
University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Statistics Statistics, Department of

2016

A Genomic Bayesian Multi-trait and Multi-
environment Model
Osval A. Montesinos-López
Biometrics and Statistics Unit and Global Wheat Program of the International Maize and Wheat Improvement Center
(CIMMYT)

Abelardo Montesinos-López
Centro de Investigación en Matemáticas

José Crossa
Biometrics and Statistics Unit and Global Wheat Program of the International Maize and Wheat Improvement Center
(CIMMYT), j.crossa@cgiar.org

Fernando Toledo
Biometrics and Statistics Unit and Global Wheat Program of the International Maize and Wheat Improvement Center
(CIMMYT)

Oscar Pérez-Hernández
University of Central Missouri

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/statisticsfacpub

Part of the Other Statistics and Probability Commons

This Article is brought to you for free and open access by the Statistics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has

been accepted for inclusion in Faculty Publications, Department of Statistics by an authorized administrator of DigitalCommons@University of

Nebraska - Lincoln.

Montesinos-López, Osval A.; Montesinos-López, Abelardo; Crossa, José; Toledo, Fernando; Pérez-Hernández, Oscar; Eskridge, Kent
M.; and Rutkoski, Jessica, "A Genomic Bayesian Multi-trait and Multi-environment Model" (2016). Faculty Publications, Department of
Statistics. 36.
http://digitalcommons.unl.edu/statisticsfacpub/36

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statisticsfacpub?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statistics?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statisticsfacpub?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/215?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/statisticsfacpub/36?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors

Osval A. Montesinos-López, Abelardo Montesinos-López, José Crossa, Fernando Toledo, Oscar Pérez-
Hernández, Kent M. Eskridge, and Jessica Rutkoski

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/statisticsfacpub/36

http://digitalcommons.unl.edu/statisticsfacpub/36?utm_source=digitalcommons.unl.edu%2Fstatisticsfacpub%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages


1 

 

A Genomic Bayesian Multi-trait and Multi-environment Model 

Osval A. Montesinos-López1, Abelardo Montesinos-López2, José Crossa1*, Fernando Toledo1, 

Oscar Pérez-Hernández3, Kent M. Eskridge4, Jessica Rutkoski1 

 

1 Biometrics and Statistics Unit and Global Wheat Program of the International Maize and 

Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, México, D.F., México. 

2 Departamento de Estadística, Centro de Investigación en Matemáticas (CIMAT), Guanajuato, 

Guanajuato, 36240, México. 

3University of Central Missouri, Plant Protection and Animal Health, Warrensburg, Missouri, 

64093, USA. 

4 University of Nebraska, Statistics Department, Lincoln, Nebraska, 68583-0963, USA. 

 

* Corresponding author: José Crossa (email: j.crossa@cgiar.org) 

 

ABSTRACT 

When information on multiple genotypes evaluated in multiple environments is 

recorded, a multi-environment single trait model for assessing genotype × environment 

interaction (G×E) is usually employed. Comprehensive models that simultaneously take into 

account the correlated traits and trait × genotype × environment interaction (T×G×E) are 

lacking. In this research, we propose a Bayesian model for analyzing multiple traits and 

multiple environments for whole-genome prediction (WGP) model. For this model, we used 

Half-𝑡 priors on each standard deviation term and uniform priors on each correlation of the 

covariance matrix. These priors were not informative and led to posterior inferences that were 

insensitive to the choice of hyperparameters. We also developed a computationally efficient 

Markov Chain Monte Carlo (MCMC) under the above priors, which allowed us to obtain all 
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required full conditional distributions of the parameters leading to an exact Gibbs sampling 

for the posterior distribution. We used two real data sets to implement and evaluate the 

proposed Bayesian method and found that when the correlation between traits was high 

(>0.5), the proposed model (with unstructured variance-covariance) improved prediction 

accuracy compared to the model with diagonal and standard variance-covariance structures. 

The R-software package BMTME offers optimized C++ routines to efficiently perform the 

analyses. 

 

Keywords: Multi-trait, multi-environment, Bayesian estimation, genome-enabled prediction. 

 

INTRODUCTION 

Since the whole genome prediction (WGP) model of Meuwissen et al. (2001), practical 

results have shown that genomic selection (GS) using Bayesian and non-Bayesian linear 

regression models improves prediction accuracy compared to conventional and pedigree 

selection (de los Campos et al., 2009, 2010; Crossa et al., 2010, 2011; Heslot et al., 2012; 

Pérez-Rodríguez et al., 2012). With GS, genomic breeding values are estimated as the sum of 

marker effects for genotyped individuals in the testing or prediction population. The marker 

effects are estimated simultaneously using a training population that contains phenotyped and 

genotyped individuals. 

In plant breeding, most of the available methods for WGP are useful for analyzing a single 

trait measured either in a single environment or in multi-environments with the incorporation 

of genotype × environment interaction (G×E) (Burgueño et al., 2012; Heslot et al., 2014; 

Jarquin et al., 2014, Montesinos-López et al., 2015, Lopez-Cruz et al., 2015). However, 

researchers often face situations in which multiple traits are measured across multiple 

environments. For example, crop breeders record phenotypic data for multiple traits such as 
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grain yield and its components (e.g., grain type, grain weight, biomass, etc.), grain quality 

(e.g., taste, shape, color, nutrient content), and tolerance to biotic and abiotic stresses. They 

often aim to improve all these multiple correlated traits simultaneously or to predict the ones 

that are difficult to measure with those that are easy to measure. However, it is common 

practice to perform an independent analysis and genomic prediction on a single phenotypic 

trait. 

The advantage of jointly modeling multiple traits compared to analyzing each trait 

separately, is that the inference process appropriately accounts for the correlation among the 

traits, which helps to increase prediction accuracy, statistical power, parameter estimation 

accuracy, and reduce trait selection bias (Henderson and Quaas, 1976; Pollak et al. 1984; 

Schaeffer, 1984). In the context of WGP, Jia and Jannink (2012), Guo et al. (2014), and Jiang 

et al. (2015) found that joint prediction of multiple traits benefits from genetic correlation 

between traits and significantly improves prediction accuracy compared to single-trait 

methods, specifically for low-heritability traits that are genetically correlated with a high-

heritability trait. Jia and Jannink (2012) also found better prediction accuracy for multiple 

traits than for single traits when phenotypes are not available for all individuals and traits. 

Therefore, there is evidence that multiple-trait analysis is useful to predict yet-to-be observed 

phenotypes in plant and animal breeding when selecting unphenotyped candidates early 

through the prediction of their genomic breeding values. Multi-trait analysis has also been 

found to substantially increase prediction accuracy when some traits are observed in all 

individuals but the trait of interest is not observed in the individuals in the test set (Pszczola et 

al. 2013; Rutkoski et al, 2016). 

Multivariate analysis of continuous outcomes is well established in statistical literature 

(Johnson and Wicher, 1992). However, the available methods cannot be applied in a 

straightforward manner for WGP, since the number of independent variables (p) is usually 
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larger than the available sample size (n). The genomic best linear unbiased predictor 

(GBLUP) WGP model can be implemented in standard software for multiple traits and 

multiple environments by taking into account two-way interaction terms and estimating 

separable unstructured covariance matrices of the form 𝑨 ⊗ 𝑩 (where 𝑨 and 𝑩 are the 

corresponding covariance matrices of factors A and B, respectively). However, these software 

programs are unable to estimate separable unstructured variance-covariance matrices of the 

form 𝑨 ⊗ 𝑩 ⊗ 𝑪 for 3-way interaction terms. For this reason, in this situation, at least one of 

the variance-covariance components is assumed to be identity or a new variable is created by 

merging two factors and estimating a covariance matrix with only two components as 𝑨 ⊗𝑩∗, where 𝑩∗ contains the variance-covariance of two factors, but each component cannot be 

separated. Also, univariate Bayesian inference has been proposed and extensively 

implemented in WGP models (Gianola, 2013). The Bayesian alphabet methods (Bayes A, 

Bayes C and Bayes 𝐶𝜋) have been extended for multiple trait analysis (de los Campos and 

Gianola, 2007; Calus and Veerkamp, 2011; Jia and Jannink, 2012; Guo et al., 2014) and most 

recently, Jiang et al. (2015) proposed a Bayesian multivariate antedependence model. 

Despite evidence of the increased prediction accuracy of WGP models incorporating 

G×E (Burgueño et al., 2012; Jarquin et al., 2014, Montesinos-López et al., 2015; López-Cruz 

et al., 2015) and of WGP models for multi-trait data, statistical models for analyzing 

continuous data for simultaneously assessing multi-traits and multi-environments are lacking. 

Thus, the integration of these two approaches in one unified WGP model is required (Jiang et 

al., 2015). This unified WGP model would be useful in two cases: (i) when individuals are 

measured for all traits in one environment, but only some traits in other environments; and (ii) 

when some traits are recorded in only a subset of individuals in all environments. This model 

would be useful not only in plant breeding but also in animal breeding, where genetic 

evaluation of many traits is performed on a weekly basis by many breeding programs 
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globally. It is also possible to integrate other advantageous strategies such as the 

antedependence model to incorporate dominant and epistatic effects. 

All the Bayesian methods developed so far for multiple-trait analysis use the Inverse-

Wishart (IW) conjugate family of distributions as priors for the covariance matrices between 

traits. However, Gelman (2006) and Huang and Wand (2013) argued against using IW priors 

for covariance matrices because they impose a degree of informativity and the posterior 

inferences are sensitive to the choice of hyperparameters. Recently, Huang and Wand (2013) 

proposed a scale mixture approach involving an IW distribution and independent Inverse-

Gamma (IG) distributions for each dimension as priors for the covariance matrix parameters. 

The ensuing covariance matrix distribution is such that all standard deviation parameters have 

Half-𝑡 distributions and the correlation parameters have uniform distributions on (-1,1) for a 

particular choice of the IW shape parameter. The advantage of this approach is that it is 

possible to choose shape and scale parameters that achieve arbitrary high non-informativity of 

all standard deviations and correlation parameters (Huang and Wand, 2013). However, the 

model proposed by Huang and Wand (2013) is a standard mixed model with correlated errors 

that does not include interaction terms of any kind and does not consider three-way 

interaction. 

In this study, we propose a Bayesian method that integrates the analysis of multi-traits 

and multi-environments and takes into account trait × genotype × environment interaction 

(T×G×E) in a unified WGP model. We used Half-𝑡 priors on each standard deviation term and 

uniform priors on each correlation to achieve high non-informativity and posterior inferences 

that are not sensitive to the choice of hyperparameters. We illustrate the use of the unified 

Bayesian Multi-trait and Multi-environment (BMTME) method in one simulated data set and 

two real data sets (one maize and one wheat) including multiple traits measured on wheat and 
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maize lines evaluated in multiple environments and genotyped with dense molecular markers. 

We also provide an R package called BMTME that can be used to fit the proposed methods. 

  

MATERIALS AND METHODS 

Statistical model 

We use 𝑦𝑖𝑗𝑘(𝑙)
 to represent the normal response from the 𝑘th replication of the 𝑗th line in 

the 𝑖th environment for the 𝑙th trait, (𝑖 = 1,2, … , 𝐼, 𝑗 = 1,2, … , 𝐽, 𝑘 = 1,2, … , 𝐾, 𝑙 = 1,… , 𝐿), 
where 𝐾 represents the number of replicates of each line in each environment and 𝐿 denotes 

the number of traits under study. To present the theory in a simple manner, we will use 𝐼 = 3 

and  𝐿 = 3.  Therefore, the total number of observations for the 𝑙th trait is 𝑛 = 𝐼 × 𝐽 × 𝐾. We 

propose the following linear mixed model for each trait: 

 𝑦𝑖𝑗𝑘(𝑙) = 𝐸𝑖(𝑙) + 𝑔𝑗(𝑙) + 𝑔𝐸𝑖𝑗(𝑙) + 𝑒𝑖𝑗𝑘(𝑙)
                                                (1) 

where 𝐸𝑖(𝑙) represents the 𝑖th environment for the 𝑙th trait and is assumed as a fixed effect, 𝑔𝑗(𝑙) 
represents the genomic effect of 𝑗th line in the 𝑙th trait and is assumed as random effect, 𝑔𝐸𝑖𝑗(𝑙) 
is the interaction between the genomic effect of the 𝑗th line and the 𝑖th environment for the 𝑙th 

trait and is assumed a random effect, and 𝑒𝑖𝑗𝑘(𝑙)
 is a random error term associated with the 𝑘th 

replication of the 𝑗th line in the 𝑖th environment for the 𝑙th trait. To take into account the 

correlation between traits, one could use the following 𝐿 variate linear mixed model: 

𝒚𝑖𝑗𝑘 = 𝑿𝑖𝑗𝑘  𝜷 + 𝒁1𝑖𝑗𝑘𝒃1𝑗 + 𝒁2𝑖𝑗𝑘𝒃2𝑖𝑗+𝒆𝑖𝑗𝑘                               (2) 
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𝒚𝑖𝑗𝑘 = [𝑦𝑖𝑗𝑘(1), … , 𝑦𝑖𝑗𝑘(3)]𝑇, 𝑿𝑖𝑗𝑘 = [𝒙𝑖𝑇(1) 𝟎 𝟎𝟎 𝒙𝑖𝑇(2) 𝟎𝟎 𝟎 𝒙𝑖𝑇(3)] , 𝜷 = [𝜷𝑇(1), 𝜷𝑇(2), 𝜷𝑇(3)]𝑇 , 𝒁1𝑖𝑗𝑘 =
𝒁2𝑖𝑗𝑘 = 𝐼3, 𝒃1𝑗 = [𝑏1𝑗(1), … , 𝑏1𝑗(3)]𝑇~𝑁𝐿(𝟎, 𝚺𝑡), 𝚺𝑡 is the genetic covariance matrix between 

traits and is assumed unstructured, 𝒃2𝑖𝑗 = [𝑏2𝑖𝑗(1), … , 𝑏2𝑖𝑗(3)]𝑇 , 𝒆𝑖𝑗𝑘 = [𝑒𝑖𝑗𝑘(1), … , 𝑒𝑖𝑗𝑘(3)]𝑇~𝑁𝐿(𝟎,𝐑𝑒), 

𝐑𝑒 is the residual covariance matrix between traits and is assumed unstructured.  𝒙𝑖𝑇(𝑙) =[𝑥𝑖1(𝑙), 𝑥𝑖2(𝑙), 𝑥𝑖3(𝑙)], 𝑥𝑖𝑟(𝑙) = 1 if the environment 𝑖 is observed and 0 otherwise for the 𝑙th trait, for 

𝑟 = 1,2,3; and 𝑙 = 1,2,3.  𝜷𝑇(𝑙) = [𝛽1(𝑙), 𝛽2(𝑙), 𝛽3(𝑙)],  𝒙𝑖𝑇(𝑙)𝜷(𝑙) = 𝐸𝑖(𝑙),  𝑏1𝑗(𝑙) = 𝑔𝑗(𝑙)and 𝑏2𝑖𝑗(𝑙) =
𝑔𝐸𝑖𝑗(𝑙). With model (1), we can perform a separate analysis for each trait, with the 

inconvenience that independence between the 𝐿 traits is assumed. Model (2) can take into 

account and exploit the correlation between traits. 

In matrix notation, the model given in equation (2) including all the information is 

expressed as: 

𝒀 = 𝑿𝜷 + 𝒁1𝒃1 + 𝒁2𝒃2+𝒆                                            (3) 

where 𝒀 is of order 𝐿𝑛 × 1, 𝑿 is of order 𝐿𝑛 × 𝐼𝐿, 𝜷 is of order 𝐼𝐿 × 1, 𝒁1 is of order 𝐿𝑛 × 𝐿𝐽, 𝒃1 is of order 𝐿𝐽 × 1, 𝒁2 is of order 𝐿𝑛 × 𝐼𝐽𝐿, 𝒃2 is of order 𝐼𝐽𝐿 × 1 and 𝒆 is of order 𝐿𝑛 × 1. 

Then 𝒃1~𝑁(𝟎,𝑮𝟏), 𝒃2~𝑁(𝟎,𝑮𝟐) and 𝒆~𝑁(𝟎,𝐑), where 𝑮𝟏 = 𝑮𝑔 ⊗ 𝚺𝑡, ⊗ denotes a 

Kronecker product, 𝑮2 = 𝚺𝐸 ⊗ 𝑮𝟏, where 𝚺𝐸 is assumed a diagonal matrix of order 𝐼 × 𝐼, 

which indicates that we are assuming independence between environments. It is important to 

point out that the trait × environment (T × E) interaction term is included in the fixed effect 𝜷, 

while the trait × genotype (T × G) interaction term is included in the random effect 𝒃1 and the 

three-way (T × G × E) interaction term is included in 𝒃2. The errors are assumed to be 

correlated with the covariance defined as 𝐑 = 𝐈𝑛 ⊗ 𝐑𝑒. More flexible variance-covariance as 
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diagonal or identity are straightforward. Also note that 𝑮𝑔 is of order 𝐽 × 𝐽; therefore, 𝑮𝟏 is of 

order 𝐽𝐿 × 𝐽𝐿 and 𝑮𝟐 is of order 𝐼𝐽𝐿 × 𝐼𝐽𝐿. The matrix of the genomic relationship between 

lines 𝑮𝑔, also known as Genomic Relationship Matrix (GRM), was calculated using the 

method of VanRaden (2008). 

Joint posterior density and prior specification 

In this section, we provide the joint posterior density and prior specification for the Bayesian 

WGP Multiple Trait and Multiple Environment (BMTME) model. The joint posterior density 

of the parameter vector becomes: 

𝑃(𝜷, 𝒃1, 𝒃2, 𝚺𝑡, 𝚺𝐸 , 𝜎𝛽2, 𝐑𝑒 , 𝑎𝛽 , 𝒂, 𝒂𝐸 , 𝒂𝑒)   ∝ 𝑃(𝒚|𝜷, 𝒃1, 𝒃2, 𝐑𝑒)𝑃(𝜷|𝜎𝛽2) 𝑃(𝜎𝛽2|𝑎𝛽)𝑃(𝑎𝛽)𝑃(𝒃1|𝚺𝑡)𝑃(𝚺𝑡|𝑎1, … , 𝑎𝐿)𝑃(𝑎1, … , 𝑎𝐿) 

× 𝑃(𝒃2|𝚺𝑡, 𝚺𝐸)𝑃(𝚺𝐸|𝑎𝐸1, … , 𝑎𝐸𝐼)𝑃(𝑎𝐸1, … , 𝑎𝐸𝐼)𝑃(𝐑𝑒|𝑎𝑒1, … , 𝑎𝑒𝐿)𝑃(𝑎𝑒1, … , 𝑎𝑒𝐿)               (4) 

where 𝒂 = (𝑎1, … , 𝑎𝐿), 𝒂𝐸 = (𝑎𝐸1, … , 𝑎𝐸𝐼), 𝒂𝑒 = (𝑎𝑒1, … , 𝑎𝑒𝐿). 

The notation 𝛀~Inverse-Wishart(𝜅, 𝑩) indicates that the density function of 𝛀 is 

P(𝛀) ∝ |𝑩|𝜅2|𝛀|−𝜅+𝑝+12 exp [− 12 𝑡𝑟(𝑩𝛀−𝟏)],  𝜅 > 0, 𝑩,𝛀  both are positive definite matrices. 

We assume that 𝜷|𝜎𝛽2~𝑁𝑝(𝜷0, ∑ 𝜎𝛽20 ), 𝜎𝛽2|𝑎𝛽~𝐼𝑊(𝜈𝛽 , 2𝜈𝛽/𝑎𝛽) where 𝐼𝑊(𝜈𝛽 , 2𝜈𝛽/𝑎𝛽)  
denotes an Inverse-Wishart distribution with shape 𝜈𝛽  and scale 2𝜈𝛽/𝑎𝛽 parameters with 𝑎𝛽~𝐼𝐺 (12 , 1/𝐴𝛽2), where 𝐼𝐺 (12 , 1/𝐴𝛽2)  denote an Inverse-Gamma distribution with shape 

1/2  and scale 1/𝐴𝛽2  parameters. 𝒃1|𝚺𝑡~𝑁𝐽𝐿(𝟎, 𝑮1), 𝚺𝑡|𝑎1, … , 𝑎𝐿~𝐼𝑊 (𝜈𝑡 + 𝐿 −
1, 2𝜈𝑡diag( 1𝑎1 , … 1𝑎𝐿)), 𝑎𝑙~𝐼𝐺 (12 , 1/𝐴𝑙2)  for 𝑙 = 1,… , 𝐿. 𝒃2|𝚺𝑡~𝑁𝐼𝐽𝐿(𝟎, 𝑮2), 𝐑𝑒|𝑎𝑒1, … , 𝑎𝑒𝐿~ 

𝐼𝑊 (𝜈𝑒 + 𝐿 − 1,2𝜈𝑒diag ( 1𝑎𝑒1 , … 1𝑎𝑒𝐿))  and 𝑎𝑒𝑙~𝐼𝐺 (12 , 1/𝐴𝑒𝑙2 ). Since  𝚺𝐸 =



9 

 diag(𝜎𝐸12 , … , 𝜎𝐸𝐼2 ), the prior for 𝜎𝐸𝑖2 |𝑎𝐸𝑖~𝐼𝑊(𝜈𝐸𝑖, 2𝜈𝐸𝑖/𝑎𝐸𝑖) with the prior for 𝑎𝐸𝑖~𝐼𝐺 (12 , 1/𝐴𝐸𝑖2 ) for 𝑖 = 1,… , 𝐼. 

Next we combine the joint posterior density of the parameter vector (4) with the priors 

to obtain the full conditional distribution for parameters 𝜷, 𝜎𝛽2, 𝑎𝛽, 𝒃1,𝒃2,  𝚺𝑡 , 𝒂,  𝐑𝑒 , 𝒂𝑒. All 

full conditionals, as well as details of their derivations, are given in Appendix A. 

Gibbs sampler 

In order to produce posterior means for all relevant model parameters, below we outline the 

exact Gibbs sampler procedure that we propose for estimating the parameters of interest. As is 

the case with Markov Chain Monte Carlo (MCMC) techniques, the ordering of draws is 

somewhat arbitrary; however, we suggest the following order: 

Step 1. Simulate 𝜷 according to the normal distribution given in Appendix A (A.1). 

Step 2. Simulate 𝜎𝛽2 according to the IW distribution given in Appendix A (A.2). 

Step 3. Simulate 𝑎𝛽 according to the IG distribution given in Appendix A (A.3). 

Step 4. Simulate 𝒃ℎ for ℎ = 1,2, according to the normal distribution given in Appendix A 

(A.4 and A.5). 

Step 5. Simulate 𝚺𝑡 according to the IW distribution given in Appendix A (A.6). 

Step 6. Simulate 𝑎𝑙 , for 𝑙 = 1,2, … , 𝐿, according to the IG distribution given in Appendix A 

(A.7). 

Step 7. Simulate 𝜎𝐸𝑖2 , for  𝑖 = 1,… , 𝐼, according to the IW distribution given in Appendix A 

(A.8). 
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Step 8. Simulate 𝑎𝐸𝑖 , for  𝑖 = 1,… , 𝐼, according to the IG distribution given in Appendix A 

(A.9). 

Step 9. Simulate 𝐑𝑒 according to the IW distribution given in Appendix A (A.10). 

Step 10. Simulate 𝑎𝑒𝑙, for 𝑙 = 1,2, … , 𝐿,  according to the IG distribution given in Appendix 

(A.11). 

Step 11. Return to step 1 or terminate when chain length is adequate to meet convergence 

diagnostics. 

Model implementation 

The Gibbs sampler described above for the BMTME model was implemented as an R-

software package. We performed a total of 60,000 iterations; 30,000 samples were used for 

inference because the first 30,000 were used as burn-in to decrease the MCMC errors in 

prediction accuracy. We did not apply thinning of the chains following the suggestions of 

Geyer (1992), MacEachern and Berliner (1994) and Link and Eaton (2012), who provide 

justification of the ban on subsampling MCMC output for approximating simple features of 

the target distribution (e.g., means, variances and percentiles). 

We implemented the prior specification given in the previous section where the 

BMTME model was defined. The hyperparameters we used were: for 𝜷|𝜎𝛽2~𝑁𝐼𝐿(𝜷0 =𝟎𝐼𝐿𝑇 , 𝑰𝐼𝐿 × 10,000), for 𝜎𝛽2|𝑎𝛽  we used 𝜈𝛽 = 2, for 𝑎𝛽 we used 𝐴𝛽 = 100000, for 𝒃1|𝚺𝑡~𝑁𝐽𝐿(𝟎, 𝑮1), for 𝚺𝑡|𝑎1, … , 𝑎𝐿 we used 𝜈𝑡 = 2, for 𝑎𝑙 we used 𝐴𝑙 = 100000, for 𝑙 =1,2, … , 𝐿, for 𝒃2|𝚺𝑡~𝑁𝐼𝐽𝐿(𝟎, 𝑮2), for 𝜎𝐸𝑖2 |𝑎𝐸𝑖  we used 𝜈𝐸𝑖 = 2 for 𝑎𝐸𝑖 we used 𝐴𝐸𝑖 = 100000 

for 𝑖 = 1,2, … , 𝐼, for  𝐑𝑒|𝑎𝑒1, … , 𝑎𝑒𝐿 we used 𝜈𝑒 = 2, for  𝑎𝑒𝑙 we used 𝐴𝑒𝑙 = 100000 for 𝑙 =1, . . , 𝐿. All these hyperparameters were chosen to lead weakly informative priors. 
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Assessing prediction accuracy 

We used two cross-validation schemes for generating training and validation sets that 

mimic two real situations a breeder might face. Cross-validation 1 (CV1) mimics a situation 

where lines were evaluated in some environments for all traits but some lines are missing in 

other environments; this is similar to cross-validation 2 of Burgueño et al. (2012) used for 

analyzing sparse evaluation. The other cross-validation scheme is CV2, which mimics a 

situation where a trait is lacking in all lines in one environment but present in the remaining 

environments (see Table D1 in Appendix D). In this case, information from relatives is used, 

and prediction assessment can benefit from borrowing information between lines across 

environments, and among correlated traits. 

We implemented a 10-fold cross-validation with 80% of the observations in the 

training set and 20% in the testing set. Of the variety of methods for comparing the predictive 

posterior distribution to the observed data (generally termed “posterior predictive checks”), 

we used two criteria: the mean square error of prediction (MSEP) and the Pearson correlation. 

Models with small MSEP indicate better predictions, and higher correlation values indicate 

better predictions. The predicted observations were calculated with 𝑆 collected Gibbs 

samplers as: 𝒀̂(𝑠) = 𝑿𝜷(𝑠) + 𝒁1𝒃1(𝑠) + 𝒁2𝒃2(𝑠), where 𝜷(𝑠), 𝒃1(𝑠), and 𝒃2(𝑠) are estimates of 𝜷, 𝒃1, and 𝒃2 in the sth collected sample. 

 

Simulation data 

To illustrate the parameter estimation of the proposed BMTME method, a small 

simulation experiment was conducted. The data were simulated based on model (3) with three 

environments, three traits, 80 genotypes and 20 replications. We assumed that 𝜷𝑇 =
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 [15,8,7,12,6,7,14,9,8], where the first three beta coefficients belong to traits 1, 2 and 3 in 

environment 1, the second three values for the three traits in environment 2 and the last three 

for environment 3, 𝚺𝑡 = [0.600 0.466 0.5510.466 0.500 0.5030.551 0.503 0.700], 𝐑𝑒 = [0.150 0.114 0.1190.114 0.120 0.1060.119 0.106 0.130]. These two 

variance-covariance matrices gave rise to a matrix of correlation between traits with each 0.85 

correlation. Also, we assume that the genomic relationship matrix is known, 𝑮𝑔 = 0.7𝑰80 +0.3𝑱80, where 𝑰80 is an identity matrix of order 80 and 𝑱80 is a matrix of order 80 × 80 of 

ones. The relationship between environments is assumed as 𝚺𝐸 = diag(0.65,0.55,0.75). 

Therefore, the total number of observations was 3 × 80 × 3 × 20 = 14400, that is, 4800 for 

each trait. With these parameters, 50 data sets were simulated according to model (3) and for 

each data set, parameters 𝜷𝑇, 𝚺𝑡, 𝚺𝐸 and 𝐑𝑒 were estimated with the BMTME model using 

the Gibbs sampler given above. We used the priors given in the section on model 

implementation, which were also used for the applications with real data sets. For this 

simulated data set, we computed 20,000 MCMC samples, and Bayes estimates were computed 

with 10,000 samples, since the first 10,000 were discarded as burn-in. In Table 1, we report 

average estimates along with standard deviations (SD). 

Also, with the proposed BMTME model, we simulated two data sets similar to the 

simulation study explained above, except that the environmental covariance matrix we used 

was an identity matrix. The first data set assumes that the genetic and residual correlation 

between traits was 0.85 for all pairs of traits under study, while the second data set assumes 

that the correlation between all pairs of traits was 0.2 for both covariance matrices (𝚺𝑡 and 𝐑𝑒). We implemented a 10-fold cross-validation (CV1). The training data set has 80% of the 

lines (64 lines), while the testing data set has the remaining 20% (16 lines). We assessed the 

prediction performance using the simulated data set under three conditions: (1) unstructured 

(Appendix A): assuming both variance-covariances are unstructured (𝚺𝑡 and 𝐑𝑒); (2) diagonal 
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(Appendix B): assuming both variance-covariances are diagonal; and (3) standard (Appendix 

C): assuming both variance-covariances are identity multiplied by the scale parameters 𝜎𝑡2 and 𝜎𝑒2, respectively. 

Real data sets 

Maize data set 

A total of 309 double-haploid maize lines were phenotyped and genotyped; this is part 

of the data set used by Crossa et al. (2013) that comprised a total of 504 doubled haploid lines 

derived by crossing and backcrossing eight inbred lines to form several full-sib families. Traits 

available in this data set include grain yield (Yield), anthesis-silking interval (ASI), and plant 

height (PH); each of these traits was evaluated in three optimum rainfed environments (E1, E2, 

and E3). The experimental field design in each of the three environments was an alpha-lattice 

incomplete block design with two replicates. Data were pre-adjusted using estimates of block 

and environmental effects derived from a linear model that accounted for the incomplete block 

design within environment and for environmental effects. 

Information about genotyping-by-sequencing (GBS) data for each maize chromosome, 

the number of markers after initial filtering, and the number of markers after imputation, was 

summarized in Crossa et al. (2013). Filtering was first done by removing markers that had more 

than 80% of the maize lines with missing values, and then markers with minor allele frequency 

lower than or equal to 0.05 were deleted. The total number of GBS data was 681,257 single 

nucleotide polymorphisms (SNPs) and, after filtering for missing values and minor allele 

frequency, 158,281 SNPs were used for the analyses. About 20% of cells were missing in the 

filtered GBS information used for prediction; these missing values were replaced by their 

expected values before doing the prediction. 

Wheat data set 
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A total of 250 wheat lines were extracted from a large set of 39 yield trials grown 

during the 2013-2014 crop season in Ciudad Obregon, Sonora, Mexico (Rutkoski et al., 

2016). The trials were sown in mid-November and grown on beds with 5 and 2 irrigations 

plus drip irrigation. Days to heading (DTHD) were recorded as the number of days from 

germination until 50% of spikes had emerged in each plot, in the first replicate of each trial. 

Grain yield (GRYLD) was the total plot grain yield measured after maturity, and plant height 

(PTHT) was recorded in centimeters. 

Image data of the yield trials were collected using a hyperspectral camera (A-series, 

Mirco-Hyperspec VNIR, Headwall Photonics, Fitchburg, Massachusetts, USA) mounted on a 

manned aircraft. From this data, vegetative indices for each plot were calculated. The green 

normalized difference vegetation index (GNDVI) was one of the traits used in this study. Trait 

GNDVI is considered a good predictor when used with pedigree and/or genomic prediction of 

GRYLD in wheat due to its high heritability and genetic correlation with GRYLD. Also, trait 

GNDVI can be measured remotely in large numbers of candidates for selection. 

Genotyping-by-sequencing was used for genome-wide genotyping. Single nucleotide 

polymorphisms were called across all lines using the TASSEL GBS pipeline anchored to the 

genome assembly of Chinese Spring. Single nucleotide polymorphism calls were extracted 

and markers were filtered so that percent missing data did not exceed 80% and 20%, 

respectively. Individuals with more than 80% missing marker data were removed, and 

markers were recorded as -1, 0 and 1, indicating homozygous for the minor allele, 

heterozygous, and homozygous for the major allele, respectively. Next, markers with less than 

0.01 minor allele frequency were removed, and missing data were imputed with the marker 

mean. A total of 12,083 markers remained after marker editing. 
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Data and codes repository 

The phenotypic and genotypic information of the two data sets included in this study as well 

as the R package (2015) for performing the analyses can be downloaded from the link: 

http://hdl.handle.net/11529/10646. This link contains the phenotypic data on maize 

(Data.maize) and wheat (Data.trigo), as well as genomic data on maize (G.maize) and wheat 

(G.trigo). Also, the link includes the BMTME.zip with the R package used to perform the 

analyses under the BMTME model. 

 

The BMTME R package 

Nowadays the R programming language is a popular tool in statistical science for 

anaalyzing and visualizing data. However, in the context of big data with complex models, the 

speed of R is slow. For this reason, many times R is combined with C++ codes to produce 

high-performance programs that considerably increase the speed of programs (Stroustrup, 

2000; Eddelbuettel and Sanderson, 2014). The R package we developed for fitting the 

BMTME models merges R and C++ through the use of Rcpp together with Armadillo C++ 

library (Sanderson, 2010; Eddelbuettel, 2013). Appendix E describes how the three-way data 

should be arranged and Appendix F explains the basic input needed to run the routines built in 

the R package for fitting the BMTME. 

 

RESULTS 

Results for the simulated data set and for the real data sets (maize and wheat) are shown 

below. 

http://hdl.handle.net/11529/10646
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Simulated data set 

Table 1 gives the posterior mean and posterior standard deviations for beta coefficients (𝜷𝑇) 

for each trait and for the variance-covariance matrices (𝚺𝑡, 𝐑𝑒 , 𝚺𝐸). The estimates of the 

posterior means for the beta coefficients (𝜷𝑇) and for the variance-covariance matrices (𝚺𝑡, 𝐑𝑒) are very close to the true values, while the estimates of the diagonal covariance matrix 

(𝚺𝐸) are slightly overestimated. Although the diagonal covariance matrix of 𝚺𝐸 is slightly 

overestimated according to the performed simulation study, we have evidence that the 

proposed BMTME model does reasonably well in terms of parameter estimation. We also 

tested the proposed BMME model with another set of parameters and our results agree with 

the above mentioned results. 

Table 2 shows the resulting prediction accuracy (Correlation and MSEP) for each 

environment-trait combination for the two simulated data sets; we also present the ranking of 

the BMTME model under the three conditions (unstructured, diagonal and standard) for each 

environment-trait combination. Based on the ranking given in Table 2, the best prediction 

accuracy for both data sets with low and high correlation between traits (using both criteria) 

was achieved when the model assumed an unstructured variance-covariance matrix for both 𝚺𝑡 and 𝐑𝑒, followed by the second condition, which assumes a diagonal matrix for 𝚺𝑡 and 𝐑𝑒 

in terms of MSEP, but for the standard condition in terms of the Pearson correlation. In terms 

of the Pearson correlation for both data sets (low and high correlation between traits), in 5 of 

the 9 environment-trait combinations, the unstructured condition performed better in terms of 

prediction accuracy, while the standard condition performed better in 3 of 9 environment-trait 

combinations, and the diagonal condition performed better in only 1 of 9. 

In terms of MSEP, the unstructured BMTME performed better in 5 (low correlation 

between traits) and 6 (high correlation between traits) of the 9 environment-trait 
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combinations, the diagonal BMTME in only 4 (low correlation between traits) and 2 (high 

correlation between traits) of 9 combinations, and the standard BMTME in 0 (low correlation 

between traits) and 1 (high correlation between traits) of 9 combinations. Regarding the 

average of the nine groups (environment-trait combinations) for both prediction criteria 

(correlation and MSEP), the unstructured BMTME gave the best prediction, correlation=0.57 

(low correlation between traits), and correlation=0.67 (high correlation between traits) and 

MSEP=1.06 (low correlation between traits) and MSEP=1.07 (high correlation between 

traits). In both data sets, the unstructured BMTME model had the best prediction accuracy; 

however, the higher the correlation between traits, the higher the prediction accuracies 

observed, since the average correlation between traits under the unstructured BMTME was 

17.5% higher when the correlation between traits was 0.85 compared to when it was 0.2. 

Maize data set 

Table 3 shows that for each trait there are moderate differences between the beta coefficients 

between environments. For Yield and PH, the largest and smallest beta coefficients were 

observed in environments E1 and E2, respectively, while for trait ASI, the largest beta 

coefficient was observed in E3 and the smallest in E2. The genetic estimates of the variance-

covariance components of traits are given in 𝚺̂𝑡 , where the correlation between traits is 

moderate. Yield and ASI have a negative correlation (-0.27), and the correlation between ASI 

and PH is also negative (-0.25), while the correlation between Yield and PH is 0.41. The same 

tendency is observed in the residual correlation between traits but with smaller correlation 

between traits. 

Table 4 shows the prediction accuracies (Correlation and MSEP) for each 

environment-trait combination and the ranking of the three conditions studied for each 

criterion in the maize testing data set for cross-validation CV1. From the ranking, the best 
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condition is the standard model, since it was the best in 5 of 9 environment-trait combinations 

in terms of correlation, while in terms of MSEP, the diagonal model was the best in 3 of 9 

environment-trait combinations. As for the averages of the environment-trait combinations, 

the standard model was also the best in terms of both criteria. The second-best model was the 

diagonal, and the unstructured model was the worst in terms of both criteria. This can be 

explained by the low correlation between traits that exists for this maize data set. 

Table 5 provides the results of cross-validation CV2 for the maize testing data set. The 

trait yield is unobserved in only one environment (for example, E1) for all lines, but data on 

the other two traits are available for this environment (E1), as well as for the other two 

environments (E2 and E3). The best model in terms of correlation and MSEP for predicting 

Yield for all lines in E1 was the standard model (0.215, 41.714), followed by the diagonal 

(0.168, 43.691) and the unstructured model (0.163, 46.407). In E2-Yield and E3-Yield, the 

best BMTME model was the unstructured model with Pearson correlation. In terms of MSEP, 

the BMTME unstructured model was the best model for predicting the Yield of the 

unobserved lines in E2, followed by the other two models (diagonal and standard). For E3-

Yield, the best predictive model in terms of MSEP was the BMTME standard, followed by the 

unstructured model. 

 

Wheat data set 

Table 6 shows that beta coefficients are very different between traits and environments for the 

wheat data set. In environment Bed2IR, the largest beta coefficients were observed in traits 

DTHD and GNDVI, respectively, while in environment Drip, the largest beta coefficients 

were observed in traits GNDVI and GRYLD, respectively. The genetic estimates of the 

variance-covariance components of traits are given in 𝚺̂𝑡 , where the largest correlations were 
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observed between trait DTHD vs GNDVI, GRYLD and PTHT; the same is true of the residual 

correlation between traits (𝐑̂𝑒). In terms of prediction accuracies for the entire data set, they 

are high in terms of correlation and less precise in terms of MSEP mostly for trait PTHT in 

the three environments. 

Table 7 gives the prediction accuracy of the wheat data set for the testing data set for 

each environment-trait combination; it also gives the ranking of the three conditions studied 

under both criteria for cross-validation CV1. The best case is when the BMTME model 

assumes an unstructured variance-covariance matrix for both 𝚺𝑡 and 𝐑𝑒 and a diagonal matrix 

for the variance-covariance for 𝚺𝐸 ,  followed by BMTME with a diagonal matrix for 𝚺𝑡, 𝐑𝑒 

and 𝚺𝐸 . As for the ranking in terms of Pearson correlation, in 6 of 12 groups the BMTME 

unstructured model performed better in terms of prediction accuracy, while the BMTME 

diagonal model was the second-best model since it was the best model in 3 of 12 cases; the 

BMTME standard was the worst model in terms of  prediction accuracy since it was the best 

in only 1 of 12 cases. In terms of MSEP, the BMTME unstructured model performed better in 

5 of 12 cases, the BMTMR diagonal model was the best model in only 3 of 12 cases, and the 

BMTME standard model was the best in 1 of 12 cases. The BMTME unstructured model also 

had the best average prediction accuracy of the 12 groups. 

Table 8 gives the results of cross-validation CV2 which assumes that trait GRYLD is 

lacking in one environment for all lines but not in the other environments. The results given 

are only for the testing data set (trait GRYLD missing for all lines in one environment). The 

best model for predicting GRYLD for all lines in environment Bed2I with Pearson correlation 

was the BMTME unstructured model, followed by the BMTME standard and, in the last 

position, the BMTME diagonal model. In terms of MSEP, the results are exactly the opposite. 

While in environment Bed5I the best predictive model in terms of Pearson correlation was the 

BMTME standard, then the BMTME diagonal and, in the last position, the BMTME 
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unstructured model. In terms of MSEP, the best model was the unstructured model, then the 

standard and, at the end, the diagonal model. In environment Drip, the ranking of models 

based on both criteria was as follows: BMTME unstructured, BMTME diagonal and BMTME 

standard. 

DISCUSSION 

To our knowledge, this is the first statistical three-way genomic model for assessing 

the prediction accuracy of trait × genotype × environment. Other models for assessing multi-

traits or multi-environments have been extensively studied in the related literature (see, for 

example, Jarquin et al.,  2014; Montesinos-López et al., 2015); however, none of them have 

simultaneously assessed and modeled the three-way variance-covariance structure. The 

BMTME model does this task simultaneously using Bayesian estimation and the package for 

performing such a task are given in this article. 

Performance of the BMTME model in simulated and real data sets. In the simulated data 

sets, the best prediction accuracies were achieved with the BMETME model (which assumes 

an unstructured variance-covariance matrix for the genetic an residual components) even 

when the correlation between traits was low, followed by the model that assumed a diagonal 

variance-covariance matrix for both matrices (in terms of the Pearson correlation) of traits, 

and then by the standard model, which was formed by an identity matrix multiplied by 𝜎𝑡2 and 𝜎𝑒2 for the genetic and residual variance-covariance matrices, respectively. The simulation 

study provides evidence that when the correlation between traits is high, it is really important 

to use a multivariate model that takes into account this correlation to improve prediction 

accuracies. 

This evidence is also supported by the results obtained with the wheat data set, 

where the BMTME unstructured model was the most accurate model, followed by the 
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diagonal and finally by the standard model. However, with the maize data set, we did not 

observe any gain using the unstructured variance-covariance matrix in comparison to the other 

two variance-covariances used (diagonal and standard), maybe because in this data set the 

genetic and residual correlations between traits were low. Therefore, the important message is 

that when the correlation between traits is high (>0.5), it is really important to estimate the 

unstructured variance-covariance matrix; when this correlation is low, it is enough to use the 

BMTME standard model because with the unstructured model, the results could be worse than 

those of the standard model. These suggestions are not new; they were also made by Calus 

and Veerkamp (2011), Jia and Jannink (2012), Guo et al. (2014) and Jiang et al. (2015) in the 

context of multi-trait analysis. Here we only point out that they are also valid in the multi-

trait, multi-environment context, taking into account the T×G×E interaction term. 

Our contribution added to the traditional multi-trait model (proposed by Calus and 

Veerkamp, 2011; Jia and Jannink, 2012; Guo et al., 2014; Jiang et al., 2015) is that our model 

also is valid for the multi-environment and the three-way (T×G×E) interaction term, which 

more realistically mimic the type of data that are very common in plant breeding programs, 

where genotypes are evaluated for multi-traits in multi-environments. We are also aware that 

normally distributed traits are not the only traits commonly measured in plant breeding 

programs. For this reason, models for multiple categorical ordinal traits, multiple count traits 

or a mixture of types of traits are also needed to help breeders improve the process of 

selecting candidate genotypes early. 

Prediction assessment of the BMTME model. We introduced a Gibbs sampler for Bayesian 

analysis of multi-traits and multi-environments that takes into account the three-way (T×G×E) 

interaction term that uses simple conditional distribution to simulate the joint posterior 

distribution of all required unknown parameters in the WGP model. This model has the 

advantage that it uses Half-𝑡 priors on each standard deviation term and uniform priors 
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between -1 and 1 on each correlation of the covariance matrix of traits in order to achieve 

non-informativity and posterior inferences with low sensitivity to the choice of 

hyperparameters for the variance-covariance matrices. 

Since we modeled the correlation patterns separately for each repeated factor as 𝑮𝟏 =𝑮𝑔 ⊗ 𝚺𝑡 and 𝑮2 = 𝚺𝐸 ⊗ 𝑮𝑔 ⊗ 𝚺𝑡, this facilitates the interpretation of the contribution of 

every repeated factor to the overall correlation structure. It also allows choosing specific 

covariance structures for each factor, which improves accuracy and makes model fitting 

easier. In addition, fewer parameters than an unstructured model are required. For example, 

for modeling 𝑮2 under an unstructured model, we need to estimate 𝐼𝐽𝐿( 𝐼𝐽𝐿 + 1)/2 unknown 

parameters; this number of parameters is larger than the number of parameters required to be 

estimated using Kronecker products for a three-factor separable model that only needs 

𝐼( 𝐼+1)2 + 𝐽( 𝐽+1)2 + 𝐿( 𝐿+1)2 − 2 parameters. In our context, the number of parameters is lower, 

since we assumed a diagonal matrix for the variance-covariance matrix of environments and 

the matrix 𝑮𝑔 is given. Also, if needed, partial derivatives, inverse computation, and Cholesky 

decomposition of the overall covariance matrix are performed more easily on the factor-

specific covariances because they have smaller dimensions. Therefore, the use of separable 

covariance matrices with Kronecker products has substantial computational advantages, 

besides improving interpretation and model fitting (Simpson et al., 2014). However, care 

needs to be exercised with the assumption of a Kronecker product structured variance-

covariance matrix, especially in three-way multivariate data, because incorrect assumptions 

may lead to invalid conclusions (Roy and Leiva, 2008). 

Contributions and limitations of the BMTME model. This study clearly described the full 

conditional distributions for modelling the three-way (T×G×E) interaction term with multi-

traits and multi-environments, which is of paramount importance for evaluating genotypic 
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performance in target environments and for predicting yet-to-be observed phenotypes when 

the relative performance of genotypes varies across environments. Because the proposed 

model takes into account the correlation between traits and includes the three-way (T×G×E) 

interaction term, the BMTME can be a useful tool for efficiently selecting superior genotypes. 

The proposed BMTME model can be considered a Bayesian GBLUP for multiple traits and 

multiple environments since the marker information is taken into account in the GRM (𝑮𝑔). 

Some of the advantages of our model over standard software are: (a) it is able to estimate 

separable covariance matrices of the form 𝑨 ⊗ 𝑩 ⊗ 𝐂, which is not possible with other 

software; (b) the estimation of three-way terms with covariance matrices of the form 𝑨 ⊗𝑩 ⊗ 𝐂 is more parsimonious since fewer parameters are needed than when two factors are 

joined and the estimation process is performed using two separable covariance structure as 𝑨 ⊗ 𝑩∗, where 𝑩∗ contains the covariance of the two factors A and 𝑩; (c) the convergence of 

our model is not a big deal compared to the convergence problems of other software for 

complex data; and (d) our model facilitates the interpretation of the covariance matrices 

because we can estimate the three covariance matrices. 

On the other hand, as expected, the disadvantage of the BMTME model is its high 

computational cost even under the optimized C++ developed and made available in this 

research article. Large numbers of lines might indeed cause some delays in the computation of 

such large numbers of parameters in the full conditionals. However, constant developments in 

computing science will soon reduce the computing time of the three-way BMTME model. 

Finally, our proposed BMTME model can also be useful (a) in QTL-mapping studies, 

since some WGP methods are also commonly used for GWAS (Peters et al., 2012; Garric and 

Fernando, 2013, Jiang et al., 2015), and (b) to include spatial information in the residual 𝐑 

matrix of the proposed model. This information is often available from breeding programs 
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since they measure geographical information of the plots where genotypes are tested in each 

environment; this could help improve prediction accuracy. 

 

CONCLUSIONS 

In this paper, we extended the multi-trait whole-genome prediction model to the multi-

trait and multi-environment whole-genome prediction model. This unified WGP model takes 

into account the correlation between traits and the three-way interaction term (T×G×E). 

Additionally, a transparent derivation of all full conditional distributions required is given that 

allows us to propose an efficient Gibbs sampler that is easy to implement and produces precise 

parameter estimates with high non-informativity and posterior inferences with low sensitivity 

to the choice of hyperparameters for the variance-covariance matrices. Finally, we successfully 

applied the proposed method to simulated and real data and found that when the correlation 

between the traits is high (>0.5), the proposed BMTME model with an unstructured covariance 

matrix should be preferred over the diagonal and standard methods to help improve prediction 

accuracy. However, when correlations are low, it is enough to use the BMTME standard model 

because if we use the unstructured model, the results could be worse than those of the standard 

model. The R-software package BMTME offers specialized and optimized C++ routines to 

efficiently perform the analyses under the proposed model. 
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Table 1. Simulated data with three traits and three environments. 

Posterior mean and standard deviation (SD) of the beta coefficients (𝜷̂) 
of three traits (T1, T2, and T3) in three environments (E1, E2, E3) and 
the estimated variance-covariance components for the traits (𝚺̂𝑡), for the 
residuals (𝐑̂𝑒), and for the environments (𝚺̂𝐸). 
 Posterior Mean of 𝚺̂𝑡 Posterior SD of 𝚺̂𝑡 
 T1 T2 T3 T1 T2 T3 
T1 0.591 0.458 0.530 0.094 0.078 0.090 

T2 --- 0.500 0.488 --- 0.080 0.084 

T3 --- --- 0.670 --- --- 0.109 

 Posterior Mean of 𝐑̂𝑒 Posterior SD of 𝐑̂𝑒 
 T1 T2 T3 T1 T2 T3 
T1 0.151 0.115 0.119 0.003 0.002 0.003 

T2 --- 0.121 0.107 --- 0.002 0.002 

T3 ---  0.131 --- --- 0.003 

 Posterior Mean of 𝚺̂𝐸 Posterior SD of 𝚺̂𝐸 

 E1 E2 E3 E1 E2 E3 

 0.854 0.740 0.937 0.167 0.184 0.210 

 Posterior Mean of  𝜷̂ Posterior SD of  𝜷̂ 
 T1 T2 T3 T1 T2 T3 
E1 15.046 8.006 7.054 0.406 0.326 0.365 

E2 12.004 5.980 7.003 0.307 0.254 0.378 

E3 14.104 9.003 8.053 0.464 0.407 0.434 
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Table 2. Simulated data with three traits and three environments. Mean and standard error (SE) of 
the estimated correlations and Mean Squared Prediction Error (MSPE) from the 10-fold cross-
validation CV1. The Bayesian Multi-trait Multi-environment (BMTME) model was fitted using 
unstructured (U), diagonal (D) and standard (S) variance-covariance matrix. Environment (E1, 
E2, E3)-trait (T1, T2, T3) combination. Method stands for the variance-covariance matrix used 
with the BMTME, E-T for the environment-trait combination, R for rank and Ave for average. 

 Method 
  
  E-T 

Low correlation between traits High correlation between traits 

Correlation  MSPE Correlation  MSPE 

Mean SE R+ Mean SE R+ Mean SE R+ Mean SE R+ 

  E1-T1 0.17 0.15 2 1.27 0.15 2 0.54 0.17 1 0.96 0.21 2 

  E1-T2 0.30 0.22 1 0.74 0.11 1 0.66 0.11 1 0.88 0.12 1 

  E1-T3 0.51 0.12 1 0.93 0.15 1 0.59 0.09 1 1.10 0.22 1 

  E2-T1 0.69 0.09 2 0.87 0.17 2 0.72 0.06 2 0.85 0.14 1 

 U E2-T2 0.66 0.10 1 0.73 0.08 2 0.74 0.07 1 0.79 0.08 1 

  E2-T3 0.72 0.04 1 0.79 0.14 1 0.70 0.07 2 0.99 0.18 2 

  E3-T1 0.59 0.14 3 1.51 0.30 2 0.66 0.10 3 1.27 0.22 2 

  E3-T2 0.80 0.06 1 0.95 0.15 1 0.77 0.07 1 1.11 0.16 1 

  E3-T3 0.66 0.05 2 1.79 1.79 1 0.67 0.07 3 1.70 0.36 1 

  Ave 0.57 0.11 1.56 1.06 0.34 1.44 0.67 0.09 1.67 1.07 0.19 1.33 

  E1-T1 0.14 0.16 3 1.07 0.13 1 0.48 0.18 3 0.84 0.14 1 

  E1-T2 0.24 0.20 3 0.78 0.07 2 0.43 0.17 3 1.01 0.11 2 

  E1-T3 0.25 0.12 3 1.18 0.12 2 0.55 0.09 3 1.21 0.22 2 

  E2-T1 0.71 0.07 1 0.85 0.16 1 0.76 0.04 1 0.92 0.14 2 

 D E2-T2 0.64 0.07 2 0.71 0.16 1 0.70 0.05 2 0.90 0.13 2 

  E2-T3 0.67 0.08 3 0.91 0.18 3 0.66 0.08 3 1.15 0.24 3 

  E3-T1 0.65 0.11 2 1.26 0.35 1 0.73 0.06 2 1.19 0.27 1 

  E3-T2 0.61 0.16 3 1.43 0.26 3 0.63 0.13 3 1.66 0.24 3 

  E3-T3 0.66 0.04 3 2.02 2.02 3 0.69 0.07 2 1.81 0.34 3 

  Ave 0.51 0.11 2.56 1.13 0.38 1.89 0.63 0.10 2.44 1.19 0.20 2.11 

  E1-T1 0.22 0.17 1 1.32 0.20 3 0.53 0.18 2 1.08 0.23 3 

  E1-T2 0.27 0.19 2 0.99 0.25 3 0.52 0.16 2 1.22 0.30 3 

  E1-T3 0.43 0.09 2 1.23 0.18 3 0.55 0.13 2 1.48 0.38 3 

  E2-T1 0.66 0.07 3 1.10 0.23 3 0.70 0.06 3 1.17 0.20 3 

 S E2-T2 0.52 0.11 3 1.02 0.13 3 0.60 0.07 3 1.16 0.13 3 

  E2-T3 0.71 0.07 2 0.91 0.19 2 0.73 0.07 1 0.94 0.18 1 

  E3-T1 0.70 0.09 1 1.54 0.32 3 0.77 0.05 1 1.34 0.23 3 

  E3-T2 0.71 0.10 2 1.03 0.18 2 0.69 0.09 2 1.17 0.18 2 

  E3-T3 0.69 0.06 1 1.96 0.39 2 0.73 0.07 1 1.72 0.36 2 

  Ave 0.55 0.11 1.89 1.23 0.23 2.67 0.65 0.10 1.89 1.25 0.24 2.56 
+ Since three conditions are compared (unstructured, diagonal and standard), the values of the ranks range from 1 to 
3, and the lower the values, the better the prediction accuracy. For ties, we assigned the average of the ranks that would 
have been assigned had there been no ties. 
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Table 3. Maize data. Posterior mean standard deviation (SD) of the beta 

coefficients ( 𝜷̂) for three traits, Yield, anthesis-silking interval (ASI), and 
plant height (PH) in three environments (E1, E2, and E3). Estimate 
variance-covariance components for the traits (𝚺̂𝑡), the environments (𝚺̂𝐸), 
and the residuals (𝐑̂𝑒). In 𝚺̂𝑡 and 𝐑̂𝑒 , the upper triangle contains the 
variance-covariance components and the lower triangle contains the 
correlations. 𝚺̂𝐸 is a diagonal matrix. Correlation and Mean Squared 
Prediction Error (MSPE) in the entire data. 

  Posterior Mean of 𝚺̂𝑡 Posterior SD of 𝚺̂𝑡 
  Yield ASI PH Yield ASI PH 

Yield 1.666 -0.260 0.069 0.430 0.210 0.030 

ASI -0.158 1.631 -0.046 --- 0.430 0.030 

PH 0.315 -0.212 0.028 --- --- 0.010 

  Posterior Mean of 𝐑̂𝑒 Posterior SD of 𝐑̂𝑒 

  Yield ASI PH Yield ASI PH 

Yield 0.506 -0.077 0.022 0.050 0.030 0.000 

ASI -0.151 0.512 -0.012 --- 0.050 0.000 

PH 0.278 -0.153 0.013 --- --- 0.000 

 Posterior Mean of 𝚺̂𝐸 Posterior SD of 𝚺̂𝐸 

 E1 E2 E3 E1 E2 E3 

 0.663 0.655 0.898 0.0369 0.0320 0.0349 

  Posterior Mean of  𝜷̂ Posterior SD of  𝜷̂ 

  Yield ASI PH Yield ASI PH 

E1 6.445 1.872 2.354 0.210 0.280 0.030 

E2 4.958 1.147 2.066 0.280 0.330 0.040 

E3 6.102 2.276 2.341 0.290 0.300 0.040 

  Correlation in the entire data MSPE in the entire data 

  Yield ASI PH Yield ASI PH 

E1 0.796 0.756 0.646 0.428 0.233 0.012 

E2 0.769 0.798 0.757 0.245 0.605 0.007 

E3 0.799 0.794 0.763 0.480 0.338 0.011 
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Table 4. Maize data. Mean and standard deviation (SD) of the estimated correlations and 
Mean Squared Prediction Error (MSPE) from the 10-fold cross-validation CV1. The 
Bayesian Multi-trait Multi-environment (BMTME) model was fitted using unstructured, 
diagonal, and standard variance-covariance matrices. Environment (E1, E2, E3)-trait 
(Yield, ASI, PH) combination. 

    
 

Correlation 
 

MSPE 

BMTME 
Environment-
trait Mean SD Rank+ Mean SD Rank 

  E1-Yield 0.28 0.07 3 0.74 0.08 3.00 
  E2-Yield 0.40 0.09 1.5 0.39 0.06 2.50 

  E3-Yield 0.37 0.08 2.5 0.02 0.01 1.50 

  E1-ASI 0.39 0.08 2 0.37 0.03 1.50 

 Unstructured E2-ASI 0.46 0.06 2.5 1.26 0.35 3.00 

 E3-ASI 0.42 0.05 2 0.01 0.00 1.50 

  E1-PH 0.37 0.06 2 0.86 0.07 3.00 

  E2-PH 0.26 0.08 3 0.48 0.07 3.00 

  E3-PH 0.44 0.07 2.5 0.02 0.00 2.00 

  Average 0.37 0.07 2.33 0.46 0.08 2.33 

  E1-Yield 0.30 0.07 1.5 0.73 0.07 2.00 

  E2-Yield 0.40 0.08 1.5 0.36 0.03 1.00 

  E3-Yield 0.37 0.05 2.5 0.85 0.07 3.00 

  E1-ASI 0.40 0.09 1 0.39 0.06 3.00 

Diagonal  E2-ASI 0.46 0.06 2.5 1.25 0.35 2.00 

  E3-ASI 0.27 0.08 3 0.48 0.07 3.00 

  E1-PH 0.36 0.07 3 0.02 0.01 1.00 

  E2-PH 0.41 0.06 1 0.01 0.00 1.00 

 E3-PH 0.44 0.06 2.5 0.02 0.00 2.00 

  Average 0.38 0.07 2.06 0.46 0.08 2.00 

  E1-Yield 0.30 0.07 1.5 0.72 0.07 1.00 

  E2-Yield 0.39 0.09 3 0.39 0.06 2.50 

  E3-Yield 0.38 0.08 1 0.02 0.01 1.50 

  E1-ASI 0.38 0.08 3 0.37 0.03 1.50 

Standard  E2-ASI 0.48 0.06 1 1.24 0.35 1.00 

  E3-ASI 0.43 0.05 1 0.01 0.00 1.50 

  E1-PH 0.39 0.06 1 0.84 0.06 2.00 

  E2-PH 0.27 0.08 2 0.47 0.07 2.00 

  E3-PH 0.45 0.07 1 0.02 0.00 2.00 

  Average 0.39 0.07 1.61 0.45 0.07 1.67 
+ Since three BMTME models are fitted (unstructured, diagonal and standard) the values of 
the ranks ranged from 1 to 3, and the lower the values, the better the prediction accuracy. 
For ties, we assigned the average of the ranks that would have been assigned had there 
been no ties. 
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Table 5. Maize data. Mean and standard deviation (SD) of the estimated correlations and 
Mean Squared Prediction Error (MSPE) for predicting the trait Yield for all lines in each 
environment. The Bayesian Multi-trait Multi-environment (BMTME) was fitted using 
unstructured, diagonal and standard variance-covariance matrices. Environment (E1, E2, 
and E3) - trait Yield. 

   Unstructured  Diagonal  Standard 
Environment-
trait Correlation MSPE Correlation MSPE Correlation MSPE 
E1-Yield 0.163 46.407 0.168 43.691 0.215 41.714 

E2-Yield 0.405 23.671 0.156 31.586 0.214 24.943 

E3-Yield 0.298 39.946 0.243 42.735 0.247 37.383 
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Table 6. Wheat data. Posterior mean standard deviation (SD) of the beta coefficients (𝜷̂) for 
four traits (DTHD. GNDVI, GRYLD, and PTHT) in three environments (Bed2I, Bed5I, and 
Drip). Estimated variance-covariance components for traits (𝚺̂𝑡) and for residual (𝐑̂𝑒). In 𝚺̂𝑡, 
and 𝐑̂𝑒 the upper triangle contains the variance-covariance components and the lower triangle 
contains the correlations. Correlation and Mean Squared Prediction Error (MSPE) in the entire 
data. 

  Posterior Mean of 𝚺̂𝑡 Posterior SD of 𝚺̂𝑡 

  DTHD GNDVI GRYLD PTHT DTHD GNDVI GRYLD PTHT 

DTHD 16.172 0.028 -0.413 -4.505 0.696 0.002 0.047 0.619 

GNDVI 0.7348 0.000 0.000 -0.010 --- 0.000 0.000 0.002 

GRYLD -0.386 -0.19 0.071 0.111 --- --- 0.008 0.061 

PTHT -0.386 -0.35 0.144 8.442 --- --- --- 1.023 

  Posterior Mean of 𝐑̂𝑒 Posterior SD of 𝐑̂𝑒 

  DTHD GNDVI GRYLD PTHT DTHD GNDVI GRYLD PTHT 

DTHD 0.523 -0.003 0.112 0.606 0.214 0.001 0.035 0.393 

GNDVI -0.453 0.000 0.000 -0.002 --- 0.000 0.000 0.002 

GRYLD 0.569 -0.192 0.074 0.561 --- --- 0.008 0.077 

PTHT 0.215 -0.048 0.530 15.214 --- --- --- 1.327 

 Posterior Mean of 𝚺̂𝐸 Posterior SD of 𝚺̂𝐸 

 Bed2IR Bed5IR Bed5IR  Bed2IR Bed5IR Bed5IR  

 0.461 1.326 0.014 --- 0.076 0.189 0.020 --- 

  Posterior Mean of  𝜷̂ Posterior SD of  𝜷̂ 

  DTHD GNDVI GRYLD PTHT DTHD GNDVI GRYLD PTHT 

Bed2IR -3.202 -4.061 -0.312 -0.004 0.227 0.233 0.223 0.001 

Bed5IR -0.011 0.006 -0.135 -0.341 0.001 0.001 0.023 0.024 

Drip -0.407 -4.595 -7.368 -0.576 0.023 0.292 0.295 0.291 

  Correlation in the entire data MSPE in the entire data 

  DTHD GNDVI GRYLD PTHT DTHD GNDVI GRYLD PTHT 

Bed2IR 0.999 0.930 0.906 0.906 0.115 0.000 0.018 10.187 

Bed5IR 0.998 0.943 0.885 0.666 0.227 0.000 0.059 8.284 

Drip 0.992 0.908 0.873 0.871 0.352 0.000 0.069 13.839 
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Table 7. Wheat data. Mean and standard deviation (SD) of the estimated correlations and Mean 
Squared Prediction Error (MSPE) from the 10-fold cross-validation CV1. The Bayesian Multi-trait 
Multi-environment (BMTME) model was fitted using unstructured (U), diagonal (D), and standard 
(S) variance-covariance matrices. Environment (Bed2I, Bed5I, Drip) - trait [days to heading (DTHD), 
green normalized difference vegetation index (GNDVI), grain yield (GRYLD), and plant height, 
(PTHT)] combination. Method stands for the three variance-covariance matrices used with the 
BMTME. 

      Correlation     MSEP   

Method Environment-trait Mean SD Rank+ Mean SE Rank 

  Bed2I-DTHD 0.93 0.03 2 4.82 1.60 2 

  Bed2I-GNVI 0.79 0.08 1.5 6.8E-05 0.00 2 

  Bed2I-GRYLD 0.64 0.12 1 0.05 0.01 1 

  Bed2I-PTHT 0.60 0.18 1 26.55 11.90 2 

  Bed5I-DTHD 0.76 0.13 2 17.61 7.63 1 

U Bed5I-GNVI 0.60 0.20 1 9.7E-05 0.00 2 

  Bed5I-GRYLD 0.35 0.32 2 0.23 0.09 2 

  Bed5I-PTHT 0.46 0.16 3 11.90 3.40 3 

  Drip-DTHD 0.95 0.02 1 2.66 0.81 1 

  Drip-GNVI 0.68 0.21 1.5 0.00 0.00 2 

  Drip-GRYLD 0.67 0.17 1 0.13 0.05 1 

  Drip-PTHT 0.69 0.08 1 22.68 10.21 1 

  Ave 0.68 0.14 1.50 7.22 2.98 1.67 

  Bed2I-DTHD 0.95 0.01 1 4.44 0.57 1 

  Bed2I-GNVI 0.79 0.01 1.5 6.3E-05 0.00 2 

  Bed2I-GRYLD 0.60 0.04 2 0.06 0.00 2 

  Bed2I-PTHT 0.56 0.06 2 28.24 3.70 2 

  Bed5I-DTHD 0.79 0.04 1 16.51 2.37 1 

D Bed5I-GNVI 0.66 0.06 2 8.4E-05 0.00 2 

  Bed5I-GRYLD 0.38 0.09 1 0.22 0.02 1 

  Bed5I-PTHT 0.47 0.06 2 11.86 1.10 2 

  Drip-DTHD 0.94 0.01 2 4.34 0.53 2 

  Drip-GNVI 0.68 0.06 1.5 0.00 0.00 2 

  Drip-GRYLD 0.59 0.06 3 0.14 0.02 2 

  Drip-PTHT 0.62 0.03 2 23.83 3.14 2 

  Ave 0.67 0.04 1.75 7.47 0.95 1.75 

  Bed2I-DTHD 0.94 0.05 3 17.37 6.94 3 

  Bed2I-GNVI 0.33 0.21 3 0.00 0.00 2 

  Bed2I-GRYLD 0.58 0.18 3 0.07 0.01 3 

  Bed2I-PTHT 0.56 0.23 3 32.70 14.42 3 

  Bed5I-DTHD 0.78 0.14 3 30.94 8.83 3 

S Bed5I-GNVI 0.46 0.25 3 0.00 0.00 2 

  Bed5I-GRYLD 0.38 0.33 3 0.24 0.09 3 

  Bed5I-PTHT 0.41 0.18 1 9.88 3.18 1 

  Drip-DTHD 0.93 0.05 3 7.27 2.56 3 

  Drip-GNVI 0.43 0.14 3 0.00 0.00 2 
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  Drip-GRYLD 0.55 0.18 2 0.17 0.08 3 

  Drip-PTHT 0.61 0.16 3 28.84 12.68 3 

  Ave 0.58 0.17 2.75 10.62 4.07 2.58 

+ Since three BMTME models are fitted (unstructured, diagonal and standard), the values of the ranks 
ranged from 1 to 3, and the lower the values, the better the prediction accuracy. For ties, we assigned 
the average of the ranks that would have been assigned had there been no ties.  
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Table 8. Wheat data. Mean of the estimated correlations and Mean Squared Prediction 
Error (MSPE) for the prediction of the trait grain yield (GRYLD) for all lines in each 
environment (Bed2I, Bed5I, Drip). The Bayesian Multi-trait Multi-environment (BMTME) 
was fitted using unstructured, diagonal and standard variance-covariance matrices. 

  Unstructured Diagonal Standard 
Environment-
trait Correlation MSEP Correlation MSEP Correlation MSEP 

Bed2I-GRYLD 0.648 0.085 0.589 0.079 0.580 0.076 

Bed5I-GRYLD 0.173 0.342 0.164 0.408 0.187 0.343 

Drip-GRYLD 0.634 0.246 0.516 0.264 0.420 0.304 
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Appendix A 

Derivation of full conditional distributions for the BMTME unstructured model 

Full conditional for 𝜷 

𝑃(𝜷|𝐸𝐿𝑆𝐸) = 𝑃(𝒚|𝜷, 𝒃1, 𝒃2, 𝐑𝑒)𝑃(𝜷|𝜎𝛽2) 

∝ exp(−12(𝒀 − 𝑿𝜷 − ∑ 𝒁ℎ𝒃ℎ2
ℎ=1 )𝑇 𝐑−1 (𝒀 − 𝑿𝜷 − ∑ 𝒁ℎ𝒃ℎ2

ℎ=1 ) − 12 (𝜷 − 𝜷0)𝑇𝚺0−1𝜎𝛽−2(𝜷
− 𝜷0)) 

∝ exp (− 12 [(𝜷 − 𝜷̃0)𝑇𝚺̃0−1(𝜷 − 𝜷̃0)]) ∝ 𝑁(𝜷̃0, 𝚺̃0)                      (A.1) 

where 𝚺̃0 = (𝚺0−1𝜎𝛽−2 + 𝑿𝑇𝐑−1𝑿)−1, 𝜷̃0 = 𝚺̃0(𝚺0−1𝜎𝛽−2𝜷0 − 𝑿𝑇𝐑−1 ∑ 𝒁ℎ𝒃ℎ2ℎ=1 + 𝑿𝑇𝐑−1𝒀) 

with 𝐑−1 = 𝐼𝑛 ⊗ 𝐑𝑒−1. Also, if we had assumed 𝑃(𝜷) ∝ 1 as prior for 𝜷, we would have 

maintained a multivariate Normal posterior distribution due to the multivariate Normal 

distribution’s conjugacy. However, the mean vector and covariance matrix would be slightly 

modified. 

Full conditional for 𝜎𝛽2 

𝑃(𝜎𝛽2|𝐸𝐿𝑆𝐸) ∝ 𝑃(𝜷|𝜎𝛽2) P(𝜎𝛽2|𝑎𝛽) 

∝ 1(𝜎𝛽2)𝜈𝛽+1+𝐼𝐿+12 exp(− (𝜷 − 𝜷0)𝑇Σ0−1(𝜷 − 𝜷0) + 2𝜈𝛽/𝑎𝛽2𝜎𝛽2 ) 

∝ 𝐼𝑊(𝑘̃𝛽∗ = 𝜈𝛽 + 𝐼𝐿, 𝐵̃𝛽 = (𝜷 − 𝜷0)𝑇Σ0−1(𝜷 − 𝜷0) + 2𝜈𝛽/𝑎𝛽)                (A.2) 

Full conditional for 𝑎𝛽 
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 𝑃(𝑎𝛽|𝐸𝐿𝑆𝐸) ∝ P(𝜎𝛽2|𝑎𝛽) P(𝑎𝛽) 

∝ 1(𝑎𝛽)𝜈𝛽+12 +1 exp (−1/𝐴𝛽2 + 𝜈𝛽/𝜎𝛽2𝑎𝛽 ) 

∝ 𝐼𝐺(𝜈𝛽+12 , 1/𝐴𝛽2 + 𝜈𝛽/𝜎𝛽2)                                                (A.3) 

Full conditional for 𝒃1 

Defining 𝜼1 = 𝑿𝜷 + 𝒁2𝒃2, the conditional distribution of 𝒃1 is given as 

𝑃(𝒃1|𝐸𝐿𝑆𝐸) ∝  𝑃(𝒃1|𝚺𝑡)𝑃(𝒀|𝜷, 𝒃1, 𝒃2,  𝐑𝑒)  
∝ exp (−12 (𝒀 − 𝒁1𝒃1 − 𝜼1)𝑇𝐑−1(𝒀 − 𝒁1𝒃1 − 𝜼1) − 12𝒃𝟏𝑇𝐆1−1𝒃1) 

∝ exp {− 12  (𝒃1 − 𝒃̃1)𝑇𝑭1−1(𝒃1 − 𝒃̃1)} ∝ 𝑁(𝒃̃1, 𝑭1)                                   (A.4) 

where 𝑭1 = (𝑮1−1 + 𝒁1𝑇𝐑−1𝒁1)−1 and 𝒃̃1 = 𝑭1(𝒁1𝑇𝐑−1𝒀 − 𝒁1𝑇𝐑−1𝜼1). In a similar way, by 

defining 𝜼2 = 𝑿𝜷 + 𝒁1𝒃1, we arrive at the full conditional of 𝒃2 as 

 𝑃(𝒃2|𝐸𝐿𝑆𝐸)~𝑁(𝒃̃2, 𝑭2)                                                      (A.5) 

where 𝑭2 = (𝑮2−1 + 𝒁2𝑇𝐑−1𝒁2)−1, 𝒃̃2 = 𝑭2(𝒁2𝑇𝐑−1𝒀 − 𝒁2𝑇𝐑−1𝜼2), 𝑮1−1 = 𝑮𝑔−1 ⊗ 𝚺𝑡−1, and 𝑮2−1 = 𝚺𝐸−1 ⊗ 𝑮1−1. 

Full conditional for 𝚺𝑡 
𝑃(𝚺𝑡|𝐸𝐿𝑆𝐸) ∝  𝑃(𝒃1|𝚺𝑡)𝑃(𝚺𝑡|𝑎1, … , 𝑎𝐿) 𝑃(𝒃2|𝚺𝑡, 𝚺𝐸) ∝ |𝑮𝑔 ⊗ 𝚺𝑡|−12exp (− 12 𝒃1𝑇(𝑮𝑔 ⊗
𝚺𝑡)−1𝒃1)𝑃(𝚺𝑡 |𝑎1, … , 𝑎𝐿) |𝑮3 ⊗ 𝚺𝑡|−12exp(− 12 𝒃2𝑇(𝑮3 ⊗ 𝚺𝑡)−1𝒃2) with 𝑮3 = 𝚺𝐸 ⊗ 𝑮𝑔 
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 ∝ |𝚺𝑡|−𝐽+𝐽𝐼2 exp(−12 [𝒃1𝑇 (𝑮𝑔−12 ⊗ 𝚺𝑡−12)(𝑮𝑔−12 ⊗ 𝚺𝑡−12)𝒃1
+ 𝒃2𝑇 (𝑮3−12 ⊗ 𝚺𝑡−12)(𝑮3−12 ⊗ 𝚺𝑡−12)𝒃2]) 𝑃(𝚺𝑡|𝑎1, … , 𝑎𝐿) 

∝ |𝚺𝑡|−𝐽+𝐽𝐼2 exp(−12 [∑𝒄1𝑗𝚺𝑡−12𝚺𝑡−12𝒄1𝑗𝑇𝐽
𝑗=1 + ∑ 𝒄2𝑗∗𝚺𝑡−1/2𝚺𝑡−1/2𝒄2𝑗∗𝑇𝐽𝐿

𝑗∗=1 )𝑃(𝚺𝑡|𝑎1, … , 𝑎𝐿) 

∝ |𝚺𝑡|−𝜈𝑡+𝐽+𝐿+𝐽𝐼−1+𝐿+12 exp (−12 (𝑡𝑟[𝒃𝟏∗𝑮𝑔−1𝒃𝟏∗𝑇 + 𝒃𝟐∗𝑮3−1𝒃𝟐∗𝑇 + 𝑩𝑡]𝚺𝑡−1)) |𝑩𝑡|𝜈𝑡+𝐿−12  

∝ 𝐼𝑊(𝜅∗ = 𝜈𝑡 + 𝐽 + 𝐿 + 𝐽𝐼 − 1, 𝑩𝑡∗ = [𝒃𝟏∗𝑮𝑔−1𝒃𝟏∗𝑇 + 𝒃𝟐∗𝑮3−1𝒃𝟐∗𝑇 + 2𝜈𝑡diag( 1𝑎1 , … , 1𝑎𝐿)])  (A.6) 

where 𝑩𝑡 = 2𝜈𝑡diag( 1𝑎1 , … , 1𝑎𝐿). Note that (𝑮𝑔−1/2 ⊗ 𝚺𝑡−1/2)𝒃1 = 𝑣𝑒𝑐 (𝚺𝑡−12𝒃𝟏∗𝑮𝑔−12) =
𝑣𝑒𝑐 (𝚺𝑡−12𝑪𝟏), with  𝒃𝟏∗ = [𝒃11, … , 𝒃1𝐽], 𝑪𝟏 = [𝒄11, … , 𝒄1𝐽] = 𝒃𝟏∗𝑮𝑔−1/2

. From here, 

(𝑮𝑔−1/2 ⊗ 𝚺𝑡−1/2)𝒃1 = 𝑣𝑒𝑐 ([𝚺𝑡−12𝒄11, … , 𝚺𝑡−12𝒄1𝐽 ]) = [  
 𝚺𝑡−12𝒄11⋮𝚺𝑡−12𝒄1𝐽]  

 
, and so 𝒃1𝑇(𝑮𝑔 ⊗ 𝚺𝑡)−1𝒃1 =

∑ 𝒄1𝑗𝑇𝚺𝑡−1𝒄1𝑗𝑱𝑗=1 = 𝑡𝑟 [(∑ 𝑪𝟏𝒖𝑗𝒖𝑗 𝑇𝑱𝑗=1 𝑪𝟏𝑇)𝚺𝑡−1] = 𝑡𝑟 [(𝑪𝟏 ∑ 𝒖𝑗𝒖𝒋 𝑇𝑱𝑗=1 𝑪𝟏𝑇)𝚺𝑡−1] =
𝑡𝑟[(𝑪𝟏𝑪𝟏𝑇)𝚺𝑡−1] = 𝑡𝑟 [𝒃𝟏∗𝑮𝑔−1𝒃𝟏∗𝑇𝚺𝑡−1]. 
 Also note that (𝑮3−1/2 ⊗ 𝚺𝑡−1/2)𝒃2 = 𝑣𝑒𝑐 (𝚺𝑡−12𝒃𝟐∗𝑮3−12) = 𝑣𝑒𝑐 (𝚺𝑡−12𝑪𝟐) with 𝒃2∗ =
[𝒃21, … , 𝒃2𝐽𝐼], 𝑪𝟐 = [𝒄21, … , 𝒄2𝐽𝐿] = 𝒃𝟐∗𝑮3−1/2

. Obtained using (𝑩𝑇 ⊗ 𝑨)𝑣𝑒𝑐(𝑿) =𝑣𝑒𝑐(𝑨𝑿𝑩). 

Full conditional for 𝑎𝑙 
𝑃(𝑎𝑙|𝐸𝐿𝑆𝐸) ∝ 𝑃(𝚺𝑡|𝑎𝑙) P(𝑎𝑙) 
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 ∝ 1(𝑎𝑙)𝜈𝑡+𝐿2 +1 exp (−1/𝐴𝑙2 + 𝜈𝑡(𝚺𝑡−1)𝑙𝑙𝑎𝑙 ) 

∝ 𝐼𝐺(𝜈𝑡+𝐿2 , 1/𝐴𝑙2 + 𝜈𝑡(𝚺𝑡−1)𝑙𝑙)                                              (A.7) 

with 𝑙 = 1, . . , 𝐿 and (𝚺𝑡−1)𝑙𝑙 denotes the (𝑙, 𝑙) entry of 𝚺𝑡−1. 

Full conditional for 𝜎𝐸𝑖2 , with 𝑖 = 1, . . , 𝐼. 
𝑃(𝜎𝐸𝑖2 |𝐸𝐿𝑆𝐸) ∝  𝑃(𝒃2𝑖|𝜎𝐸𝑖2 )𝑃(𝜎𝐸𝑖2 |𝑎𝐸𝑖) 

∝ |𝜎𝐸𝑖2 ⊗ 𝑮𝟏|−12exp(− 12𝜎𝐸𝑖2 𝒃2𝑖𝑇 𝑮1−1𝒃2𝑖)𝑃(𝜎𝐸𝑖2 |𝑎𝐸𝑖) 

∝ 𝜎𝐸𝑖2 −𝜈𝐸𝑖+1+𝐽𝐿−1+1+12 exp (−12 (𝑡𝑟[𝒃2𝑖𝑇 𝑮1−1𝒃2𝑖 + 𝑩𝐸𝑖]𝜎𝐸𝑖−2)) |𝑩𝐸𝑖|𝜈𝐸𝑖+1−12  

∝ 𝐼𝑊(𝜅∗ = 𝜈𝐸𝑖 + 1 + 𝐽𝐿 − 1,𝑩𝐸∗ = [𝒃2𝑖𝑇 𝑮1−1𝒃2𝑖 + 2𝜈𝐸𝑖𝑎𝐸𝑖 ])                                      (A.8)  

Since 𝑩𝐸𝑖 = 2𝜈𝐸𝑖𝑎𝐸𝑖 . With 𝑖 = 1, . . , 𝐼 and 𝒃2𝑖 = [𝒃2𝑖1𝑇 , … , 𝒃2𝑖𝐽𝑇 ]𝑇. 

Full conditional for 𝑎𝐸𝑖, with 𝑖 = 1, . . , 𝐼. 
𝑃(𝑎𝐸𝑖|𝐸𝐿𝑆𝐸) ∝ 𝑃(𝜎𝐸𝑖2 |𝑎𝐸𝑖) P(𝑎𝐸𝑖) 

∝ 1(𝑎𝐸𝑖)𝜈𝐸𝑖+12 +1 exp(−1/𝐴𝐸𝑖2 + 𝜈𝐸𝑖/𝜎𝐸𝑖2𝑎𝐸𝑖 ) 

∝ 𝐼𝐺(𝜈𝐸𝑖+12 , 1/𝐴𝐸𝑖2 + 𝜈𝐸𝑖/𝜎𝐸𝑖2 )                                           (A.9) 

Full conditional for 𝐑𝑒 with 𝑙 = 1,… , 𝐿. 
𝑃(𝐑𝑒|𝐸𝐿𝑆𝐸) ∝  𝑃(𝒚|𝜷, 𝒃1, 𝒃2, 𝐑𝑒)𝑃(𝐑𝑒|𝑎𝑒1, … , 𝑎𝑒𝐿). 
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∝ 1(𝐑𝑒)𝜈𝑒+𝐿+𝑛−1+𝐿+12 exp(− 𝑡𝑟{[∑ ∑ ∑ 𝒆𝑖𝑗𝑘𝒆𝑖𝑗𝑘𝑇𝐾𝑘=1𝐽𝑗=1𝐼𝑖=1 + 2𝜈𝑒diag ( 1𝑎𝑒1 , … , 1𝑎𝑒𝐿)]𝐑𝑒−1}2 ) |𝑩𝑒|𝜈𝑒+𝐿−12  

∝ 𝐼𝑊(𝑘̃𝑏ℎ𝑙 = 𝜈𝑒 + 𝐿 + 𝑛 − 1, 𝑩𝑒∗ = ∑ ∑ ∑ 𝒆𝑖𝑗𝑘𝒆𝑖𝑗𝑘𝑇𝐾𝑘=1𝐽𝑗=1𝐼𝑖=1 + 2𝜈𝑒diag( 1𝑎𝑒1 , … , 1𝑎𝑒𝐿))   (A.10) 

with 𝑩𝑒 = 2𝜈𝑒diag ( 1𝑎𝑒1 , … , 1𝑎𝑒𝐿),  𝒆𝑖𝑗𝑘 = 𝒚𝑖𝑗𝑘 − (𝑿𝑖𝑗𝑘 𝜷 + 𝒁1𝑖𝑗𝑘𝒃1𝑗 + 𝒁2𝑖𝑗𝑘𝒃2𝑖𝑗), and 𝑙 =1,2,3. 
 

Full conditional for 𝑎𝑒𝑙 
𝑃(𝑎𝑒𝑙|𝐸𝐿𝑆𝐸) ∝ P(𝐑𝑒|𝑎𝑒𝑙) P(𝑎𝑒𝑙) 

∝ 1(𝑎𝑒𝑙)𝜈𝑒+𝐿2 +1 exp (−1/𝐴𝑒𝑙2 + 𝜈𝑒(𝐑𝑒−1)𝑙𝑙𝑎𝑒𝑙 ) 

∝ 𝐼𝐺(𝜈𝑒+𝐿2 , 1/𝐴𝑒𝑙2 + 𝜈𝑒(𝐑𝑒−1)𝑙𝑙)                                           (A.11) 

with 𝑙 = 1,2,3, … 𝐿 and (𝐑𝑒−1)𝑙𝑙 denotes the (𝑙, 𝑙) entry of 𝐑𝑒−1. 
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Appendix B  

Derivation of full conditional distributions for the BMTME diagonal model 

All full conditional distributions of the BMTME diagonal model are the same as those of the 

BMTME unstructured model, except those needed for the variance-covariance 

(𝚺𝑡, 𝐑𝑒) , which are now diagonal. For this reason, here we have provided the variances of the 

diagonal elements of 𝚺𝑡 (𝜎𝑡2(𝑙), with 𝑙 = 1,… , 𝐿), 𝐑𝑒 (𝜎𝑒2(1), with 𝑙 = 1,… , 𝐿) and the required 

elements of  𝒂 and  𝒂𝑒. 

Full conditional for 𝜎𝑡2(𝑙)
 

𝑃 (𝜎𝑡2(𝑙)|𝐸𝐿𝑆𝐸) ∝ 𝐼𝑊(𝜅∗ = 𝜈𝑡 + 𝐽 + 1 + 𝐽𝐼 − 1,𝑩𝑡∗ = [(𝒃𝟏∗𝑮𝑔−1𝒃𝟏∗𝑇)𝑙𝑙 + (𝒃𝟐∗𝑮3−1𝒃𝟐∗𝑇)𝑙𝑙 +2𝜈𝑡(1𝑎𝑙)]) 

where (𝒃𝟏∗𝑮𝑔−1𝒃𝟏∗𝑇)𝑙𝑙 and (𝒃𝟐∗𝑮3−1𝒃𝟐∗𝑇)𝑙𝑙 denote the (𝑙, 𝑙) entry of the matrix 𝒃𝟏∗𝑮𝑔−1𝒃𝟏∗𝑇 and 𝒃𝟐∗𝑮3−1𝒃𝟐∗𝑇𝑙𝑙, respectively. 

Full conditional for 𝑎𝑙 
𝑃(𝑎𝑙|𝐸𝐿𝑆𝐸) ∝ 𝑃(𝜎𝑡2(𝑙)|𝑎𝑙) P(𝑎𝑙) 

∝ 1(𝑎𝑙)𝜈𝑡+12 +1 exp(−1/𝐴𝑙2 + 𝜈𝑡𝜎𝑡−2(𝑙)𝑎𝑙 ) 

∝ 𝐼𝐺 (𝜈𝑡 + 12 , 1/𝐴𝑙2 + 𝜈𝑡/𝜎𝑡2(𝑙)) 

Full conditional for 𝜎𝑒2(𝑙)
 with 𝑙 = 1,… , 𝐿. 
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𝑃 (𝜎𝑒2(𝑙)|𝐸𝐿𝑆𝐸)  ∝ 𝐼𝑊(𝑘̃𝑏ℎ𝑙 = 𝜈𝑒 + 1 + 𝑛 − 1,𝑩𝑒∗ = (∑∑ ∑ 𝒆𝑖𝑗𝑘𝒆𝑖𝑗𝑘𝑇𝐾
𝑘=1

𝐽
𝑗=1

𝐼
𝑖=1 )𝑙𝑙 

+2𝜈𝑒𝑎𝑒𝑙 ) 

where (∑ ∑ ∑ 𝒆𝑖𝑗𝑘𝒆𝑖𝑗𝑘𝑇𝐾𝑘=1𝐽𝑗=1𝐼𝑖=1 )𝑙𝑙  denotes the (𝑙, 𝑙) entry of the matrix 

∑ ∑ ∑ 𝒆𝑖𝑗𝑘𝒆𝑖𝑗𝑘𝑇𝐾𝑘=1𝐽𝑗=1𝐼𝑖=1 . 

Full conditional for 𝑎𝑒𝑙 
𝑃(𝑎𝑒𝑙|𝐸𝐿𝑆𝐸) ∝ P(𝜎𝑒2(𝑙)|𝑎𝑒𝑙) P(𝑎𝑒𝑙) 

∝ 1(𝑎𝑒𝑙)𝜈𝑒+12 +1 exp(−1/𝐴𝑒𝑙2 + 𝜈𝑒𝜎𝑒−2(𝑙)𝑎𝑒𝑙 ) 

∝ 𝐼𝐺 (𝜈𝑒 + 12 , 1𝐴𝑒𝑙2 + 𝜈𝑒𝜎𝑒2(𝑙)) 
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Appendix C  

Derivation of full conditional distributions for the BMTME standard model 

All full conditional distributions of the BMTME standard model are the same as those of the 

BMTME unstructured model, except those needed for the variance-covariance (𝚺𝑡, 𝚺𝐸 , 𝐑𝑒), 
which are now equal to an identity multiplied by 𝜎𝑡2, 𝜎𝐸2 and 𝜎𝑒2, respectively. For this reason, 

here we provide the full conditional of 𝜎𝑡2, 𝜎𝐸2 and 𝜎𝑒2 and the required elements of  𝑎𝑡,  𝑎𝐸 and 𝑎𝑒. 

Full conditional for 𝜎𝑡2 

𝑃(𝜎𝑡2|𝐸𝐿𝑆𝐸) ∝ 𝐼𝑊(𝜅∗ = 𝜈𝑡 + 𝐽𝐿 + 1 + 𝐼𝐽𝐿 − 1,𝑩𝑡∗ = [𝒃1𝑇(𝑮𝑔−1 ⊗ 𝑰𝐿)𝒃1 + 𝒃2𝑇(𝑮3−1 ⊗ 𝑰𝐿)𝒃2 +2𝜈𝑡( 1𝑎𝑡)]). 

Full conditional for 𝑎𝑡 
𝑃(𝑎𝑡|𝐸𝐿𝑆𝐸) ∝ 𝑃(𝜎𝑡2|𝑎𝑡) P(𝑎𝑡) 

∝ 1(𝑎𝑡)𝜈𝑡+12 +1 exp (−1/𝐴𝑡2 + 𝜈𝑡𝜎𝑡−2𝑎𝑡 ) 

∝ 𝐼𝐺 (𝜈𝑡 + 12 , 1/𝐴𝑡2 + 𝜈𝑡/𝜎𝑡2) 

Full conditional  for 𝜎𝐸2 

𝑃(𝜎𝐸2|𝐸𝐿𝑆𝐸) ∝ 𝐼𝑊(𝜅∗ = 𝜈𝐸 + 1 + 𝐼𝐽𝐿 − 1,𝑩𝑡∗ = [𝒃2𝑇(𝑰𝐼 ⊗ 𝑮1−1)𝒃2 + 2𝜈𝐸( 1𝑎𝐸)]).   

Full conditional for 𝑎𝐸 

𝑃(𝑎𝐸|𝐸𝐿𝑆𝐸) ∝ 𝑃(𝜎𝐸2|𝑎𝐸) P(𝑎𝐸) 
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 ∝ 1(𝑎𝐸)𝜈𝐸+12 +1 exp (−1/𝐴𝐸2 + 𝜈𝐸𝜎𝐸−2𝑎𝐸 ) 

∝ 𝐼𝐺 (𝜈𝐸 + 12 , 1/𝐴𝐸2 + 𝜈𝐸/𝜎𝐸2) 

Full conditional for 𝜎𝑒2   
𝑃(𝜎𝑒2|𝐸𝐿𝑆𝐸)  ∝ 𝐼𝑊(𝑘̃𝑏ℎ𝑙 = 𝜈𝑒 + 1 + 𝑛𝐿 − 1,𝑩𝑒∗ = 𝒆𝑇𝒆 + 2𝜈𝑒𝑎𝑒 ) 

Where 𝒆 = 𝒀 − 𝑿𝜷 − 𝒁1𝒃1 − 𝒁2𝒃2.  

Full conditional for 𝑎𝑒 

𝑃(𝑎𝑒|𝐸𝐿𝑆𝐸) ∝ P(𝜎𝑒2|𝑎𝑒) P(𝑎𝑒) 

∝ 1(𝑎𝑒)𝜈𝑒+12 +1 exp (−1/𝐴𝑒2 + 𝜈𝑒𝜎𝑒−2𝑎𝑒 ) 

∝ 𝐼𝐺 (𝜈𝑒 + 12 , 1𝐴𝑒2 + 𝜈𝑒𝜎𝑒2) 
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Appendix D 

Table D1. Cross-validation schemes. In cross-validation 1 (CV1) lines were evaluated in some 

environments with all traits but are missing (M) in other environments (for all traits). Cross-

validation 2 (CV2) simulates a situation where a trait is lacking in all lines in one environment 

but present in the remaining environments. Example of one-fold cross-validation for J lines, 3 

environments and 3 traits where the env are the environments. Yij(l) represents the response 

variable measured in environment i, genotype j and trait l. For simplification we ignore the 

subscript of replication (𝑘). 

      CV1     CV2   

Line trait env1 env2 env3 env1 env2 env3 

1 1 y11 (1) y21 (1) y31 (1) y11 (1) y21 (1) M 

1 2 y11 (2) y21 (2) y31 (2) y11 (2) y21 (2) y31 (2) 

1 3 y11 (3) y21 (3) y31 (3) y11 (3) y21 (3) y31 (3) 

2 1 M y22 (1) y32 (1) y12 (1) y22 (1) M 

2 2 M y22 (2) y32 (2) y12 (2) y22 (2) y32 (2) 

2 3 M y22 (3) y32 (3) y12 (3) y22 (3) y32 (3) 

3 1 y13(1) y23 (1) y33 (1) y13(1) y23 (1) M 

3 2 y13 (2) y23 (2) y33 (2) y13 (2) y23 (2) y33 (2) 

3 3 y13 (3) y23 (3) y33 (3) y13 (3) y23 (3) y33 (3) 

4 1 y14 (1) y24 (1) y34 (1) y14 (1) y24 (1) M 

4 2 y14 (2) y24 (2) y34(2) y14 (2) y24 (2) y34(2) 

4 3 y14 (3) y24 (3) y34 (3) y14 (3) y24 (3) y34 (3) 

5 1 y15 (1) y25 (1) y35 (1) y15 (1) y25 (1) M 

5 2 y15 (2) y25 (2) y35(2) y15 (2) y25 (2) y35(2) 

5 3 y15 (3) y25 (3) y35 (3) y15 (3) y25 (3) y35 (3) 

6 1 y16 (1) M M y16 (1) y26 (1) M 

6 2 y16 (2) M M y16 (2) y26 (2) y36 (2) 

6 3 y16 (3) M M y16 (3) y26 (3) y36 (3) 

7 1 y17 (1) y27 (1) y37 (1) y17 (1) y27 (1) M 

7 2 y17 (2) y27 (2) y37(2) y17 (2) y27 (2) y37(2) 

7 3 y17 (3) y27 (3) y37 (3) y17 (3) y27 (3) y37 (3) 

8 1 y18 (1) y28 (1) y38 (1) y18 (1) y28 (1) M 

8 2 y18 (2) y28 (2) y38(2) y18 (2) y28 (2) y38(2) 

8 3 y18 (3) y28 (3) y38 (3) y18 (3) y28 (3) y38 (3) 

9 1 y19 (1) y29 (1) y39 (1) y19 (1) y29 (1) M 

9 2 y19 (2) y29 (2) y39(2) y19 (2) y29 (2) y39(2) 

9 3 y19 (3) y29 (3) y39 (3) y19 (3) y29 (3) y39 (3) 

10 1 M M y310 (1) y110 (1) y210 (1) M 

10 2 M M y310(2) y110(2) y210(2) y310(2) 

10 3 M M y310 (3) y110 (3) y210 (3) y310 (3) 

…  … … … …  … … …  

J-10 1 y1(J-10) (1) y2(J-10) (1) y3(J-10) (1) y1(J-10) (1) y2(J-10) (1) M 
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J-10 2 y1(J-10) (2) y2(J-10) (2) y3(J-10)(2) y1(J-10) (2) y2(J-10) (2) y3(J-10)(2) 

J-10 3 y1(J-10) (3) y2(J-10) (3) y3(J-10) (3) y1(J-10) (3) y2(J-10) (3) y3(J-10) (3) 

J-9 1 y1(J-9) (1) y2(J-9) (1) y3(J-9) (1) y1(J-9) (1) y2(J-9) (1) M 

J-9 2 y1(J-9) (2) y2(J-9) (2) y3(J-9)(2) y1(J-9) (2) y2(J-9) (2) y3(J-9)(2) 

J-9 3 y1(J-9) (3) y2(J-9) (3) y3(J-9) (3) y1(J-9) (3) y2(J-9) (3) y3(J-9) (3) 

J-8 1 y1(J-8) (1) M y3(J-8) (1) y1(J-8) (1) y2(J-8) (1) M 

J-8 2 y1(J-8) (2) M y3(J-8)(2) y1(J-8) (2) y2(J-8) (2) y3(J-8)(2) 

J-8 3 y1(J-8) (3) M y3(J-8) (3) y1(J-8) (3) y2(J-8) (3) y3(J-8) (3) 

J-7 1 y1(J-7) (1) y2(J-7) (1) y3(J-7) (1) y1(J-7) (1) y2(J-7) (1) M 

J-7 2 y1(J-7) (2) y2(J-7) (2) y3(J-7)(2) y1(J-7) (2) y2(J-7) (2) y3(J-7)(2) 

J-7 3 y1(J-7) (3) y2(J-7) (3) y3(J-7) (3) y1(J-7) (3) y2(J-7) (3) y3(J-7) (3) 

J-6 1 y1(J-6) (1) y2(J-6) (1) y3(J-6) (1) y1(J-6) (1) y2(J-6) (1) M 

J-6 2 y1(J-6) (2) y2(J-6) (2) y3(J-6)(2) y1(J-6) (2) y2(J-6) (2) y3(J-6)(2) 

J-6 3 y1(J-6) (3) y2(J-6) (3) y3(J-6) (3) y1(J-6) (3) y2(J-6) (3) y3(J-6) (3) 

J-5 1 M M y3(J-5) (1) y1(J-5) (1) y2(J-5) (1) M 

J-5 2 M M y3(J-5)(2) y1(J-5)(2) y2(J-5)(2) y3(J-5)(2) 

J-5 3 M M y3(J-5) (3) y1(J-5) (3) y2(J-5) (3) y3(J-5) (3) 

J-4 1 y1(J-4) (1) y2(J-4) (1) y3(J-4) (1) y1(J-4) (1) y2(J-4) (1) M 

J-4 2 y1(J-4) (2) y2(J-4) (2) y3(J-4)(2) y1(J-4) (2) y2(J-4) (2) y3(J-4)(2) 

J-4 3 y1(J-4) (3) y2(J-4) (3) y3(J-4) (3) y1(J-4) (3) y2(J-4) (3) y3(J-4) (3) 

J-3 1 y1(J-3) (1) y2(J-3) (1) y3(J-3) (1) y1(J-3) (1) y2(J-3) (1) M 

J-3 2 y1(J-3) (2) y2(J-3) (2) y3(J-3)(2) y1(J-3) (2) y2(J-3) (2) y3(J-3)(2) 

J-3 3 y1(J-3) (3) y2(J-3) (3) y3(J-3) (3) y1(J-3) (3) y2(J-3) (3) y3(J-3) (3) 

J-2 1 y1(J-2) (1) y2(J-2) (1) M y1(J-2) (1) y2(J-2) (1) M 

J-2 2 y1(J-2) (2) y2(J-2) (2) M y1(J-2) (2) y2(J-2) (2) y3(J-2) (2) 

J-2 3 y1(J-2) (3) y2(J-2) (3) M y1(J-2) (3) y2(J-2) (3) y3(J-2) (3) 

J-1 1 y1(J-1) (1) y2(J-1) (1) y3(J-1) (1) y1(J-1) (1) y2(J-1) (1) M 

J-1 2 y1(J-1) (2) y2(J-1) (2) y3(J-1)(2) y1(J-1) (2) y2(J-1) (2) y3(J-1)(2) 

J-1 3 y1(J-1) (3) y2(J-1) (3) y3(J-1) (3) y1(J-1) (3) y2(J-1) (3) y3(J-1) (3) 

J 1 y1J (1) y2J (1) y3J (1) y1J (1) y2J (1) M 

J 2 y1J (2) y2J (2) y3J(2) y1J (2) y2J (2) y3J(2) 

J 3 y1J (3) y2J (3) y3J (3) y1J (3) y2J (3) y3J (3) 
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Appendix E 

Data preparation for analysis with I environments, J lines, K replications and L traits. The gid 

denotes unique lines name, env are the environments, rep denotes the replications, and resp 

represents the response variables. This file should be named ThreeWay. 

trait gid env rep resp 

1 G1 Env1 1 y111(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
1 G1 Env1 K y11K(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
L G1 Env1 K y11K(L) ⋮ ⋮ ⋮ ⋮ ⋮ 
1 GJ Env1 1 y1J1(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
1 GJ Env1 K y1JK(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
L GJ Env1 K y1JK(L) ⋮ ⋮ ⋮ ⋮ ⋮ 
1 G1 EnvI 1 yI11(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
1 G1 EnvI K yI1K(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
L G1 EnvI K yI1K(L) ⋮ ⋮ ⋮ ⋮ ⋮ 
1 GJ EnvI 1 yIJ1(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
1 GJ EnvI K yIJK(1) ⋮ ⋮ ⋮ ⋮ ⋮ 
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L GJ EnvI K yIJK(L) 
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Appendix F 

How to install and use the BMTME package 

The BMTME package performs the proposed models (unstructured, diagonal and standard). 

Step 1. Install R software version 3.2.4. 

Step 2. Manually install the BMTME package that is available at the link: 

http://hdl.handle.net/11529/10646 

Step 3. Use the package. Open R and copy and page Example 1. 

################################ Example 1 ################################# 

rm(list = objects()); ls()  

library(BMTME) 

> data(ThreeWay) # load the built in package data file 

> # to run with other data: load your data 

 

## Transforming to the data to be used. Here you do not need to modify anything. 

ThreeWay <- transform(ThreeWay, 

                      trait = factor(trait), 

                      gid = factor(gid), 

                      env = factor(env), 

                      rep = factor(rep)) 

 

## Creating the kinship matrix for this example (here you need to upload your own genomic 

relationship matrix ########################################################### 

K_x <- matrix(.7, ncol = 10, nrow = 10) 

diag(K_x) <- 1 

K <- diag(8) %x% K_x 

ISigmaG <- solve(K) 

####Here the model is fitted. You are only allowed to change model (“un” for unstructured 
#covariance matrix, “bd” for diagonal and “st” for standard), nChain, nIter and the working 

#directory (getwd ()) where you want to save your output. The output will be the beta 

http://hdl.handle.net/11529/10646
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#coefficients, random effects b1 and b2, the three variance-covarainces matrices Sigma #Trait, 

Sigma Environments and Sigma Residual of traits). ########################### 

fit1<- fit(formula = resp ~ trait + gid + env + rep, 

                data = ThreeWay, 

                K = ISigmaG, 

                model = 'un', 

                nChain = 1, 

                nIter = 100, 

                saveAt = getwd(C:\\Osval\\)) 
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