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To identify novel susceptibility genes and gene sets for obesity, we conducted a genomewide expression association analysis of
obesity via integrating genomewide association study (GWAS) and expression quantitative trait loci (eQTLs) data. GWAS summary
data of body mass index (BMI) and waist-to-hip ratio (WHR) was driven from a published study, totally involving 339,224
individuals. �e eQTLs dataset (containing 927,753 eQTLs) was obtained from eQTLs meta-analysis of 5,311 subjects. Integrative
analysis of GWAS and eQTLs data was conducted by SMR so�ware.�e SMR single gene analysis results were further subjected to
gene set enrichment analysis (GSEA) for identifying obesity associated gene sets. A total of 13,311 annotated gene sets were analyzed
in this study. SMR single gene analysis identi
ed 20 BMI associated genes (TUFM, SPI1, APOB48R, etc.). Also 3 WHR associated
genes were detected (CPEB4, WARS2, and L3MBTL3). �e signi
cant association between Chr16p11 and BMI was observed by
GSEA (FDR adjusted � value = 0.040). �e TGCTGCT, MIR-15A, MIR-16, MIR-15B, MIR-195, MIR-424, and MIR-497 (FDR
adjusted � value = 0.049) gene set appeared to be linked with WHR. Our results provide novel clues for the genetic mechanism
studies of obesity. �is study also illustrated the good performance of SMR for susceptibility gene mapping.

1. Introduction

Obesity is a complex health issue a�ecting millions of people
around the world, causing serious health problems and
a substantial economic burden in the developed country
[1, 2]. It has been demonstrated that obesity was a major
risk factor for multiple disorders, including cardiovascular
diseases, diabetes mellitus type 2, and certain types of cancer
[1, 3, 4]. Obesity is a multifactorial health problem in which
genetic factors play an important role. A recent study showed
SNPs contributing to adult BMI exert their e�ect at birth
and in early childhood a�er investigating the contributions
of 83 adult BMI associated SNPs on obesity-related traits
in children from birth to 5 years [5]. Extensive genetic
association studies have been conducted and identi
ed mul-
tiple BMI, WHR, or other obesity traits associated genes
[6, 7]. For instance, Loos found that a variant near CREBRF
was associated with increased risk of obesity while being

associated with decreased risk of type 2 diabetes in 3000
Samoans [8]. Associations between bodymass index and∼2.8
million SNPs in up to 123,865 individualswere analyzed.�en
42 SNPs were followed up in 125,931 additional individuals.
18 new loci associated with BMI were identi
ed, including
GPRC5B [9]. Another study indicated the genetic variants in
the FTO gene were associated with BMI, hip circumference,
and body weight via a whole genome association scan for
these three obesity-related quantitative traits [10]. However,
despite the considerable e�orts, the genetic mechanism of
obesity remains elusive now. �e heritability explained by
the identi
ed loci was limited, suggesting the existence of
undiscovered susceptibility loci for obesity.

Genomewide association study (GWAS) contributes
greatly to the susceptibility gene mapping of human complex
diseases. Despite the great power of GWAS, it has several lim-
itations. For instance, due to strict genomewide signi
cance
thresholds, GWASusually focuses on themost signi
cant loci
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and ignores the rest with moderate and modest phenotypic
e�ects [11, 12]. Without considering biological interactions
among genes, the susceptibility genes identi
ed by GWAS are
usually functionally independent, providing limited informa-
tion for clarifying the genetic mechanism of target diseases
[12]. Inspired by the gene set analysis of microarray data,
GWAS-based gene set association analysis was proposed [13].
Gene set association analysis can gain additional insight
into the genetic mechanism of complex diseases, through
integrating GWAS results and prior functional information
of biological gene sets [14].

Expression quantitative trait loci (eQTLs) are generally
noncoding loci that in�uence the levels of gene transcripts
[15]. With the increased genomewide eQTLs resources [16–
18], more and more attention is paid to reveal the biological
function of eQTLs. Recent studies have con
rmed the impor-
tant roles of eQTLs in the development of human complex
diseases [19, 20], including obesity [21]. For example, Nicolae
et al. found that disease-associated loci are signi
cantly
enriched in eQTLs [22].

Recently, summary data-basedMendelian randomization
(SMR) was proposed [23]. SMR resembles a Mendelian
randomization that regards genetic variant as an instru-
mental variable to evaluate the association between gene
expression and target traits. SMR is capable of integrating
GWAS summary data and eQTLs annotation information to
identify novel causal genes, the expression levels of which
are associated with complex diseases [23]. SMR shows a high
power for identifying novel susceptibility genes of complex
diseases [23].

In this study, utilizing a recently published eQTLs anno-
tation dataset, SMR was 
rst applied to large scale GWAS
summary data for screening novel genes, the expression levels
of which were associated with obesity. To reveal the biological
signi
cance of identi
ed genes, we also extended the SMR
approach and conducted a genomewide gene set expression
association analysis of obesity.�e SMR single gene summary
data was subjected to gene set enrichment analysis (GSEA)
to identify obesity associated biological gene sets. �e main
objective of our study is to reveal obesity associated novel
genes and gene sets on expression levels.

2. Methods

2.1. GWAS Summary Datasets. Large scale GWAS meta-
analysis summary data of body mass index (BMI) and waist-
to-hip ratio (WHR) was used here [24]. Brie�y, this GWAS
dataset totally contained 339,224 individuals (322,154 Euro-
pean descents and 17,072 non-European descents) from 125
studies, including 82 with GWAS results (� = 236,231) and
43 with Metabochip results (� = 103,047). European-descent
genotype imputation was conducted using the HapMap CEU
reference panel, while the African American and Hispanic
genotype imputation was conducted using HapMap CEU +
YRI + CHB + JPT reference panel [25]. �e inverse variance-
weighted method implemented in METAL was used to per-
form
xed e�ectsmeta-analyses [26]. Detailed information of
study subjects, experimental designs, and statistical analysis
is available in the published study [24].

2.2. SMR Single Gene Analysis. �e GWAS meta-analysis
summary datasets of BMI and WHR were subjected to SMR
analysis [23]. �e eQTLs annotation dataset established by
Westra et al. was applied here [27]. �is eQTLs dataset
was identi
ed in blood samples from 5,311 individuals and
replicated in another sample of 2,755 individuals. Illumina
gene expression arrayswere used for gene expression analysis.
SNP genotype data was imputed against HapMap 2 reference
panels. 923,021 cis-eQTLs for 14,329 gene expression probes
and 4,732 trans-eQTLs for 2,612 gene expression probes
were identi
ed at false discovery rate (FDR) < 0.05. Signif-
icant genes were identi
ed at SMR � values < 9.28 × 10−6
(0.05/5390) a�er Bonferroni correction.

2.3. Gene Set Enrichment Analysis. �e SMR gene-level sum-
mary data of BMI andWHRwere analyzed by GSEA for gene
set association analysis [13]. �e latest gene set-gene annota-
tion database (msigdb.v5.1) was downloaded from the GSEA
Molecular Signatures Database (http://so�ware.broadinsti-
tute.org/gsea/msigdb/index.jsp). It contained a total of 13,311
annotated gene sets [28]. 5,000 permutations were conducted
to calculate the empirical � value and FDR adjusted � value
of each gene set [13]. Signi
cant gene sets were identi
ed at
FDR adjusted � values < 0.05.

3. Results

3.1. Single Gene Analysis. A total of 5,390 genes with both
GWAS summary and eQTLs data were analyzed by SMR in
this study. A�er strict Bonferroni correction, SMR identi
ed
20 BMI associated genes (Table 1), such as TUFM (FDR

adjusted � value = 3.16 × 10−22), SPI1 (FDR adjusted � value =
2.83 × 10−12), and APOB48R (FDR adjusted � value = 4.13 ×
10−12). ForWHR, SMRdetected 3 signi
cant genes, including

CPEB4 (FDR adjusted � value = 5.48 × 10−12), WARS2 (FDR

adjusted � value = 2.21 × 10−8), and L3MBTL3 (FDR adjusted

� value = 9.06 × 10−6).

3.2. Gene Set Enrichment Analysis. We found that the

Chr16p11 (p value = 1 × 10−3) gene set and NITROGEN

COMPOUND METABOLIC PROCESS (p value = 1 × 10−3)
were signi
cantly associated with BMI. For WHR, the
TGCTGCT, MIR-15A, MIR-16, MIR-15B, MIR-195, MIR-424,
MIR-497 (FDR adjusted � value = 0.049) gene set showed
signi
cant association signal.

4. Discussion

GWAS plays a critical role in the susceptibility gene mapping
of complex diseases. In spite of its great power, a large part
of GWAS identi
ed loci located in noncoding chromosomal
regions, making it challenging to elucidate the roles of these
identi
ed loci in the development of target diseases. Recent
studies demonstrated the signi
cant impact of eQTLs on
the disease development through regulating the expression
of disease-associated genes. To better illuminate the genetic
basis of obesity, utilizing the latest SMR approach and
published GWAS summary data, we conducted an eQTLs-
based single gene expression association analysis and gene set

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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Table 1: List of signi
cant genes identi
ed by SMR.

Gene Top SNP MAF
GWAS SMR

� � value � � value

BMI

TUFM rs2008514 0.386 0.031 1.46 × 10−23 0.034 3.16 × 10−22

SPI1 rs11039212 0.670 0.023 8.75 × 10−13 −0.028 2.83 × 10−12

APOB48R rs1968752 0.359 0.027 4.69 × 10−17 0.106 4.13 × 10−12

MYBPC3 rs11039212 0.670 0.023 8.75 × 10−13 −0.036 4.60 × 10−12

SPNS1 rs8045689 0.295 0.021 1.17 × 10−10 0.024 1.52 × 10−10

MAP2K5 rs4331293 0.258 −0.025 2.24 × 10−13 0.091 1.92 × 10−10

FNBP4 rs10838774 0.458 −0.021 6.73 × 10−13 0.126 2.51 × 10−8

NT5C2 rs11191580 0.092 0.031 2.59 × 10−9 0.058 2.62 × 10−8

HS.371060 rs4704221 0.391 −0.018 1.56 × 10−8 0.044 3.08 × 10−8

GTF3A rs7988412 0.187 0.026 1.23 × 10−8 −0.054 4.02 × 10−8

SBK1 rs4788076 0.354 0.025 2.16 × 10−17 −0.192 1.89 × 10−7

C18ORF8 rs1788821 0.338 0.021 1.89 × 10−8 −0.080 2.48 × 10−7

C5ORF37 rs17649266 0.210 −0.020 2.70 × 10−8 −0.064 4.28 × 10−7

NPC1 rs1624695 0.329 0.021 2.21 × 10−8 0.111 1.66 × 10−6

ADCY3 rs6737082 0.462 0.030 2.10 × 10−16 −0.267 1.80 × 10−6

ARL3 rs12415043 0.095 0.026 4.07 × 10−7 0.060 1.97 × 10−6

L3MBTL3 rs6569648 0.228 0.017 1.84 × 10−6 0.029 2.30 × 10−6

SAE1 rs8101149 0.280 −0.025 7.75 × 10−10 −0.157 2.46 × 10−6

CUGBP1 rs12419692 0.363 0.024 1.56 × 10−14 0.202 4.05 × 10−6

ZNF668 rs11150604 0.377 −0.017 4.34 × 10−6 −0.043 7.29 × 10−6

WHR

CPEB4 rs966544 0.314 0.025 2.3 × 10−12 0.026 5.48 × 10−12

WARS2 rs10923698 0.142 −0.036 4.0 × 10−9 −0.076 2.21 × 10−8

L3MBTL3 rs6569648 0.228 −0.018 3.6 × 10−6 −0.031 9.06 × 10−6

enrichment analysis for obesity. A group of genes and gene
sets were identi
ed to be signi
cantly associated with obesity.

SMR single gene analysis found that TUFM was the
most signi
cant gene associated with BMI. TUFM encodes
the Tu translation elongation factor, Mitochondrial, which
participates in mitochondrial protein translation. TUFM
mutation can result in dysfunction of oxidative phosphory-
lation and lead to lactic acidosis and fatal encephalopathy
[29]. Gutierrez-Aguilar et al. observed that TUFM was
signi
cantly upregulated in adipose tissue and liver in high-
fat diet rat [30]. Another notable gene was APOBR, encoding
apolipoprotein B48 receptor. A previous study found that
high-fatmeal increased the transcriptional activity ofAPOBR
in circulatingmonocytes [31].�eMYBPC3 gene encodes the
cardiac myosin binding protein C (MyBP-C), which is found
in heart (cardiac) muscle cells. Previous studies showed that
mutations in MYBPC3 genes are one of the most common
genetic causes of hypertrophic cardiomyopathy (HCM) [32,
33]. More studies are warranted to clarify the potential mech-
anism underlying the associations between MYBPC3 and
obesity. Our study also found another relatively signi
cant
variant SPI1, a protein coding gene. Lane et al. revealed that
the level of SPI1 gene a�ected adipose generation [34].

CPEB4 encodes cytoplasmic polyadenylation element
binding protein 4. �e SMR analysis result suggests that
the expression level of CPEB4 was signi
cantly associated

with WHR. Our result is consistent with that of a previous
genetic meta-analysis, which observed signi
cant associa-
tions between CPEB4 and WHR [35]. Additionally, SMR
analysis detected signi
cant association signals for WARS2
and L3MBTL3. WARS2 encodes tryptophanyl TRNA syn-
thetase 2, Mitochondrial, while L3MBTL3 encodes L (3)
Mbt-Like 3 (Drosophila). �e biological functional studies
of WARS2 and L3MBTL3 are limited. To the best of our
knowledge, little e�ort has been paid to investigate the possi-
ble impact of WARS2 and L3MBTL3 on the development of
obesity. Further studies are warranted to con
rmour 
ndings
and to reveal the potential mechanism of identi
ed genes
involved in the development of obesity.

Several signi
cant gene sets were identi
ed via gene set
enrichment analysis, including chr16p11 and NITROGEN
COMPOUND METABOLIC PROCESS for BMI and
TGCTGCT, MIR-15A, MIR-16, MIR-15B, MIR-195, MIR-424,
andMIR-497 forWHR.�e Chr16p11 gene set consists of 212
genes, some of which are associated with obesity, including
SH2B1, APOBR, SULT1A1, SULT1A2, and TUFM. Volckmar
et al. identi
ed variants inAPOBR and SH2B1which are asso-
ciated with extreme obesity in the chromosomal region
chr16p11.2 [36]. It was reported that the deletions of 16p11.2
SH2B1-containing region were pathogenic and associated
with developmental delay as well as obesity via an array
comparative hybridization on 23,084 patients in a clinical
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setting [37]. SH2B1was one of the genes in this gene set, which
was demonstrated to be associated with obesity. Multiple
isoforms of SH2B1 (alpha, beta, gamma, and/or delta) were
expressed in numerous tissues, including the brain, liver,
muscle, and adipose. Previous study suggested that SH2B1
was essential for regulating energy balance, body weight,
peripheral insulin sensitivity, and glucose homeostasis
[38, 39]. Another signi
cant gene set identi
ed for BMI
was NITROGEN COMPOUND METABOLIC PROCESS.
Several genes among this gene set were associated with
obesity, including GNPDA2, MTHFR, and ATF4 [40, 41].

�e TGCTGCT, MIR-15A, MIR-16, MIR-15B, MIR-195,
MIR-424, and MIR-497 gene set mainly comprises miR-15
microRNA precursor family, including MIR-15A, MIR-15B,
MIR-16, MIR-195, and MIR-497. Dong et al. found that MIR-
15A and MIR-15B could promote adipogenesis in porcine
preadipocyte [42]. Perri et al. observed that MIR-15A was
signi
cantly upregulated in obesity patients [43]. Our results
support the important role of miR-15 microRNA precursor
family in the pathogenesis of obesity.

�e signi
cant genes identi
ed by SMR were also sig-
ni
cant in the original GWAS, which illustrated the good
performance of SMR for susceptibility gene mapping. SMR
is capable of integrating GWAS summaries and eQTLs
annotation information to detect the genes, whose expression
levels are associated with complex diseases. �e SMR results
were consistent with that of previous functional studies of
obesity and highlighted several genes for obesity. �erefore,
our study results suggested that the genes identi
ed by SMR
contributed to the development of obesity through abnormal
expression of the genes. Furthermore, we extended SMR to
gene set enrichment analysis for obesity, and 
nally several
signi
cant gene sets associated with BMI and WHR were
identi
ed, providing novel clues on the genetic mechanism
of obesity.�at is exactly the extension and innovation of our
study to SMR analysis.

In summary, this study explored the genetic basis of
obesity via integrating analysis of GWAS and eQTLs data
utilizing SMR approach. We identi
ed multiple novel genes
and gene sets, which were signi
cantly associated with BMI
or WHR. Our results provide new clues for clarifying the
genetic mechanism of obesity. �is study also illustrated
the good performance of SMR and extended it to gene set
association analysis for complex diseases.
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