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Abstract

Background: In this study we integrated the CNV (copy number variation) and WssGWAS (weighted single-step

approach for genome-wide association) analyses to increase the knowledge about number of piglets born alive, an

economically important reproductive trait with significant impact on production efficiency of pigs.

Results: A total of 3892 samples were genotyped with the Porcine SNP80 BeadChip. After quality control, a total of

57,962 high-quality SNPs from 3520 Duroc pigs were retained. The PennCNV algorithm identified 46,118 CNVs, which

were aggregated by overlapping in 425 CNV regions (CNVRs) ranging from 2.5 Kb to 9718.4 Kb and covering 197Mb

(~ 7.01%) of the pig autosomal genome. The WssGWAS identified 16 genomic regions explaining more than 1% of the

additive genetic variance for number of piglets born alive. The overlap between CNVR and WssGWAS analyses

identified common regions on SSC2 (4.2–5.2 Mb), SSC3 (3.9–4.9 Mb), SSC12 (56.6–57.6 Mb), and SSC17 (17.3–18.3 Mb).

Those regions are known for harboring important causative variants for pig reproductive traits based on their crucial

functions in fertilization, development of gametes and embryos. Functional analysis by the Panther software identified

13 gene ontology biological processes significantly represented in this study such as reproduction, developmental

process, cellular component organization or biogenesis, and immune system process, which plays relevant roles in

swine reproductive traits.

Conclusion: Our research helps to improve the understanding of the genetic architecture of number of piglets born

alive, given that the combination of GWAS and CNV analyses allows for a more efficient identification of the genomic

regions and biological processes associated with this trait in Duroc pigs. Pig breeding programs could potentially

benefit from a more accurate discovery of important genomic regions.
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Background

Reproductive performance in pig production systems is

usually quantified by several economically important

traits. The number of piglets born alive is an important

trait in pig breeding programs due to its significant impact

on the production efficiency; however, this is a difficult

trait to improve because of low prediction accuracy and

heritability [1–3]. Although the heritability of reproductive

traits is moderate to low, genetic improvements can be

obtained using genomic tools to explore the chromosomal

regions and genes that explain the variation in reproduct-

ive traits. In addition to that, genomic acts as an extra

source of information increasing prediction accuracy even

for lowly heritable traits [4].

Until now, a total of 27,465 quantitative trait loci

(QTL) have been mapped in the porcine genome for 663

different traits (Pig QTLdb Release 35). From about

2058 QTL described for reproduction traits, a total of

1004 QTL were described for litter traits, of which 163

QTL are related to number of piglets born alive [5].
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Studies have reported the association of several genes and

genomic regions with number of piglets born alive in sev-

eral pig breeds [1–3, 6–10]. Genome-wide association stud-

ies (GWAS) became very powerful tools to investigate

genetic architecture of economically important traits in

livestock, allowing detection of genomic regions and genes

controlling polygenic traits related to reproductive

performance in pigs [2, 3, 8].

The combination of GWAS with other genomic ap-

proaches can provide a better understanding about genes

and pathways involved in complex traits [11]. In several

livestock species, it has been demonstrated useful to inte-

grate GWAS and copy number variation (CNV) analysis to

advance the knowledge of economically important complex

traits [12, 13].

Structural variants such as CNV represent an important

source of genomic variation in mammalian genomes. They

can be defined as segments of DNA (conventionally > 1

Kb) that differ in number of copies compared to a reference

genome [14]. Compared with SNPs, CNVs cover wider

chromosomal regions and may potentially be responsible

for changes in gene structure, modifications in gene regula-

tion, changes in gene dosage, and exposing recessive alleles,

resulting in large phenotypic effects. A well-characterized

phenotypic variation affected by CNV in pig is the white

coat phenotype generated by the duplication of the KIT

gene [15].

Although several methodologies have been applied to de-

tect CNVs in the pig genome, SNP arrays have better prop-

erties, such as lower cost compared to next generation

sequencing (NGS) methodology and can be used for both

GWAS and CNV detections. Employing SNP for CNV

detection, previous studies have identified thousands of

porcine CNVs [12, 16–28]. Because most of these studies

comprised relatively small numbers of animals, the impacts

of CNVs on phenotypes are still relatively poorly

understood.

In animal breeding and genetics, the commercial pop-

ulations are usually large and comprise phenotypes,

pedigree, and genotypes for a fraction of pedigreed ani-

mals. Single-step genomic best linear unbiased predic-

tion (ssGBLUP) was developed to predict breeding

values when this type of data is available [29]. This is the

method of choice for such populations because trad-

itional GWAS methods cannot be implemented directly

due to the necessity of combining results with pedigree

structure to create pseudo-observations [30, 31]. When

the structure of the genotyped dataset is complex, prob-

lems such as double counting of contributions from

pedigree and phenotypes, and preselection bias [32] re-

duce accuracy. Lately, ssGBLUP was extended to GWAS

[33, 34]. The GWAS under the ssGBLUP framework is

called ssGWAS and allows the combination of pheno-

types, pedigree and genotypes in one single analysis with

no need of calculating pseudo-observations [35, 36]. In

ssGBLUP, the main assumption is that all SNP explain the

same proportion of additive genetic variance; however, this

is not biologically true, especially when the traits are af-

fected by large QTL. To account for the fact SNP may ex-

plain different proportion of variance, weighted ssGBLUP

can be used. The WssGBLUP (weighted single-step

approach for genome-wide association) method weighs

SNP according to their effects in an iterative way [33]. The

WssGWAS is fast, accurate and simple to implement for

genome-wide association studies [33].

The aim of this study was to perform a WssGWAS to ef-

fectively identify genomic regions and biological processes

related to number of piglets born alive in the Duroc breed

and perform a CNV analyses to detect potential regions

affecting the phenotype through changes in gene dosage.

The elucidation of genes and molecular mechanisms

controlling this trait should result in a better understanding

of the genetic regulation of reproductive performance.

Results
CNV detection

After applying stringent filtering criteria, 653 samples

did not pass the filtering and were discarded. The 2867

remaining samples were explored to search for CNV.

A total of 46,118 CNVs (4892 gains and 41,226 losses)

were detected by PennCNV, of which 8152 (645 gain

and 7507 loss) were non-redundant CNVs among the

total of 2865 samples. CNVs were not identified in two

samples. All CNVs detected by PennCNV were used to

infer CNVR by aggregating overlapping CNVs. Thus, a

total of 425 CNVRs were obtained (Additional file 1).

The size of the CNVRs averaged 463,621 bp and ranged

from 2552 bp to 9718,410 bp (Fig. 1). Among these regions,

342 corresponded to copy losses, 19 to copy gains and 64

to both (the same fragment showed losses or gains in differ-

ent animals). It corresponds to a loss:gain ratio of 4.89.

The CNVRs inferred in our study covered 197,038,894

bp (7.01%) of the autosomal genome sequence, and their

frequencies ranged from 0.5 to 53.61% in this Duroc

population (Table 1).

Although CNVRs were identified in all autosomes,

the number and proportion of chromosomes covered

by CNVRs varied considerably (Fig. 2, Table 1).

Chromosome 1 showed the largest number of CNVRs

(49 CNVRs), which covered only 3.94% of its

sequence; the lowest coverage observed for a single

chromosome. Although the SSC11 showed the highest

coverage of a chromosome sequence (16.03%), this

chromosome showed a small number of CNVR (22),

but with bigger sizes. The SSC17 presented the

smallest number of CNVR (10), covering only 5.05%

of its sequence.
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Weighted single-step genome-wide association study

The estimated heritability for number of piglets born

alive was 0.11 ± 0.008. The additive genetic direct and

permanent environmental variances were 0.78 and 0.57,

respectively, whereas the residual variance was 5.68.

A total of 16 windows were detected each explaining

more than 1% of the additive genetic variance for number

of piglets born alive on chromosomes 2, 3, 4, 11, 12, 13,

14, 15, 16, and 17 (Fig. 3, Table 2). These significant win-

dows explained a total of 22.54% of additive genetic vari-

ance for number of piglets born alive in the Duroc breed.

We identified common regions between GWAS and

CNVR analyses on SSC2 (4.2–5.2Mb), SSC3 (3.9–4.9

Mb), SSC12 (56.6–57.6Mb), and SSC17 (17.3–18.3Mb),

comprising a total of 56 protein-coding genes (Table 2).

These regions are very interesting because their gene

content could affect the number of pigs born alive

through changes in gene dosage. The windows on SSC2,

SSC3 and SSC17 are in deletion CNVR, whereas the

window on SSC12 is in deletion and duplication CNVR.

Gene enrichment analysis

Functional annotation revealed genes involved in 13 gene

ontology (GO) biological processes such as reproduction

(GO:0000003), developmental process (GO:0032502), cellu-

lar process (GO:0009987), cellular component organization

or biogenesis (GO:0071840), biological regulation (GO:006

5007), immune system process (GO:0002376), and rhyth-

mic process (GO:0048511), which may play relevant roles

in reproductive traits (Fig. 4, Additional file 2).

Fig. 1 The number of CNVRs identified in this study according to the size interval and state (gain, loss or both)

Table 1 Chromosome distribution of all 425 CNVRs detected in

the porcine genome

Chr Chr length (bp) CNVR number Length of CNVR (bp) %

SSC1 315,321,322 49 12,420,297 3.94

SSC2 162,569,375 33 17,317,379 10.65

SSC3 144,787,322 30 12,626,965 8.72

SSC4 143,465,943 15 10,565,509 7.36

SSC5 111,506,441 17 9,232,945 8.28

SSC6 157,765,593 22 12,493,722 7.92

SSC7 134,764,511 26 10,659,114 7.91

SSC8 148,491,826 36 10,789,394 7.26

SSC9 153,670,197 19 12,793,931 8.32

SSC10 79,102,373 16 8,515,041 10.76

SSC11 87,690,581 22 14,058,242 16.03

SSC12 63,588,571 25 8,687,209 13.66

SSC13 218,635,234 24 11,779,507 5.38

SSC14 153,851,969 27 9,624,904 6.25

SSC15 157,681,621 26 23,006,893 14.59

SSC16 86,898,991 12 5,426,107 6.24

SSC17 69,701,581 10 3,519,539 5.05

SSC18 61,220,071 16 3,522,196 5.75

Total 2,808,509,378 425 197,038,894 7.01
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Discussion

The number of animals used in this study is greater

than previous in studies on pigs [12, 22, 23, 25, 27,

28, 37, 38], which could decrease the amount of

false-positive CNVs.

Several studies also detected deletions more frequently

than duplications in pigs [17, 18, 22, 23, 39] which could be

partially explained by biological factors because non-allelic

homologous recombination tends to create more deletions

than duplications [40], and partially by technical bias

Fig. 2 Chromosomal locations of 425 CNVRs identified along the 18 porcine autosomes

Fig. 3 Proportion of additive genetic variance, explained by 1 Mb windows of adjacent SNPs, for number of piglets born alive
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because deletions tend to be under stronger purifying

selection, i.e., deletions are more deleterious than

duplications [41].

Although several studies have reported CNVs in the

porcine genome, CNVs have been described to have

breed-specific characteristics [22, 23, 25, 27, 28, 37, 39,

42]. By using the Illumina Porcine SNP60 BeadChip to

detect CNVR, a total of 170 CNVRs (7 gains, 161 losses

and 2 both) were detected in 293 Large White pigs [39],

249 CNVRs (70 gains, 43 losses and 136 both) in 585

Large White X Minzhu pigs [42], 65 CNVRs (21 gains, 32

losses and 12 both) in 223 Iberian pigs [37], and 348

CNVRs (88 gains, 243 losses and 17 both) in 302 animals

from ten Chinese pig breeds [22]. By using arrayCGH

technology, 37 CNVRs (18 gains and 19 losses) were iden-

tified in 12 Duroc boars [43]. Besides breed, it is important

to highlight that the number of samples analyzed, as well

as the differences in calling technology (NGS, SNP geno-

typing or arrayCGH), resolution, genome coverage and/or

quality control to filter CNVs used in the aforementioned

studies directly influence the results obtained, as described

previously [44–46].

Some genes identified in common regions between

GWAS and CNVR analyses were highlighted according to

their function. The KDM2A, ACTN3, and RHOD genes are

mapped on SSC2 (4.2–5.2Mb) region. The KDM2A gene,

also known as FBXL11 and JHDM1A, plays an important

role in gene silencing, cell cycle, and cell growth through

histone demethylation modification. This gene was identi-

fied as differentially expressed in porcine embryonic skeletal

muscle, being therefore involved in skeletal muscle devel-

opment and growth [47]. The ACTN3 gene also encodes a

protein which exhibits an important function in muscle

metabolism [48]. The RHOD gene is a regulator of

reorganization of the actin cytoskeleton and consequently,

regulates several cellular processes such as vesicle traffick-

ing, chemotaxis, cell migration and proliferation [49].

The ACTB gene is located on SSC3 window (3.9–4.9

Mb). This gene encodes β-actin, a member of the actin

family of proteins that are related to cell motility, structure,

Table 2 Identification of protein-coding genes based on the additive genetic variance (Var) explained by 1 Mb windows of adjacent

SNPs

Chr Region (bp) Genes Var

SSC2a 4,239,252-5,222,613 KDM2A, RHOD, C2H11orf86, SYT12, PC, RCE1, C2H11orf80, CCDC87, CCS, CTSF, ACTN3,

ZDHHC24, BBS1, DPP3, PELI3, MRPL11, NPAS4, SLC29A2, B4GAT1, BRMS1, RIN1, CD248,

TMEM151A, YIF1A, CNIH2, RAB1B, KLC2, PACS1, SF3B2

1.57

SSC2 145,012,848-146,011,865 SPOCK1, KLHL3, HNRNPA0, LOC100517462, MYOT, PKD2L2, LOC100520183, FAM13B,

WNT8A, NME5, BRD8, KIF20A, CDC23, GFRA3, CDC25C, SLBP2

1.01

SSC3a 3,981,003-4,980,011 SDK1, FOXK1, AP5Z1, RADIL, PAPOLB, MMD2, WIPI2, SLC29A4, TNRC18, FBXL18, ACTB,

FSCN1, RNF216

1.16

SSC4 20,774,634-21,762,434 COLEC10, TNFRSF11B, SAMD12, EXT1 1.07

SSC4 104,642,633-105,640,667 SLC39A1, CRTC2, DENND4B, GATAD2B, SLC27A3, INTS3, NPR1, ILF2, SNAPIN, CHTOP,

S100A5, S100A4, S100A3, S100A2, S100A16, S100A14, S100A13, PPGRP-S, S100A9,

S100A12, S100A8, LOC102161828, S100A7, PGLYRP3, LOR, PRR9, LELP1, SPRR2E,

LOC100737840, SPRR1A, SPRP, IVL, SMCP, KPRP

1.13

SSC11 25,254,733-26,232,874 TNFSF11, AKAP11, DGKH, VWA8, RGCC, NAA16 1.18

SSC12 54,066,400-55,065,792 GP1BA, MINK1, PLD2, ZMYND15, CXCL16, MED11, ARRB2, PSMB6, GLTPD2, VMO1,

TM4SF5, PELP1, ALOX15, SLC16A11, SLC16A13, BCL6B, C12H17orf49, RNASEK,

ALOX12, CLEC10A, ASGR2, SLC2A4, CLDN7, ELP5, GABARAP, PHF23, DVL2, DLG4,

YBX2, NEURL4, ACAP1, KCTD11, TMEM95, TNK1, PLSCR3, POLR2A, SLC35G6, ZBTB4,

CHRNB1, FGF11, TMEM102, SPEM2, DNAH2

1.10

SSC12a 56,619,955-57,608,007 CCDC42, MFSD6L, PIK3R6, PIK3R5, NTN1, STX8, CFAP52, USP43, DHRS7C, GSG1L2,

GLP2R, RCVRN, GAS7

1.30

SSC13 3,171,064-4,162,557 BTD, ANKRD28, GALNT15, DPH3, OXNAD1, RFTN1, DAZL 1.35

SSC13 10,788,202-11,761,268 UBE2E2 2.27

SSC14 13,059,455-14,032,461 SCARA5, NUGGC, ELP3, PNOC, ZNF395, FBXO16, FZD3, EXTL3, INTS9, HMBOX1, KIF13B 2.14

SSC15 55,188,321-56,161,595 FGFR1, LETM2, NSD3, PLPP5, DDHD2, BAG4, ADRB3, STAR, ASH2L, EIF4EBP1, LSM1, BRF2,

ADGRA2, PLPBP, ERLIN2, ZNF703, KCNU1

1.28

SSC15 57,551,770-58,532,159 – 1.29

SSC15 131,996,123-132,969,736 TNS1, RUFY4, CXCR2, CXCR1 1.09

SSC16 77,028,962-78,013,471 GLRA1, G3BP1, ATOX1, LOC100514500, SPARC, FAT2, SLC36A1, SLC36A2, SLC36A3, GM2A,

CCDC69, ANXA6

2.55

SSC17a 17,325,007-18,300,615 BMP2 1.04

aregion also identified in a CNVR
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and integrity, fundamental processes for embryonic devel-

opment. β-actin protein is required for meiosis in mouse

oocytes [50] and for early embryonic development because

knocking out this gene resulted in embryonic lethality [51].

According to its function, we identified some important

genes mapped on SSC12 (56.6–57.6Mb), such as CCDC42,

PIK3R5, and NTN1. The CCDC42 gene plays a crucial role

in sperm development and male fertility in mouse [52],

while the PIK3R5 gene has been implicated in several cell

functions such as proliferation, survival, differentiation,

growth, motility, and intracellular trafficking [53, 54]. The

NTN1 gene codifies the netrin-1 which is an essential pro-

tein of embryonic development with important functions in

cell migration, axon guidance, angiogenesis and morpho-

genesis [55]. Netrin-1 also is a crucial factor for regulating

angiogenesis in placenta [56] and osteoclast differentiation

[57]. Basini et al. [58] identified the NTN1 gene as a poten-

tial modulator of swine follicular function.

The BMP2 gene is the only gene mapped on SSC17 win-

dow (17.3–18.3Mb). BMP proteins exhibit wide spectrum

of activities in several tissues (cartilage, bone, blood vessels,

liver, lung, kidney, heart and neurons) and perform multiple

roles in regulation of growth, differentiation, and apoptosis,

playing important functions during embryonic develop-

ment and tissue morphogenesis [59]. The BMP2 gene plays

a critical role in mesenchymal cells influencing adipogene-

sis, myogenesis, chondrogenesis, and osteogenesis [60–63].

Homozygous knockout mice for BMP2 gene exhibits

embryonic lethality with defects in extra-embryonic and

embryonic tissues [64], whereas heterozygous knockout

mice have defects in cartilage, bone and heart development

[63]. As the BMP2 is mapped to a window that explains

part of the additive genetic variance for number of piglets

born alive, which is located on a deletion CNVR, the BMP2

becomes an important gene to influence the number of pig-

lets born alive, especially because subnormal levels of

BMP2 negatively impacted embryonic development [63]

and in the adult, it is required for uterine decidual response

during embryo implantation [65].

Additionally, we highlighted the SSC12 (54.0–55.0Mb)

and SSC14 (13.0–14.0Mb) chromosome regions identified

only by WssGWAS due its gene content. The ZMYND15,

YBX2 and TMEM95 genes are mapped on SSC12 (54.0–

55.0Mb) and are related with reproductive traits. The

ZMYND15 gene is primordial for sperm production and

male fertility [66]. The YBX2 gene codifies a protein

required for mammal development and fertility because

knockout mice for this gene presented disruption of sperm-

atogenesis and oogenesis [67–69]. The TMEM95 gene

codifies a protein located at the surface of spermatozoa and

deficiency of TMEM95 severely compromises male repro-

ductive performance, resulting in subfertility in cattle [70].

The ELP3 gene, mapped on SSC14 window (13.0–14.0

Mb), plays important roles in embryonic stem cell main-

tenance and early development in mouse [71].

The SCIMP, TNP1, MUS81, KCNU1, and ILF2 genes

were identified as related with reproduction (GO:0000003)

process. Among these genes, we highlighted the TNP1 gene

Fig. 4 Pie chart representation of Panther Gene Ontology biological processes significantly over represented in this study. Genes were categorized

into 13 biological processes, including biological adhesion (0.7%), biological regulation (8.2%), cellular component organization or biogenesis (7.3%),

cellular process (28.8%), developmental process (6.9%), immune system process (2.5%), localization (7.8%), locomotion (1.4%), metabolic process (21.2%),

multicellular organismal process (5.0%), reproduction (0.9%), response to stimulus (9.1%) and rhythmic process (0.2%)
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which codifies a transition nuclear protein that acts in sper-

miogenesis. To detect the role of TPN1 in vivo, a study pro-

duced knockout mice and identified that mutations had no

effect on female fertility, although had reduced litter sizes

[72]. The KCNU1 gene, also known as SLO3, is expressed

only in mammalian testis and plays an important role in

male fertility [73].

Members of S100 protein family (S100A3, S100A4,

S100A5, S100A9, S100A12, S100A14, S100A16) were

identified acting in cellular process (GO:0009987) and

metabolic process (GO:0008152). These genes act in the

regulation of cellular processes such as differentiation,

proliferation, motility, chemotaxis, apoptosis, and in-

flammatory response [74]. The S100A14 and S100A16

were identified as candidate genes for human embryo

adhesion and implantation [75].

Deleted in Azoospermia (DAZ) gene family encodes

proteins with essential roles in male and female gameto-

genesis. The protein encoded by DAZL gene, related

with metabolic process (GO:0008152), was detected in

fetal germ cells and developing oocytes [76]. Mutations

in DAZL gene have been associated to infertility in man

and women [77, 78].

The FGF11, FGRF1 and WNT8A genes are related to de-

velopmental process (GO:0032502), response to stimulus

(GO:0050896), and cellular process (GO:0009987). The

FGF11 and FGRF1 gene encodes a member of the fibro-

blast growth factor (FGF) family and a member of the

fibroblast growth factor receptor (FGFR) family, respect-

ively. The FGF family members and their receptors influ-

ence mitogenesis and differentiation with essential roles in

biological processes, including preimplantation of embryos,

embryonic development, and organogenesis [79]. The

WNT8A gene, expressed during early embryogenesis, be-

longs to WNT gene family that has been related to devel-

opmental processes, including differentiation, proliferation,

apoptosis, regulation of cell fate and patterning during em-

bryonic development [80].

The TNK1, PNOC and AKAP11 genes are related with

biological regulation (GO:0065007) and cellular process

(GO:0009987). The TNK1 gene encodes a tyrosine pro-

tein kinase family member highly expressed in fetal tis-

sues signaling pathways widely utilized during fetal

development [81]. Tyrosine protein kinases are crucial

regulators of intracellular signal transduction pathways,

cell growth, differentiation, survival, and migration [82].

The AKAP11 gene is highly expressed during spermato-

genesis and in mature sperm with assumed role in

spermatogenesis and sperm functions, which may play

functions in cell cycle control of germ and somatic cells

[83, 84]. The PNOC gene encodes the precursor for

biologically active peptides, such as nociceptin, which

have been related to several physiological roles in the

central nervous system. Additionally, a study suggested

that nociceptin plays a key function in meiosis during

spermatogenesis [85].

Conclusion
In this study we integrated WssGWAS and CNV analyses

to improve the investigation of genetic factors determining

number born alive in Duroc pigs. Our study was the first

to provide a map of 425 CNV regions in the pig genome,

which is a substantial source of information for further

studies that aim to explore the association between repro-

ductive traits and CNV regions. The overlapping regions

between WssGWAS and CNVR analyses harbor important

causative variants related to pig reproductive traits based

on their critical roles in fertilization, development of

gametes and embryos, which may be valuable for additional

validation and consideration in future selection programs

aiming to improve number of piglets born alive and other

reproductive traits.

Methods

Phenotype and pedigree information

The phenotypic information was collected by Smithfield

Premium Genetics from five farms of Duroc pigs. Number

of piglets born alive was recorded from sows born between

2008 and 2017. A total of 39,427 records from 13,845 sows

spanning 1 to 12 parities were used, and number of piglets

born alive in each parity ranged from 1 and 19. Animals

were grouped into nine contemporary groups which were

formed by concatenating farm, month and year of farrow-

ing. Pedigree information was available for 772,779 animals.

SNP genotyping and quality control

A total of 3892 DNA samples were genotyped using the

GeneSeek® Genomic Profiler Porcine HD (https://support.

illumina.com/downloads/geneseek-ggp-porcine-hd-product-

files.html) which contained 68,528 SNPs across 18 auto-

somes and two sex chromosomes. Aiming to eliminate

poor-quality DNA samples and decrease false-positive

CNVs, only the samples with a call rate greater than 98%

and call frequency greater than 90% were retained. The

SNPs mapped to the sex chromosomes and those not

mapped to any of the chromosomes were discarded. A total

of 3520 samples genotyped for 57,962 SNPs remained after

quality control for CNV and WssGWAS analyses.

CNV detection and statistical analysis

Individual-based CNV detection was conducted using

PennCNV software [86] based on a hidden Markov model,

which is widely used for detecting CNV based on SNP

array data due its relatively low false-positive rate [87].

Multiple sources of information were used simultan-

eously for obtaining accurate CNV detections such as

distance between SNPs, log R ratio (LRR), population

frequency of the B allele (PBF), and B allele frequency
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(BAF). The LRR and BAF measures were automatically

computed by GenomeStudio software v2.0 (Illumina, Inc.,

USA) from the signal intensity files of the SNP data. The

PBF file was calculated from the signal files using the

compile_pbf.pl routine present in the PennCNV software

[86]. In addition, we performed a wave adjustment pro-

cedure for genomic waves due to guanine-cytosine con-

tent effect applying the gcmodel option in the PennCNV

software to eliminated false positive CNVs detected from

the differentiating signal intensities generated by genomic

waves [88, 89]. The porcine gcmodel was generated by cal-

culating the guanine-cytosine content in genomic regions

surrounding each SNP (500 kb each side).

A quality control of signal intensity was performed to re-

duce false-positive CNVs originated from poor-quality

DNA and to increase the confidence in CNV identification,

which included a BAF drift < 0.01, standard deviation of

LRR < 0.30 and/or GC wave factor < 0.05 (after genomic

waves were corrected by guanine-cytosine content) to

generate raw CNV calls. The CNVs identified in only one

sample and with less than three consecutive SNPs were

discarded.

In order to eliminate inconsistent calling of CNV bound-

aries, CNV regions (CNVR) were inferred through concat-

enation of filtered individual CNVs identified in more than

one animal. Regions with less than 0.5% allele frequency

and with very low density of overlapping (recurrence < 0.1)

were discarded for a more precise definition of CNVR.

Weighted single-step genome-wide association study

(WssGWAS)

Variance components for number of piglets born alive were

estimated by AIREMLF90 software [90], which uses the

Average Information Restricted Maximum Likelihood

method to estimates variance components as well as solu-

tions for fixed and random effects. The single-trait model

included contemporary group as fixed effect, random

animal genetic effect (containing inbreeding), permanent

environmental effect, and the residual effect. In matrix

notation, the model is described as:

y¼XbþWaþKpeþe

where y is the vector of phenotypic records; b is the vector

of fixed effect of contemporary groups; a is the vector of

direct additive genetic effects, pe is the vector of perman-

ent environmental effects; and X, W, and K are the inci-

dence matrices for the effects contained in b, a, and pe,

respectively. Narrow sense heritability was estimated as h2

¼
σ
2
a

σ2
aþσ2

peþσ2
e
, where σ2

i is the variance of the i-th effect.

The same animal model as described previously was

used to estimate the genomic breeding values using the

ssGBLUP (single-step genomic BLUP) approach [91],

which combines genomic and pedigree relationships into

a realized relationship matrix (H). Therefore, the differ-

ence between the regular BLUP and ssGBLUP is that the

inverse of the pedigree relationship matrix (A− 1) is

replaced by H− 1, which is represented as follows:

H−1 ¼ A−1 þ
0 0
0 G−1

−A22
−1

� �

where G−1 is the inverse of the genomic relationship

matrix and A22
−1 is the inverse pedigree relationship

matrix for genotyped animals. The G matrix was

constructed as in [30]:

G ¼
ZDZ

0

2
P

pi 1−pið Þ
;

where Z is a matrix of genotypes centered by twice the

current allele frequencies of each SNP (p); i is the ith

locus; D is a diagonal matrix of weights (variances) for

SNP, which is an identity matrix for the regular

ssGBLUP. To avoid singularity problems, G was blended

with 5% of A22.

After genomic breeding values (GEBV) were estimated

by ssGBLUP, they were back solved to obtain SNP

effects as described by [33]:

û¼λDZ0G−1âg

where âg is GEBV for genotyped animals; λ is the ratio

of SNP to additive genetic variances (
σ
2
u

σ2
a
¼ 1
PM

i¼1
2pi ð1−piÞ

).

The weight for each SNP was calculated based on SNP

effects as follows [33]:

di¼û2
i 2pi 1−pið Þ

where di is the weight for the i-th SNP.

The WssGWAS is an iterative procedure that involves

the following steps [33]: (i) set D = I; (ii) construct G

matrix as described by [30]; (iii) estimate GEBVs for all

animals using ssGBLUP; (iv) estimate the SNP effect; (v)

estimate weight for each SNP individually; (vi) normalize

D to maintain the additive genetic variance constant;

(vii) iterate from step ii.

The analyses were performed using BLUPF90 software

[92] and the results were obtained as the percentage of

additive genetic variance explained by 1Mb sliding

SNP-windows. The percentage of the additive genetic

variance explained by ith window was calculated as in [34]:

var aið Þ

σ2
a

�100¼
var

Pn
j¼1z jû j

� �

σ2
a

�100

where ai is genetic value of the i-th region consisting of

1Mb window length physical size, σ2
a is the total genetic

variance, zj is vector of genotype of the j-th SNP for all
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animals, û j is SNP effect of the j-th SNP within the i-th

region, n is the number of SNP in a window of 1Mb.

Gene annotation and enrichment analysis

The genomic regions exhibiting more than 1% of the addi-

tive genetic variance were prospected for possible QTL

related to number of piglets born alive. The gene content

of the windows was identified using the Ensembl Biomart

tool [93]. The search for biologically relevant functions was

performed with Panther v.13.1 database [94] selecting a 500

Kb window around a significant region (upstream and

downstream) and using Sscrofa10.2 assembly as genome

reference. P-values generated by Panther were Bonferonni-

corrected for the number of conducted comparisons.

Additional files

Additional file 1: Description of 425 CNVRs detected in the porcine

genome. (DOCX 75 kb)

Additional file 2: Gene ontology biological processes revealed by

Panther analysis. (DOCX 40 kb)

Abbreviations

BAF: Ballele frequency; BLUP: Best linear unbiased prediction; CNV: Copy

number variation; CNVR: Copy number variation region; GO: Gene ontology;

GWAS: Genome-wide association study; LRR: Log R ratio; NGS: Next

generation sequencing; PBF: Population frequency of the B allele;

QTL: Quantitative trait loci; SNP: Single nucleotide polymorphism; SSC: Sus

scrofa chromosome; ssGBLUP: Single-step genomic best linear unbiased

prediction; ssGWAS: Single-step genomic association study;

WssGWAS: Weighted single-step approach for genome-wide association

study

Acknowledgements

The authors gratefully acknowledge Smithfield Premium Genetics for making

this study possible by providing the data and support.

Funding

No funding was obtained for this study.

Availability of data and materials

The data that support the findings of this study are available from Smithfield

Premium Genetics (Rose Hill, NC) but restrictions apply to the availability of

these data, which were used under license for the current study, and so are not

publicly available. Data are however available from the authors upon

reasonable request and with permission of Smithfield Premium Genetics. A

request to Smithfield Premium Genetics for accessing data may be sent to Kent

Gray, Director of Genetic Research and Development (kgray@smithfield.com).

Authors’ contributions

Conceptualization: YH, KG, DALL. Experimental design: NBS, DALL. Data

curation: NBS, RMOS, BOF, YM. Statistical analysis: NBS, RMOS, BOF, YM, DALL.

Results interpretation: NBS, DALL. Manuscript preparation: NBS. Manuscript

review and editing: RMOS, BOF, YH, DALL. All authors contributed, read and

approved the final manuscript.

Ethics approval and consent to participate

Animal Care and Use Committee approval was not obtained for this study

because the data were from an existing database provided by Smithfield

Premium Genetics (Rose Hill, NC). We did not collect any new samples for

this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1Department of Exact Science, School of Agricultural and Veterinarian

Sciences (FCAV), Sao Paulo State University (UNESP), Jaboticabal, SP

14884-900, Brazil. 2Department of Animal and Dairy Science, University of

Georgia, Athens, GA, USA. 3National Center for Cool and Cold Water

Aquaculture (NCCCWA), Agricultural Research Service, United States

Department of Agriculture, Kearneysville, WV, USA. 4Department of Animal

Science, University of Connecticut, Storrs-Mansfield, CT, USA. 5Smithfield

Premium Genetics Group, Rose Hill, NC, USA.

Received: 12 July 2018 Accepted: 11 April 2019

References

1. Bergfelder-Drüing S, Grosse-Brinkhaus C, Lind B, Erbe M, Schellander K,

Simianer H, Tholen E. A genome-wide association study in large white and

landrace pig populations for number piglets born alive. PLoS One. 2015;

10(3):e0117468. https://doi.org/10.1371/journal.pone.0117468.

2. Wu P, Yang Q, Wang K, Zhou J, Ma J, Tang Q, Jin L, Xiao W, Jiang A, Jiang Y,

Zhu L, Li X, Tang G. Single step genome-wide association studies based on

genotyping by sequence data reveals novel loci for the litter traits of domestic

pigs. Genomics. 2018;110(3):171–9. https://doi.org/10.1016/j.ygeno.2017.09.009.

3. Wang Y, Ding X, Tan Z, Xing K, Yang T, Wang Y, Sun D, Wang C. Genome-wide

association study for reproductive traits in a large white pig population. Anim

Genet. 2018;49(2):127–31. https://doi.org/10.1111/age.12638.

4. García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van Tassell

CP. Changes in genetic selection differentials and generation intervals in US

Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci.

2016;113(28):E3995–4004. https://doi.org/10.1073/pnas.1519061113.

5. Pig Quantitative Trait Locus Database (Pig QTLdb), Release 35. https://www.

animalgenome.org/cgi-bin/QTLdb/SS/index. Accessed 21 Jun 2018.

6. Onteru SK, Fan B, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. A whole-

genome association study for pig reproductive traits. Anim Genet. 2011;

43(1):18–26. https://doi.org/10.1111/j.1365-2052.2011.02213.x.

7. Hernandez SC, Finlayson HA, Ashworth CJ, Haley CS, Archibald AL. A genome-

wide linkage analysis for reproductive traits in F2 large white × Meishan cross

gilts. Anim Genet. 2014;45(2):191–7. https://doi.org/10.1111/age.12123.

8. Guo X, Su G, Christensen OF, Janss L, Lund MS. Genome-wide association

analyses using a Bayesian approach for litter size and piglet mortality in

Danish landrace and Yorkshire pigs. BMC Genomics. 2016;17:468. https://doi.

org/10.1186/s12864-016-2806-z.

9. Laliotis GP, Marantidis A, Avdi M. Association of BF, RBP4, and ESR2 genotypes

with litter size in an autochthonous pig population. Anim Biotechnol. 2017;

28(2):138–43. https://doi.org/10.1080/10495398.2016.1242490.

10. An SM, Hwang JH, Kwon S, Yu GE, Park DH, Kang DG, Kim TW, Park HC, Ha

J, Kim CW. Effect of single nucleotide polymorphisms in IGFBP2 and IGFBP3

genes on litter size traits in berkshire pigs. Anim Biotechnol. 2018;29(4):301–

8. https://doi.org/10.1080/10495398.2017.1395345.

11. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of

integrating data to uncover genotype-phenotype interactions. Nat Rev

Genet. 2015;16(2):85–97. https://doi.org/10.1038/nrg3868.

12. Wang J, Wang H, Jiang J, Kang H, Feng X, Zhang Q, Liu JF. Identification of

genome-wide copy number variations among diverse pig breeds using SNP

genotyping arrays. PLoS One. 2013;8(7):e68683. https://doi.org/10.1371/

journal.pone.0068683.

13. Santana MHA, Junior GAO, Cesar AS, Freua MC, Gomes RC, Silva SL, Leme

PR, Fukumasu H, Carvalho ME, Ventura RV, Coutinho LL, Kadarmideen HN,

Ferraz JB. Copy number variations and genome-wide associations reveal

putative genes and metabolic pathways involved with the feed conversion

ratio in beef cattle. J Appl Genet. 2016;57(4):495–504. https://doi.org/10.

1007/s13353-016-0344-7.

14. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H,

Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González

JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, JR MD, Marshall CR,

Stafuzza et al. BMC Genomics          (2019) 20:321 Page 9 of 11

https://doi.org/10.1186/s12864-019-5687-0
https://doi.org/10.1186/s12864-019-5687-0
mailto:kgray@smithfield.com
https://doi.org/10.1371/journal.pone.0117468
https://doi.org/10.1016/j.ygeno.2017.09.009
https://doi.org/10.1111/age.12638
https://doi.org/10.1073/pnas.1519061113
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
https://doi.org/10.1111/j.1365-2052.2011.02213.x
https://doi.org/10.1111/age.12123
https://doi.org/10.1186/s12864-016-2806-z
https://doi.org/10.1186/s12864-016-2806-z
https://doi.org/10.1080/10495398.2016.1242490
https://doi.org/10.1080/10495398.2017.1395345
https://doi.org/10.1038/nrg3868
https://doi.org/10.1371/journal.pone.0068683
https://doi.org/10.1371/journal.pone.0068683
https://doi.org/10.1007/s13353-016-0344-7
https://doi.org/10.1007/s13353-016-0344-7


Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ,

Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J,

Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee

C, Jones KW, Scherer SW, Hurles ME. Global variation in copy number in the

human genome. Nature. 2006;444(7118):444–54.

15. Giuffra E, Törnsten A, Marklund S, Bongcam-Rudloff E, Chardon P, Kijas JM,

Anderson SI, Archibald AL, Andersson L. A large duplication associated with

dominant white color in pigs originated by homologous recombination

between LINE elements flanking KIT. Mamm Genome. 2002;13(10):569–77.

16. Ramayo-Caldas Y, Castelló A, Pena RN, Alves E, Mercadé A, Souza CA,

Fernández AI, Perez-Enciso M, Folch JM. Copy number variation in the

porcine genome inferred from a 60 k SNP BeadChip. BMC Genomics. 2010;

11:593. https://doi.org/10.1186/1471-2164-11-593.

17. Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, Ren J, Huang L. A comprehensive

survey of copy number variation in 18 diverse pig populations and

identification of candidate copy number variable genes associated with

complex traits. BMC Genomics. 2012;13:733. https://doi.org/10.1186/1471-

2164-13-733.

18. Li Y, Mei S, Zhang X, Peng X, Liu G, Tao H, Wu H, Jiang S, Xiong Y, Li F.

Identification of genome-wide copy number variations among diverse pig

breeds by array CGH. BMC Genomics. 2012;13:725. https://doi.org/10.1186/

1471-2164-13-725.

19. Wang J, Jiang J, Fu W, Jiang L, Ding X, Liu JF, Zhang Q. A genome-wide

detection of copy number variations using SNP genotyping arrays in swine.

BMC Genomics. 2012;13:273. https://doi.org/10.1186/1471-2164-13-273.

20. Paudel Y, Madsen O, Megens HJ, Frantz LA, Bosse M, Bastiaansen JW,

Crooijmans RP, Groenen MA. Evolutionary dynamics of copy number

variation in pig genomes in the context of adaptation and domestication.

BMC Genomics. 2013;14:449. https://doi.org/10.1186/1471-2164-14-449.

21. Jiang J, Wang J, Wang H, Zhang Y, Kang H, Feng X, Wang J, Yin Z, Bao W,

Zhang Q, Liu JF. Global copy number analyses by next generation

sequencing provide insight into pig genome variation. BMC Genomics.

2014;15:593. https://doi.org/10.1186/1471-2164-15-593.

22. Wang Y, Tang Z, Sun Y, Wang H, Wang C, Yu S, Liu J, Zhang Y, Fan B, Li K,

Liu B. Analysis of genome-wide copy number variations in Chinese

indigenous and western pig breeds by 60 K SNP genotyping arrays. PLoS

One. 2014;9(9):e106780. https://doi.org/10.1371/journal.pone.0106780.

23. Wang J, Jiang J, Wang H, Kang H, Zhang Q, Liu JF. Enhancing genome-wide

copy number variation identification by high density array CGH using

diverse resources of pig breeds. PLoS One. 2014;9(1):e87571. https://doi.org/

10.1371/journal.pone.0087571.

24. Wang H, Wang C, Yang K, Liu J, Zhang Y, Wang Y, Xu X, Michal JJ, Jiang Z,

Liu B. Genome wide distributions and functional characterization of copy

number variations between Chinese and Western pigs. PLoS One. 2015;

10(7):e0131522. https://doi.org/10.1371/journal.pone.0131522.

25. Dong K, Pu Y, Yao N, Shu G, Liu X, He X, Zhao Q, Guan W, Ma Y. Copy

number variation detection using SNP genotyping arrays in three Chinese

pig breeds. Anim Genet. 2015;46(2):101–9. https://doi.org/10.1111/age.

12247.

26. Paudel Y, Madsen O, Megens HJ, Frantz LA, Bosse M, Crooijmans RP,

Groenen MA. Copy number variation in the speciation of pigs: a possible

prominent role for olfactory receptors. BMC Genomics. 2015;16:330. https://

doi.org/10.1186/s12864-015-1449-9.

27. Long Y, Su Y, Ai H, Zhang Z, Yang B, Ruan G, Xiao S, Liao X, Ren J, Huang L,

Ding N. A genome-wide association study of copy number variations with

umbilical hernia in swine. Anim Genet. 2016;47(3):298–305. https://doi.org/

10.1111/age.12402.

28. Xie J, Li R, Li S, Ran X, Wang J, Jiang J, Zhao P. Identification of copy

number variations in Xiang and Kele pigs. PLoS One. 2016;11(2):e0148565.

https://doi.org/10.1371/journal.pone.0148565.

29. Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation

including phenotypic, full pedigree, and genomic information. J Dairy Sci.

2009;92:4648–55. https://doi.org/10.3168/jds.2009-2064.

30. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy

Sci. 2008;91(11):4414–23. https://doi.org/10.3168/jds.2007-0980.

31. Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding values

and weighting information for genomic regression analyses. Genet Sel Evol.

2009;41:55. https://doi.org/10.1186/1297-9686-41-55.

32. Legarra A, Christensen OF, Aguilar I, Misztal I. Single step, a general

approach for genomic selection. Livest Sci. 2014;166:54–65. https://doi.org/

10.1016/j.livsci.2014.04.029.

33. Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association

mapping including phenotypes from relatives without genotypes. Genet

Res. 2012;94(2):73–83. https://doi.org/10.1017/S0016672312000274.

34. Wang H, Misztal I, Aguilar I, Legarra A, Fernando RL, Vitezica Z, Okimoto R,

Wing T, Hawken R, Muir WM. Genome-wide association mapping including

phenotypes from relatives without genotypes in a single-step (ssGWAS) for

6-week body weight in broiler chickens. Front Genet. 2014;5:134. https://doi.

org/10.3389/fgene.2014.00134.

35. Chen CY, Misztal I, Aguilar I, Legarra A, Muir WM. Effect of different genomic

relationship matrices on accuracy and scale. J Anim Sci. 2011;89:2673–9.

https://doi.org/10.2527/jas.2010-3555.

36. Forni S, Aguilar I, Misztal I. Different genomic relationship matrices for

single-step analysis using phenotypic, pedigree and genomic information.

Genet Sel Evol. 2011;43:1–7. https://doi.org/10.1186/1297-9686-43-1.

37. Fernández AI, Barragán C, Fernández A, Rodríguez MC, Villanueva B. Copy

number variants in a highly inbred Iberian porcine strain. Anim Genet. 2014;

45(3):357–66. https://doi.org/10.1111/age.12137.

38. Zhou LS, Li J, Yang J, Liu CL, Xie XH, He YN, Liu XX, Xin WS, Zhang WC, Ren

J, Ma JW, Huang LS. Genome-wide mapping of copy number variations in

commercial hybrid pigs using a high-density SNP genotyping array.

Genetika. 2016;52(1):97–105. https://doi.org/10.1134/S1022795415120145.

39. Schiavo G, Dolezal MA, Scotti E, Bertolini F, Calò DG, Galimberti G, Russo V,

Fontanesi L. Copy number variants in Italian large white pigs detected

using high-density single nucleotide polymorphisms and their association

with back fat thickness. Anim Genet. 2014;45(5):745–9. https://doi.org/10.

1111/age.12180.

40. Fadista J, Thomsen B, Holm LE, Bendixen C. Copy number variation in the

bovine genome. BMC Genomics. 2010;11:284. https://doi.org/10.1186/1471-

2164-11-284.

41. Schrider DR, Hahn MW. Gene copy-number polymorphism in nature. Proc

Biol Sci. 2010;277:3213–21. https://doi.org/10.1098/rspb.2010.1180.

42. Wang L, Liu X, Zhang L, Yan H, Luo W, Liang J, Cheng D, Chen S, Ma X,

Song X, Zhao K, Wang L. Genome-wide copy number variations inferred

from SNP genotyping arrays using a large white and Minzhu intercross

population. PLoS One. 2013;8(10):e74879. https://doi.org/10.1371/journal.

pone.0074879.

43. Fadista J, Nygaard M, Holm LE, Thomsen B, Bendixen C. A snapshot of CNVs

in the pig genome. PLoS One. 2008;3(12):e3916. https://doi.org/10.1371/

journal.pone.0003916.

44. Winchester L, Yau C, Ragoussis J. Comparing CNV detection methods for

SNP arrays. Brief Funct Genomic Proteomic. 2009;8(5):353–66. https://doi.

org/10.1093/bfgp/elp017.

45. Clop A, Vidal O, Amills M. Copy number variation in the genomes of

domestic animals. Anim Genet. 2012;43(5):503–17. https://doi.org/10.1111/j.

1365-2052.2012.02317.x.

46. Liu GE, Bickhart DM. Copy number variation in the cattle genome. Funct Integr

Genomics. 2012;12(4):609–24. https://doi.org/10.1007/s10142-012-0289-9.

47. Peng YB, Fan B, Han XL, Xu XW, Rothschild MF, Yerle M, Liu B. Molecular

characterization of the porcine JHDM1A gene associated with average daily

gain: evaluation its role in skeletal muscle development and growth. Mol

Biol Rep. 2011;38(7):4697–704. https://doi.org/10.1007/s11033-010-0604-2.

48. Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3

in muscle metabolism. Physiology. 2010;25(4):250–9. https://doi.org/10.1152/

physiol.00008.2010.

49. Blom M, Reis K, Heldin J, Kreuger J, Aspenström P. The atypical rho GTPase

RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration.

Exp Cell Res. 2017;352(2):255–64. https://doi.org/10.1016/j.yexcr.2017.02.013.

50. Brockmann C, Huarte J, Dugina V, Challet L, Rey E, Conne B, Swetloff A, Nef

S, Chaponnier C, Vassalli JD. Beta- and gamma-cytoplasmic actins are

required for meiosis in mouse oocytes. Biol Reprod. 2011;85(5):1025–39.

https://doi.org/10.1095/biolreprod.111.091736.

51. Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM. β-Actin specifically controls

cell growth, migration, and the G-actin pool. Mol Biol Cell. 2011;22(21):

4047–58. https://doi.org/10.1091/mbc.E11-06-0582.

52. Pasek RC, Malarkey E, Berbari NF, Sharma N, Kesterson RA, Tres LL,

Kierszenbaum AL, Yoder BK. Coiled-coil domain containing 42 (Ccdc42) is

necessary for proper sperm development and male fertility in the mouse.

Dev Biol. 2016;412(2):208–18. https://doi.org/10.1016/j.ydbio.2016.01.042.

53. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The

emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell

Biol. 2010;11(5):329–41. https://doi.org/10.1038/nrm2882.

Stafuzza et al. BMC Genomics          (2019) 20:321 Page 10 of 11

https://doi.org/10.1186/1471-2164-11-593
https://doi.org/10.1186/1471-2164-13-733
https://doi.org/10.1186/1471-2164-13-733
https://doi.org/10.1186/1471-2164-13-725
https://doi.org/10.1186/1471-2164-13-725
https://doi.org/10.1186/1471-2164-13-273
https://doi.org/10.1186/1471-2164-14-449
https://doi.org/10.1186/1471-2164-15-593
https://doi.org/10.1371/journal.pone.0106780
https://doi.org/10.1371/journal.pone.0087571
https://doi.org/10.1371/journal.pone.0087571
https://doi.org/10.1371/journal.pone.0131522
https://doi.org/10.1111/age.12247
https://doi.org/10.1111/age.12247
https://doi.org/10.1186/s12864-015-1449-9
https://doi.org/10.1186/s12864-015-1449-9
https://doi.org/10.1111/age.12402
https://doi.org/10.1111/age.12402
https://doi.org/10.1371/journal.pone.0148565
https://doi.org/10.3168/jds.2009-2064
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1186/1297-9686-41-55
https://doi.org/10.1016/j.livsci.2014.04.029
https://doi.org/10.1016/j.livsci.2014.04.029
https://doi.org/10.1017/S0016672312000274
https://doi.org/10.3389/fgene.2014.00134
https://doi.org/10.3389/fgene.2014.00134
https://doi.org/10.2527/jas.2010-3555
https://doi.org/10.1186/1297-9686-43-1
https://doi.org/10.1111/age.12137
https://doi.org/10.1134/S1022795415120145
https://doi.org/10.1111/age.12180
https://doi.org/10.1111/age.12180
https://doi.org/10.1186/1471-2164-11-284
https://doi.org/10.1186/1471-2164-11-284
https://doi.org/10.1098/rspb.2010.1180
https://doi.org/10.1371/journal.pone.0074879
https://doi.org/10.1371/journal.pone.0074879
https://doi.org/10.1371/journal.pone.0003916
https://doi.org/10.1371/journal.pone.0003916
https://doi.org/10.1093/bfgp/elp017
https://doi.org/10.1093/bfgp/elp017
https://doi.org/10.1111/j.1365-2052.2012.02317.x
https://doi.org/10.1111/j.1365-2052.2012.02317.x
https://doi.org/10.1007/s10142-012-0289-9
https://doi.org/10.1007/s11033-010-0604-2
https://doi.org/10.1152/physiol.00008.2010
https://doi.org/10.1152/physiol.00008.2010
https://doi.org/10.1016/j.yexcr.2017.02.013
https://doi.org/10.1095/biolreprod.111.091736
https://doi.org/10.1091/mbc.E11-06-0582
https://doi.org/10.1016/j.ydbio.2016.01.042
https://doi.org/10.1038/nrm2882


54. Klempner SJ, Myers AP, Cantley LC. What a tangled web we weave: emerging

resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway.

Cancer Discov. 2013;3(12):1345–54. https://doi.org/10.1158/2159-8290.CD-13-0063.

55. Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem

Cell Biol. 2009;41(3):487–93. https://doi.org/10.1016/j.biocel.2008.03.014.

56. Wang Q, Zhu J, Zou L, Yang Y. Role of axonal guidance factor netrin-1 in

human placental vascular growth. J Huazhong Univ Sci Technolog Med Sci.

2011;31(2):246–50. https://doi.org/10.1007/s11596-011-0261-2.

57. Mediero A, Ramkhelawon B, Perez-Aso M, Moore KJ, Cronstein BN. Netrin-1

is a critical autocrine/paracrine factor for osteoclast differentiation. J Bone

Miner Res. 2015;30(5):837–54. https://doi.org/10.1002/jbmr.2421.

58. Basini G, Cortimiglia C, Baioni L, Bussolati S, Grolli S, Ramoni R, Grasselli F.

The axonal guidance factor netrin-1 as a potential modulator of swine

follicular function. Mol Cell Endocrinol. 2011;331(1):41–8. https://doi.org/10.

1016/j.mce.2010.08.001.

59. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors

and signal transduction. J Biochem. 2010;147(1):35–51. https://doi.org/10.

1093/jb/mvp148.

60. Peng H, Usas A, Olshanski A, Ho AM, Gearhart B, Cooper GM, Huard J. VEGF

improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone

healing through modulation of angiogenesis. J Bone Miner Res. 2005;20(11):

2017–27. https://doi.org/10.1359/JBMR.050708.

61. Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic

analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and

skeletogenesis. PLoS Genet. 2006;2(12):e216. https://doi.org/10.1371/journal.

pgen.0020216.

62. Bae JS, Gutierrez S, Narla R, Pratap J, Devados R, van Wijnen AJ, Stein JL,

Stein GS, Lian JB, Javed A. Reconstitution of Runx2/Cbfa1-null cells identifies

a requirement for BMP2 signaling through a Runx2 functional domain

during osteoblast differentiation. J Cell Biochem. 2007;100(2):434–49. https://

doi.org/10.1002/jcb.21039.

63. Shah TA, Zhu Y, Shaikh NN, Harris MA, Harris SE, Rogers MB. Characterization

of new bone morphogenetic protein (Bmp)-2 regulatory alleles. Genesis.

2017;55(7). https://doi.org/10.1002/dvg.23035.

64. Zhang H, Bradley A. Mice deficient for BMP2 are nonviable and have

defects in amnion/chorion and cardiac development. Development. 1996;

122(10):2977–86.

65. Lee KY, Jeong JW, Wang J, Ma L, Martin JF, Tsai SY, Lydon JP, DeMayo FJ.

Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol.

2007;27(15):5468–78.

66. Yan W, Si Y, Slaymaker S, Li J, Zheng H, Young DL, Aslanian A, Saunders L,

Verdin E, Charo IF. Zmynd15 encodes a histone deacetylase-dependent

transcriptional repressor essential for spermiogenesis and male fertility. J

Biol Chem. 2010;285(41):31418–26. https://doi.org/10.1074/jbc.M110.116418.

67. Yang J, Medvedev S, Yu J, Tang LC, Agno JE, Matzuk MM, Schultz RM, Hecht

NB. Absence of the DNA−/RNA-binding protein MSY2 results in male and

female infertility. Proc Natl Acad Sci. 2005;102(16):5755–60.

68. Medvedev S, Pan H, Schultz RM. Absence of MSY2 in mouse oocytes

perturbs oocyte growth and maturation, RNA stability, and the

transcriptome. Biol Reprod. 2011;85(3):575–83. https://doi.org/10.1095/

biolreprod.111.091710.

69. Kleene KC. Position-dependent interactions of Y-box protein 2 (YBX2) with

mRNA enable mRNA storage in round spermatids by repressing mRNA

translation and blocking translation-dependent mRNA decay. Mol Reprod

Dev. 2016;83(3):190–207. https://doi.org/10.1002/mrd.22616.

70. Pausch H, Kölle S, Wurmser C, Schwarzenbacher H, Emmerling R, Jansen S,

Trottmann M, Fuerst C, Götz KU, Fries R. A nonsense mutation in TMEM95

encoding a nondescript transmembrane protein causes idiopathic male

subfertility in cattle. PLoS Genet. 2014;10(1):e1004044. https://doi.org/10.

1371/journal.pgen.1004044.

71. Yoo H, Son D, Jang YJ, Hong K. Indispensable role for mouse ELP3 in

embryonic stem cell maintenance and early development. Biochem Biophys

Res Commun. 2016;478(2):631–6. https://doi.org/10.1016/j.bbrc.2016.07.120.

72. Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear

proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.

73. Santi CM, Martínez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon

A, Salkoff L. The SLO3 sperm-specific potassium channel plays a vital role in

male fertility. FEBS Lett. 2010;584(5):1041–6. https://doi.org/10.1016/j.febslet.

2010.02.005.

74. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL.

Functions of S100 proteins. Curr Mol Med. 2013;13(1):24–57.

75. Munch EM, Sparks AE, Gonzalez Bosquet J, Christenson LK, Devor EJ, Van

Voorhis BJ. Differentially expressed genes in preimplantation human embryos:

potential candidate genes for blastocyst formation and implantation. J Assist

Reprod Genet. 2016;233(8):1017–25. https://doi.org/10.1007/s10815-016-0745-x.

76. He J, Stewart K, Kinnell HL, Anderson RA, Childs AJ. A developmental stage-specific

switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

PLoS One. 2013;8(9):e73996. https://doi.org/10.1371/journal.pone.0073996.

77. Chen P, Wang X, Xu C, Xiao H, Zhang WH, Wang XH, Zhang XH. Association

of polymorphisms of A260G and A386G in DAZL gene with male infertility:

a meta-analysis and systemic review. Asian J Androl. 2016;18(1):96–101.

https://doi.org/10.4103/1008-682X.153542.

78. Rosario R, Adams IR, Anderson RA. Is there a role for DAZL in human female

fertility? Mol Hum Reprod. 2016;22(6):377–83. https://doi.org/10.1093/

molehr/gaw024.

79. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley

Interdiscip Rev Dev Biol. 2015;4(3):215–66. https://doi.org/10.1002/wdev.176.

80. Tepekoy F, Akkoyunlu G, Demir R. The role of Wnt signaling members in

the uterus and embryo during pre-implantation and implantation. J Assist

Reprod Genet. 2015;32(3):337–46. https://doi.org/10.1007/s10815-014-0409-7.

81. Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S,

Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH 3rd, Becker KG, Ko MS.

Genome-wide expression profiling of mid-gestation placenta and embryo

using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci.

2000;97(16):9127–32.

82. Heldin, C-H. Protein tyrosine kinase receptor signaling overview. In:

Handbook of Cell Signaling, 2nd edition, Bradshaw RA and Dennis EA, eds.

Academic Press, San Diego, chapter: 59, pps. 419–426, 2010. doi: https://doi.

org/10.1016/B978-0-12-374145-5.00059-0.

83. Logue JS, Whiting JL, Tunquist B, Sacks DB, Langeberg LK, Wordeman L,

Scott JD. AKAP220 protein organizes signaling elements that impact cell

migration. J Biol Chem. 2011;286(45):39269–81. https://doi.org/10.1074/jbc.

M111.277756.

84. Reinton N, Collas P, Haugen TB, Skâlhegg BS, Hansson V, Jahnsen T, Taskén

K. Localization of a novel human A-kinase-anchoring protein, hAKAP220,

during spermatogenesis. Dev Biol. 2000;223(1):194–204.

85. Eto K. Nociceptin and meiosis during spermatogenesis in postnatal testes.

Vitam Horm. 2015;97:167–86. https://doi.org/10.1016/bs.vh.2014.10.003.

86. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M.

PennCNV: an integrated hidden Markov model designed for high-resolution

copy number variation detection in whole-genome SNP genotyping data.

Genome Res. 2007;17(11):1665–74.

87. Dellinger AE, Saw SM, Goh LK, Seielstad M, Young TL, Li YJ. Comparative

analyses of seven algorithms for copy number variant identification from

single nucleotide polymorphism arrays. Nucleic Acids Res. 2010;38(9):e105.

https://doi.org/10.1093/nar/gkq040.

88. Hou Y, Liu GE, Bickhart DM, Cardone MF, Wang K, Kim ES, Matukumalli LK,

Ventura M, Song J, VanRaden PM. Genomic characteristics of cattle copy

number variations. BMC Genomics. 2011;12:127. https://doi.org/10.1186/

1471-2164-12-127.

89. Liu J, Zhang L, Xu L, Ren H, Lu J, Zhang X, Zhang S, Zhou X, Wei C, Zhao F,

Du L. Analysis of copy number variations in the sheep genome using 50K

SNP BeadChip array. BMC Genomics. 2013;14:229. https://doi.org/10.1186/

1471-2164-14-229.

90. Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH, Ducrocq V, Elsen

JM, Minvielle F. BLUPF90 and related programs (BGF90). In: proceedings of

the 7th world congress on genetics applied to livestock production.

Montpellier (France), 19–23 august 2002, communication no. 28-07.; 2002.

91. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a

unified approach to utilize phenotypic, full pedigree, and genomic

information for genetic evaluation of Holstein final score. J Dairy Sci. 2010;

93(2):743–52. https://doi.org/10.3168/jds.2009-2730.

92. Misztal I, Tsuruta S, Lourenco D, Masuda Y, Aguilar I, Legarra A, Vitezica Z. Manual

for BLUPF90 family of programs. Athens: University of Georgia, 2016. 142p.

Available: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all5.pdf.

93. Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A. BioMart Central

Portal--unified access to biological data. Nucleic Acids Res. 2009;37:W23–7.

https://doi.org/10.1093/nar/gkp265.

94. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD.

PANTHER version 11: expanded annotation data from gene ontology and

Reactome pathways, and data analysis tool enhancements. Nucleic Acids

Res. 2017;45(D1):D183–9. https://doi.org/10.1093/nar/gkw1138.

Stafuzza et al. BMC Genomics          (2019) 20:321 Page 11 of 11

https://doi.org/10.1158/2159-8290.CD-13-0063
https://doi.org/10.1016/j.biocel.2008.03.014
https://doi.org/10.1007/s11596-011-0261-2
https://doi.org/10.1002/jbmr.2421
https://doi.org/10.1016/j.mce.2010.08.001
https://doi.org/10.1016/j.mce.2010.08.001
https://doi.org/10.1093/jb/mvp148
https://doi.org/10.1093/jb/mvp148
https://doi.org/10.1359/JBMR.050708
https://doi.org/10.1371/journal.pgen.0020216
https://doi.org/10.1371/journal.pgen.0020216
https://doi.org/10.1002/jcb.21039
https://doi.org/10.1002/jcb.21039
https://doi.org/10.1002/dvg.23035
https://doi.org/10.1074/jbc.M110.116418
https://doi.org/10.1095/biolreprod.111.091710
https://doi.org/10.1095/biolreprod.111.091710
https://doi.org/10.1002/mrd.22616
https://doi.org/10.1371/journal.pgen.1004044
https://doi.org/10.1371/journal.pgen.1004044
https://doi.org/10.1016/j.bbrc.2016.07.120
https://doi.org/10.1016/j.febslet.2010.02.005
https://doi.org/10.1016/j.febslet.2010.02.005
https://doi.org/10.1007/s10815-016-0745-x
https://doi.org/10.1371/journal.pone.0073996
https://doi.org/10.4103/1008-682X.153542
https://doi.org/10.1093/molehr/gaw024
https://doi.org/10.1093/molehr/gaw024
https://doi.org/10.1002/wdev.176
https://doi.org/10.1007/s10815-014-0409-7
https://doi.org/10.1016/B978-0-12-374145-5.00059-0
https://doi.org/10.1016/B978-0-12-374145-5.00059-0
https://doi.org/10.1074/jbc.M111.277756
https://doi.org/10.1074/jbc.M111.277756
https://doi.org/10.1016/bs.vh.2014.10.003
https://doi.org/10.1093/nar/gkq040
https://doi.org/10.1186/1471-2164-12-127
https://doi.org/10.1186/1471-2164-12-127
https://doi.org/10.1186/1471-2164-14-229
https://doi.org/10.1186/1471-2164-14-229
https://doi.org/10.3168/jds.2009-2730
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all5.pdf
https://doi.org/10.1093/nar/gkp265
https://doi.org/10.1093/nar/gkw1138

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	CNV detection
	Weighted single-step genome-wide association study
	Gene enrichment analysis

	Discussion
	Conclusion
	Methods
	Phenotype and pedigree information
	SNP genotyping and quality control
	CNV detection and statistical analysis
	Weighted single-step genome-wide association study (WssGWAS)
	Gene annotation and enrichment analysis

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

