 5). The detailed description of network proximity
was provided in our recent study8.

Pathway enrichment analysis. We used ClueGO61 for enrichment analysis of
genes in the canonical KEGG pathways. A hypergeometric test was performed to
estimate statistical significance, and all P values were adjusted for multiple testing
using Bonferroni’s correction (adjusted P values).

Cell culture. All cells were incubated at 37 °C in a humidified incubator with 5%
CO2. NSCLC cell lines A549, H522, H596, H1975, HCC827, and PC9 were
obtained from the American Type Culture Collection (Manassas, VA) and cultured
in Roswell Park Memorial Institute (RPMI) 1640 Medium supplemented with 10%
fetal bovine serum (FBS, Gibco), and penicillin-streptomycin. Lung normal cell
lines MRC5 and WI38 were obtained from the Shanghai Cell Bank of the Chinese
Academy of Sciences (Shanghai, China) and maintained in Eagle’s Minimum
Essential Medium (EMEM) supplemented with 10% fetal bovine serum (FBS,
Gibco) and penicillin-streptomycin (Supplementary Table 1). Cell lines were
subjected to a mycoplasma detection test and authenticated by short tandem repeat
(STR) profiling.

Cell viability assay. Cell viability assay was conducted as previously described62.
In brief, 3000–5000 cells/well were seeded in 96-well plates for 12 h, and then
incubated with the indicated compounds for 48 h. Cell viability was detected using
CellTiter 96 AQueous One Solution from Promega (Madison, WI), according to
the manufacturer’s protocol. IC50 values were calculated from dose-response curves
using Graphpad Prism 7 (GraphPad Software).

Colony formation. A549 or H522 cells were seeded into 6-well plates at 1500 cells
per well in 2 ml of 1640 medium supplemented with 10% FBS and penicillin-
streptomycin. After cell adherence, various concentrations of ouabain were incu-
bated with cells. The medium was changed every 2 days. After 7 days, colonies were
fixed in 4% paraformaldehyde and stained with 0.2% crystal violet.

Western blotting and antibodies. Cell were lysed with buffer containing 100 mM
Tris-HCl (pH 7.5),150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% sodium deox-
ycholate, and 1% Triton X-100 with protease inhibitors (Roche, San Francisco, CA)
and phosphatase inhibitors (Santa Cruz, Dallas, TX). Protein concentration was
determined using the bicinchoninic acid assay (BCA) (Thermo Fisher, Waltham,
MA). Equal amounts of proteins samples (approximately 50 μg) were run on SDS-
polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes
(Millipore, Burlington, MA). The membranes were blocked in TBST (10 mM Tris-
HCl pH= 8, 150 mM NaCl, 0.1% Tween) with 5% BSA and probed with primary
antibodies and corresponding fluorescence-conjugated secondary antibodies.
Antibodies (Supplementary Table 2) used included: anti-GAPDH (Catalog No.:
AB0037, 1:10,000 dilution) and anti-HIF1α (Catalog No.: CY5197, 1:1000 dilution),
purchased from Abways Technology (Shanghai, China); and anti-LEO1 (Catalog
No.: ab75721, 1:100 dilution), purchased from Abcam (Cambridge, MA).
Uncropped images of Figs. 6c, 7d are included as Supplementary Figs. 22 and 23.

Real-time quantitative PCR (RT-qPCR). Total RNA was isolated using the Trizol
reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol.
cDNA synthesis was performed using the ReverTra Ace qPCR RT Master Mix
(TOYOBO, OSAKA, Japan). qPCR reactions were conducted using SYBR Green
Real-Time PCR Master Mixes (Thermo Fisher, Waltham, MA) on CFX-96TM
(Bio-Rad, Hercules, CA). The amount of each gene was detected and normalized by
the amount of GAPDH. The Ct values were generated using the standard curve
method. The sequences of primers used in RT-qPCR experiments (Supplementary
Table 3) are as follows: HIF1A: Forward primer: 5′-ACTCAGGACACAGATTT
AGACTTG-3′. Reverse primer: 5′-TGGCATTAGCAGTAGGTTCTTG-3′.

LEO1: Forward primer: 5′-AGAAGCGGATAGTGACACTGAGGT-3′.
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Reverse primer: 5′-TTCATCAACAGGCTGTCCTGGAGT-3′. pLKO.1-puro
vectors encoding shRNA targeting HIF1A were purchased from Synbio
Technologies. shHIF1A-1 sequence: CCGGGTGATGAAAGAATTACCGA
ATCTCGAGATTCGGTAATTCTTTCATCACTTTTT; shHIF1A-2 sequence:
CCGGTGCTCTTTGTGGTTGGATCTACTCGAGTAGATCCAACCACAAAG
AGCATTTTT. HIF1A knockdown was confirmed by a RT-qPCR.

Transcription factor network analysis. We collected the 719 putative reported
HIF1A transcription factor targets (Supplementary Data 6) from two previous
studies63,64. To inspect the potential function of HIF1A transcription factor in
LUAD, we calculated the differential expression of these 719 genes (Supplementary
Data 6) by utilizing the RNA-seq read count data in LUAD patient’s tumor samples
compared to the matched normal samples from TCGA using DESeq265. We used
the adjusted P-value less than 0.05 to define the differentially expressed genes.

Correlation between metabolite abundance and gene expression. We collected
[13C]serine or [13C]glycine abundance tested in ~70 NSCLC cell lines from a
previous study30. We next collected genome-wide gene expression profiles on
NSCLC cell lines from the CCLE database29. The correlation between metabolite
abundance and gene expression level (Supplementary Data 6) was computed by
Pearson correlation coefficient measure, and P-values were computed by the F-
statistics using the R platform (v3.01, http://www.r-project.org/).

Tissue-specific subnetwork analysis. We downloaded the RNA-seq data (RPKM
value) of 32 tissues from GTEx V6 release (https://gtexportal.org/home/). For each
tissue (e.g., lung), we regarded those genes with RPKM ≥1 in more than 80% of
samples as tissue-expressed genes and the remaining genes as tissue-unexpressed.
To quantify the expression significance of tissue-expressed gene i in tissue t, we
calculated the average expression E(i) and the standard deviation δEðiÞ of a gene’s
expression across all considered tissues. The significance of gene expression in
tissue t is defined as zEði; tÞ ¼ ðEði; tÞ � EðiÞÞ=δEðiÞs as described previously8. For
LUAD, we built a lung-specific protein–protein interaction network by comparing
genome-wide expression profiles of lung to 31 other different tissues from GTEx.

Survival analysis. We downloaded the microarray data and survival profiles on
226 primary human stage I–II lung adenocarcinomas (GSE31210)66. Patients were
grouped into the top 50% lowly expressed (blue) versus top 50% highly expressed
(red) groups based on the normalized expression level. The P-value for
Kaplan–Meier survival analysis was determined using a log-rank test in the
GraphPad Prism 7 software.

Statistical analysis. The data shown in the study were obtained from at least three
independent experiments and all data in different experimental groups were
expressed as the mean ± the standard error of the mean (SEM). Differences
between the two groups were analyzed by Student’s t-test and P values as indicated
in the figure legends. *P < 0.05 was considered statistically significant. Statistical
analyses were conducted using GraphPad Prism 7 software.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The unpublished binary human protein–protein interactions can be accessed at

http://ccsb.dana-farber.org/interactome-data.html. Data supporting the findings of

this study are available within Supplementary Data Files 1–6, and additional data are

available from the corresponding author upon reasonable request.

Code availability
The code for GPSnet analysis is available at https://github.com/ChengF-Lab/GPSnet. The

other codes written for and used in this study are available from the corresponding

author upon reasonable request.
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